
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 2

Filter Design
 Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Filter Design Toolbox User’s Guide
 COPYRIGHT 2000 - 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: March 2000 Online only New for Version 1.0
September 2000 First Printing Revised for Vesion 2 (Release 12)
June 2001 Online only Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)

i

Contents

Preface

What Is Filter Design Toolbox? . xiv

Related Products List . xv

Using This Guide . xvi
New Users of This Toolbox . xvi
Experienced Users of This Toolbox . xvii
Organization of This Guide . xviii

Configuration Information . xx

Technical Conventions . xxi

Typographical Conventions . xxii

1
Filter Design Toolbox Overview

Filter Design Functions in the Toolbox 1-4

Quantization Functions in the Toolbox 1-7
Data Quantizers . 1-8
Quantized Filters . 1-9
Quantized Fast Fourier Transforms . 1-9

Comparison to the Signal Processing Toolbox 1-11
Filters in Signal Processing Toolbox . 1-11
Filters in Filter Design Toolbox . 1-13

ii Contents

Getting Started with the Toolbox . 1-15
Example - Creating a Quantized IIR Filter 1-15
Designing the IIR Filter . 1-17
Quantizing the IIR Filter . 1-21

Selected Bibliography . 1-28

2
Designing Advanced Filters

The Optimal Filter Design Problem . 2-2
Optimal Filter Design Theory . 2-2
Optimal Filter Design Solutions . 2-5

Advanced FIR Filter Designs . 2-7
gremez Examples . 2-8
firlpnorm Examples . 2-36

Advanced IIR Filter Designs . 2-42
iirlpnorm Examples . 2-45
iirlpnormc Examples . 2-50
iirgrpdelay Examples . 2-56

Robust Filter Architectures . 2-64
Filter Design Example That Includes Quantization 2-67

Selected Bibliography . 2-73

3
Designing Adaptive Filters

Overview of Adaptive Filters and Applications 3-4
Choosing an Adaptive Filter . 3-6
System Identification . 3-7

iii

Inverse System Identification . 3-8
Noise Cancellation (or Interference Cancellation) 3-9
Prediction . 3-9

Adaptive Filters in the Filter Design Toolbox 3-11

Examples of Adaptive Filters That Use LMS Algorithms . 3-12
adaptlms Example — System Identification 3-13
adaptnlms Example — System Identification 3-18
adaptsd Example — Noise Cancellation 3-21
adaptse Example — Noise Cancellation 3-25
adaptss Example — Noise Cancellation 3-28

Example of Adaptive Filter That Uses RLS Algorithm . . . 3-33
adaptrls Example — Inverse System Identification 3-34

Examples of Adaptive Kalman Filters 3-38
adaptkalman Example — System Identification 3-39

Selected Bibliography . 3-41

4
Digital Frequency Transformations

Introduction . 4-2

Definition of the Problem . 4-3
Selecting Features Subject to Transformation 4-6
Mapping from Prototype Filter to Target Filter 4-8
Summary of Frequency Transformations 4-9

Frequency Transformations for Real Filters 4-11
Real Frequency Shift . 4-12
Real Lowpass to Real Lowpass . 4-13
Real Lowpass to Real Highpass . 4-15
Real Lowpass to Real Bandpass . 4-17
Real Lowpass to Real Bandstop . 4-19

iv Contents

Real Lowpass to Real Multiband . 4-21
Real Lowpass to Real Multipoint . 4-23

Frequency Transformations for Complex Filters 4-26
Complex Frequency Shift . 4-26
Real Lowpass to Complex Bandpass . 4-28
Real Lowpass to Complex Bandstop . 4-29
Real Lowpass to Complex Multiband . 4-31
Real Lowpass to Complex Multipoint . 4-33
Complex Bandpass to Complex Bandpass 4-36

5
Quantization and Quantized Filtering

Binary Data Types . 5-3
Digital Filters . 5-3
Quantized Filter Types . 5-4
Quantized Filter Structures . 5-4
Data Format for Quantized Filters . 5-5
Quantized FFTs and Quantized Inverse FFTs 5-6

Introductory Quantized Filter Example 5-7
Constructing an Eight-Bit Quantized Filter 5-8
Analyzing Poles and Zeros with zplane 5-10
Analyzing the Impulse Response with impz 5-11
Analyzing the Frequency Response with freqz 5-12
Noise Loading Frequency Response Analysis: nlm 5-13
Analyzing Limit Cycles with limitcycle 5-14

Fixed-Point Arithmetic . 5-16
Radix Point Interpretation . 5-17
Dynamic Range and Precision . 5-17
Overflows and Scaling . 5-18

Floating-Point Arithmetic . 5-19
Scientific Notation . 5-19
The IEEE Format . 5-20

v

The Exponent . 5-20
The Fraction . 5-20
The Sign Bit . 5-20
Single-Precision Format . 5-21
Double-Precision Format . 5-21
Custom Floating-Point Data Types . 5-22
Dynamic Range . 5-22
Exceptional Arithmetic . 5-24

6
Working with Objects

Objects for Quantized Filtering . 6-2
Constructing Objects . 6-3
Copying Objects to Inherit Properties . 6-4

Properties and Property Values . 6-5
Setting and Retrieving Property Values 6-5
Setting Property Values Directly at Construction 6-5
Setting Property Values with the set Command 6-6
Retrieving Properties with the get Command 6-8
Direct Property Referencing to Set and Get Values 6-9

Functions Acting on Objects . 6-11

Using Command Line Help . 6-12
Command Line Help For Nonoverloaded Functions 6-12
Command Line Help For Overloaded Functions 6-12

Using Cell Arrays . 6-14
Indexing into a Cell Array of Vectors or Matrices 6-14
Indexing into a Cell Array of Cell Arrays 6-15

vi Contents

7
Working with Quantizers

Quantizers and Unit Quantizers . 7-2

Constructing Quantizers . 7-3
Constructor for Quantizers . 7-3

Quantizer Properties . 7-4
Properties and Property Values . 7-4
Settable Quantizer Properties . 7-4
Setting Quantizer Properties Without Naming Them 7-5
Read-Only Quantizer Properties . 7-5

Quantizing Data with Quantizers . 7-6
Example — Data-Related Quantizer Information 7-6

Transformations for Quantized Data . 7-8

Quantizer Data Functions . 7-9

8
Working with Quantized Filters

Constructing Quantized Filters . 8-3
Constructor for Quantized Filters . 8-3
Constructing a Quantized Filter from a Reference 8-4
Copying Filters to Inherit Properties . 8-5
Changing Filter Property Values After Construction 8-5

Quantized Filter Properties . 8-6
Properties and Property Values . 8-6
Basic Filter Properties . 8-6
Specifying the Filter Reference Coefficients 8-7
Specifying the Quantized Filter Structure 8-8
Specifying the Data Formats . 8-9
Specifying All Data Format Properties at Once 8-10

vii

Specifying the Format Parameters with setbits 8-11
Using normalize to Scale Coefficients . 8-12

Filtering Data with Quantized Filters 8-14

Transformation Functions for
Quantized Filter Coefficients . 8-15

9
Working with Quantized FFTs

Constructing Quantized FFTs . 9-3
Constructor for Quantized FFTs . 9-3
Copying Quantized FFTs to Inherit Properties 9-4

Quantized FFT Properties . 9-6
Properties and Property Values . 9-6
Basic Quantized FFT Properties . 9-6
Specifying the Data Formats . 9-7
Specifying All Data Format Properties at Once 9-8
Specifying the Format Parameters with setbits 9-8

Computing a Quantized FFT or Inverse FFT of Data 9-10

10
Quantized Filtering Analysis Examples

Example — Quantized Filtering of Noisy Speech 10-3
Loading a Speech Signal . 10-3
Analyzing the Frequency Content of the Speech 10-4
Adding Noise to the Speech . 10-4
Creating a Filter to Extract the 3000Hz Noise 10-5
Quantizing the Filter as a Fixed-Point Filter 10-8
Normalizing the Quantized Filter Coefficients 10-8

viii Contents

Analyzing the Filter Poles and Zeros Using zplane 10-9
Creating a Filter with Second-Order Sections 10-12
Quantized Filter Frequency Response Analysis 10-13
Filtering with Quantized Filters . 10-14
Analyzing the filter Function Logged Results 10-15

Example — A Quantized Filter Bank 10-17
Filtering Data with the Filter Bank . 10-18
Creating a DFT Polyphase FIR Quantized Filter Bank 10-18

Example — Effects of Quantized Arithmetic 10-23
Creating a Quantizer for Data . 10-23
Creating a Fixed-Point Filter from a Quantized Reference . . 10-23
Creating a Double-Precision Quantized Filter 10-24
Quantizing a Data Set . 10-24
Filtering the Quantized Data with Both Filters 10-24
Comparing the Results . 10-25

11
Using FDATool with the Filter Design Toolbox

Switching FDATool to Quantization Mode 11-4

Quantizing Filters in the Filter Design and Analysis Tool 11-7
To Quantize Reference Filters . 11-10
To Change the Quantization Properties of Quantized Filters 11-11

Analyzing Filters with the Noise Loading Method 11-12
Using the Noise Loading Method . 11-12
Comparing the NLM and Theoretical Magnitude Responses 11-16
Choosing Your Quantized Filter Structure 11-16
Converting the Structure of a Quantized Filter 11-16
To Convert Your Filter to Second-Order Sections Form 11-17

Optimizing the Quantization Process For Your Filter . . 11-19
Control Coefficient Quantization . 11-20
Limit Coefficient Overflow By Fraction Length Changes . . . 11-20

ix

Normalizing Transfer Function Coefficients 11-21
Scaling Transfer Function Coefficients 11-24
To Scale Transfer Function Coefficients 11-25
Scaling Inputs and Outputs of Quantized Filters 11-26
To Enter Scale Values for Quantized Filters 11-27

Importing and Exporting Quantized Filters 11-29
To Import Quantized Filters . 11-30
To Export Quantized Filters . 11-31

Transforming Filters . 11-34
Original Filter Type . 11-35
Frequency Point To Transform . 11-38
Transformed Filter Type . 11-39
Specify Desired Frequency Location . 11-39
To Transform Filters . 11-40

Realizing Filters as Simulink Subsystem Blocks 11-45
About the Realize Model Panel in FDATool 11-45
To Realize a Filter Using FDATool . 11-47

Getting Help for FDATool . 11-49
Context-Sensitive Help—The What’s This? Option 11-49
Additional Help for FDATool . 11-49

12
Property Reference

A Quick Guide to Quantizer Properties 12-2

Quantizer Properties Reference . 12-3
Format . 12-3
Max . 12-5
Min . 12-5
Mode . 12-5
NOperations . 12-6
NOverflows . 12-6

x Contents

NUnderflows . 12-7
OverflowMode . 12-7
RoundMode . 12-8

A Quick Guide to Quantized Filter Properties 12-10

Quantized Filter Properties Reference 12-11
CoefficientFormat . 12-11
FilterStructure . 12-12
InputFormat . 12-38
NumberOfSections . 12-38
MultiplicandFormat . 12-38
OutputFormat . 12-39
ProductFormat . 12-40
QuantizedCoefficients . 12-40
ReferenceCoefficients . 12-40
ScaleValues . 12-48
StatesPerSection . 12-50
SumFormat . 12-50

A Quick Guide to Quantized FFT Properties 12-51

Quantized FFT Properties Reference 12-52
CoefficientFormat . 12-52
InputFormat . 12-52
Length . 12-53
NumberOfSections . 12-53
MultiplicandFormat . 12-53
OutputFormat . 12-54
ProductFormat . 12-54
Radix . 12-54
ScaleValues . 12-54
SumFormat . 12-55

xi

13
Function Reference

Functions—By Category . 13-2
Quantized Filter Construction and Property Functions 13-2
Quantized Filter Analysis Functions . 13-3
Second-Order Sections Conversion Functions 13-4
Quantizer Construction and Property Functions 13-4
Quantizer Analysis Functions . 13-5
Quantized FFT Construction and Property Functions 13-6
Quantized FFT Analysis Functions . 13-6
Filter Design Functions . 13-7
Filter Conversion Functions . 13-8
Adaptive Filter Design Functions and
Their Initialization Functions . 13-9

Functions Operating on Quantized Filters 13-10

Functions Operating on Quantizers 13-12

Functions Operating on Quantized FFTs 13-14

Functions for Designing Digital Filters 13-16

Functions—Alphabetical List . 13-19

14
Bibliography

Advanced Filters . 14-2
Adaptive Filters . 14-2
Frequency Transformations . 14-3

xii Contents

Preface

What Is Filter Design Toolbox? (p. xiv) Briefly introduces the toolbox

Related Products List (p. xv) Lists products that enhance your toolbox capabilities

Using This Guide (p. xvi) Describes the structure and contents of this User’s Guide

Configuration Information (p. xx) Explains how you get information about the toolbox

Technical Conventions (p. xxi) Details some technical conventions used in the text

Typographical Conventions (p. xxii) Lists the conventions used to identify certain information
in the User’s Guide, such as variables and functions

 Preface

 xiv

What Is Filter Design Toolbox?
Filter Design Toolbox is a collection of tools built on top of the MATLAB®

computing environment and the Signal Processing Toolbox. The toolbox
includes a number of advanced filter design techniques that support designing,
simulating, and analyzing fixed-point and custom floating-point filters for a
wide range of precisions.

Note A preliminary version of Filter Design Toolbox, was released as
Quantized Filtering Toolbox, Version 1.

Related Products List

xv

Related Products List
The MathWorks provides several products that are especially relevant to the
tasks you perform with Filter Design Toolbox.

For more information about any of these products, refer to either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the
capabilities of Simulink.

Product Description

DSP Blockset Design and simulate DSP systems

Fixed-Point Blockset Design and simulate fixed-point systems

Signal Processing
Toolbox

Perform signal processing, analysis, and
algorithm development

Simulink Design and simulate continuous- and
discrete-time systems

 Preface

 xvi

Using This Guide
All users of the toolbox should read this guide. You should be generally familiar
with basic digital signal processing concepts before you use the toolbox and this
User’s Guide. The quantization portion of this toolbox assumes some
familiarity with fixed-point and floating-point arithmetic in the context of
digital filtering applications.

New Users of This Toolbox
You can use this toolbox to:

• Design filters using advanced design methods

• Design adaptive filters

• Transform filters from one frequency response type to another, such as from
lowpass to bandstop

• Convert filters to and from coupled-allpass forms

• Convert filters to second-order section form

• Quantize filters and filter data

• Quantize data

• Compute quantized FFTs and IFFTs

This toolbox relies on object-oriented programming techniques using objects for
quantized filtering and analysis. You do not need to be familiar with these
techniques to use this toolbox. However, you may want to review the concepts
of MATLAB structures and cell arrays, as these are used in the syntax for
several toolbox methods. For more information on MATLAB structures and cell
arrays, refer to “Programming and Data Types” in your MATLAB
documentation.

As a new user of this toolbox, read the entire guide. Of particular interest are:

• Chapter 2, “Designing Advanced Filters” for its background information on
the advanced filter design techniques in this toolbox

• Chapter 5, “Quantization and Quantized Filtering” for its background
information on fixed-point and floating-point filters

• Chapter 6, “Working with Objects” for an introduction to the object-oriented
techniques you need for this toolbox

Using This Guide

xvii

• Chapter 7, “Working with Quantizers” for information on constructing and
using quantizers

• Chapter 8, “Working with Quantized Filters” for information on constructing
and using quantized filters

• Chapter 9, “Working with Quantized FFTs” for information on constructing
and using quantized FFTs

• “Example — Quantized Filtering of Noisy Speech” on page 10-3 for a detailed
example of designing and analyzing a fixed-point filter

• “Example — A Quantized Filter Bank” on page 10-17 for an example of
designing and analyzing a fixed-point polyphase DFT filter bank

• Chapter 11, “Using FDATool with the Filter Design Toolbox” for information
about using Filter Design and Analysis Tool to quantize filters and
investigate the effects of quantization on filter performance

• “Quantizer Properties Reference” on page 12-3 for a description of the
quantizer properties

• “Quantized Filter Properties Reference” on page 12-11 for a description of
the quantized filter properties

• “Quantized FFT Properties Reference” on page 12-52 for a description of the
quantized FFT properties

• “Functions—By Category” on page 13-2 for a brief description of every
function in the toolbox

Experienced Users of This Toolbox
As an experienced user of this toolbox, you may find the following sections to
be useful reference guides for the toolbox:

• “Quantizer Properties Reference” on page 12-3

• “Quantized Filter Properties Reference” on page 12-11

• “Quantized FFT Properties Reference” on page 12-52

• “Functions—By Category” on page 13-2

 Preface

 xviii

Organization of This Guide
This guide is organized as follows.

Chapter Title Description

“Filter Design Toolbox Overview” Offers an overview of the toolbox and an example to get
you started using toolbox features and functions

“Designing Advanced Filters” Provides background information on the advanced filter
design methods in this toolbox

“Designing Adaptive Filters” Introduces adaptive filtering and the functions available
in the toolbox

“Digital Frequency
Transformations”

Develops the theory of transforming filters and discusses
the transformation functions provided

“Quantization and Quantized
Filtering”

Introduces:

• The concepts of quantization and filtering

• An example of using, creating, and analyzing quantized
filters

• Some tutorial information on fixed- and floating-point
arithmetic

“Working with Objects” Introduces the object-oriented programming techniques
relevant to this toolbox

“Working with Quantizers” Provides information about constructing and using
quantizers

“Working with Quantized Filters” Covers quantized-filter specific characteristics and
analysis techniques

“Working with Quantized FFTs” Introduces constructing and using quantized FFTs

“Quantized Filtering Analysis
Examples”

Presents approaches to solving some applied problems
with this toolbox

“Using FDATool with the Filter
Design Toolbox”

Presents a detailed reference covering the quantization
page of the Filter Design and Analysis Tool

Using This Guide

xix

“Property Reference” Provides:

• A summary of the quantized filter properties

• A detailed quantized filter property reference, including
descriptions of the filter structures

“Function Reference” (online only) Provides:

• Tables that include short descriptions of the functions in
this toolbox

• A detailed alphabetical function reference

“Bibliography” Lists references for quantized filtering

Chapter Title Description (Continued)

 Preface

 xx

Configuration Information
To determine whether Filter Design Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, refer to the installation
documentation for your platform.

Note For up-to-date information about system requirements, visit the system
requirements page, available in the products area at the MathWorks Web site
(www.mathworks.com).

Technical Conventions

xxi

Technical Conventions
This manual and the functions in Filter Design Toolbox use the following
technical notations.

Nyquist frequency One-half the sampling frequency. Some Signal
Processing Toolbox functions normalize this to 1.

x(1) The first element of a data sequence or filter,
corresponding to zero lag.

w (used in syntax
examples)

Digital frequency in radians per sample.

f (used in syntax
examples)

Digital frequency in hertz.

[x, y) The interval from x to y, including x but not
including y.

... (used in
syntax examples)

Ellipses in the argument list for a given syntax on a
function reference page. These indicate that all
argument options listed prior to the current syntax
are valid for the function.

 Preface

 xxii

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1
Filter Design Toolbox
Overview

Filter Design Functions in the Toolbox
(p. 1-4)

Outlines the filter design functions available in the
toolbox

Quantization Functions in the Toolbox
(p. 1-7)

Outlines the quantization functions available in the
toolbox

Comparison to the Signal Processing
Toolbox (p. 1-11)

Explains where the toolbox differs from the Signal
Processing Toolbox—the different and more advanced
features

Getting Started with the Toolbox
(p. 1-15)

Provides an introduction to the toolbox by presenting
examples that design various filters

Selected Bibliography (p. 1-28) Lists some books that offer details about digital filtering
and digital signal processing

1 Filter Design Toolbox Overview

1-2

When you install Filter Design Toolbox in your MATLAB® environment, you
can perform digital filter design, fixed- and floating-point filter quantization,
and filter performance analysis on your desktop computer. But what are
filtering and quantization and what benefits do they provide?

Designers use filtering and its variant, digital filtering, for many tasks:

• To separate signals that have been combined, such as a musical recording
and the noise added during the recording process

• To separate signals into their constituent frequencies

• To demodulate signals

• To restore signals that have been degraded by some process, known or
unknown

You can use analog filters to accomplish these tasks, but digital filters offer
greater flexibility and accuracy than analog filters. In addition, digital signal
processing (DSP) depends in large measure on digital filtering to meet the
needs of its users.

Analog filters can be cheaper, faster, and have greater dynamic range; digital
filters outstrip their analog cousins in flexibility. The ability to create filters
that have arbitrary shape frequency response curves, and filters that meet
performance constraints, such as bandpass width and transition region width,
is well beyond that of analog filters.

Quantization is a natural outgrowth of digital filtering and digital signal
processing development. Also, there is a growing need for fixed-point filters
that meet power, cost, and size restrictions. When you convert a filter from
floating-point to fixed-point, you use quantization to perform the conversion.

As filter designers began to use digital filters in applications where power
limitations and size constraints drove the filter design, they moved from
double-precision, floating-point filters to fixed-point filters. When you have
enough power to run a floating-point digital signal processor, such as on

desktop PC or in your car, fixed-point processing and filtering are unnecessary.
But, when your filter needs to run in a cellular phone, or you want to run a
hearing aid for hours instead of seconds, fixed-point processing can be essential
to ensure long battery life and small size.

Filter Design Toolbox provides the functions you need to develop filters that
meet the needs of fixed-point algorithms and electronics systems. In addition

1-3

to offering tools for analyzing the effects of quantization on filter performance
and signal processing performance, the toolbox offers filter structures for you
to use to develop prototype filter designs. With structures ranging from finite
impulse response (FIR) filters to infinite impulse response (IIR) filters, you can
investigate alternative fixed-point realizations of filters that might meet your
goals.

This section contains the following subsections introducing filter design:

• “Filter Design Functions in the Toolbox” on page 1-4

• “Quantization Functions in the Toolbox” on page 1-7

• “Comparison to the Signal Processing Toolbox” on page 1-11

• “Getting Started with the Toolbox” on page 1-15

• “Selected Bibliography” on page 1-28

1 Filter Design Toolbox Overview

1-4

Filter Design Functions in the Toolbox
In a system that has unlimited power and size, any filter structure that met
your performance specifications would do. You would design a floating-point
filter whose frequency response achieved your aims and implement that filter
in your system.

When you need a fixed-point filter to meet your requirements, the filter
structure you choose can depend very much on how quantization affects the
performance of the filter. Filter Design Toolbox offers both FIR and IIR filter
design tools and structures that let you experiment with multiple filter designs
to see how each responds to quantization effects.

Filter Structures
The following tables detail some of the quantized FIR and IIR filter structures
available in the toolbox. For lists of all the architectures available in the
toolbox, refer to the section “Quantized Filter Properties Reference” on
page 12-11 in this guide.

Table 1-1: Finite Impulse Response Filter Structures

FIR Filter Structures Description

'antisymmetricfir Antisymmetric finite impulse response (FIR)

'fir' Finite impulse response (FIR)

'firt' Transposed finite impulse response (FIR)

'latticema' Moving average (MA) lattice form

'symmetricfir' Symmetric FIR

Table 1-2: Infinite Impulse Response Filter Structures

IIR Filter Structures Description

'df1' Direct form I

'df1t' Direct form I transposed

'df2' Direct form II

Filter Design Functions in the Toolbox

1-5

Each of the structures supports floating-point or fixed-point realizations, and
you use the same toolbox function, qfilt, to create each one. To review
schematics of the filter structures available in this toolbox, perform the
following steps to run the demo “Quantized Filter Construction” in the Filter
Design folder in MATLAB demos.

To run the filter construction demo.

1 Enter demo at the MATLAB command line prompt.

The MATLAB Demo window opens on the desktop.

2 Double-click the entry Toolboxes in the left pane. The list of available
toolboxes appears in the left pane.

3 Click Filter Design.

4 Click Fixed-point Filter Construction.

'df2t' Direct form II transposed

'latticeca' Coupled allpass lattice

'latticecapc' Power-complementary output coupled
allpass lattice form

'latticear' Autoregressive (AR) lattice form

'latticearma' Autoregressive, moving average (ARMA)
lattice form

'statespace' Single-input/single-output state-space

Table 1-2: Infinite Impulse Response Filter Structures

IIR Filter Structures (Continued) Description

1 Filter Design Toolbox Overview

1-6

5 Click Quantized Filter Construction in the list of demos on the lower right.

6 Click Run this demo to run the demonstration model.

To access these demos directly from the MATLAB command line, enter
qfiltconstruction at the prompt.

Quantization Functions in the Toolbox

1-7

Quantization Functions in the Toolbox
Designing floating-point filters solves only part of the filter design problem. In
most cases, floating-point filter realizations are not appropriate for digital
signal processing applications. Many real-world DSP systems require that
their filters use minimum power, generate minimum heat, and do not induce
computational overload in their processors. Meeting these constraints often
means using fixed-point filters. Unfortunately, converting a floating-point
filter to fixed-point realization (called quantizing) can result in lost filter
performance and accuracy. To simulate and determine the effects of
quantization, and allow you to investigate how switching from floating-point to
fixed-point arithmetic affects the performance of your filter, the toolbox
includes quantization functions. You use the toolbox quantization functions for
constructing, applying, and analyzing quantizers, quantized filters, and
quantized fast Fourier transforms (FFT).

The following sections introduce the quantization functions in the toolbox. You
can find details about the functions in these sections:

• “Quantizer Properties Reference” on page 12-3

• “Quantized Filter Properties Reference” on page 12-11

• “Quantized FFT Properties Reference” on page 12-52

As you read the sections about the properties, you will see that quantizers,
quantized filters, and quantized FFTs share common properties and methods.
At the lowest level, a quantizer forms the basis of all the quantizers in the
toolbox. Each property of a quantized object is an instantiation of a data
quantizer. The relationship between quantizers, quantized filters, quantized
FFTs, and their underlying quantizer is shown in the following figure.

1 Filter Design Toolbox Overview

1-8

Figure 1-1: Unified Modeling Language Diagram for Filter Design Toolbox
Objects

Data Quantizers
To determine how quantization affects a signal, you construct quantizers that
you use to quantize a signal or data set in MATLAB. By adjusting the
quantization parameters of your quantizer, you can investigate the output
from various quantization schemes when you apply them to a data set or
signal. In addition to experimenting with data quantization, quantizers
determine how quantized filters and quantized FFTs quantize data to which
they are applied.

Each quantizer you construct has the following properties that you can set
when you construct the quantizer:

• format — determines the quantization format properties

• mode — determines the arithmetic data type

• overflowmode — determines how overflows are handled during arithmetic
operations

• roundmode — determines the rounding method applied to data values

Quantized Filter Quantized FFT

Data Quantizer

Coefficient
Quantizer

Input
Quantizer

Output
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Sum
Quantizer

Quantized Objects

Quantizer

Quantization Functions in the Toolbox

1-9

When you apply a quantizer, five more properties report the results of the
operation:

• max — reports the maximum value encountered while quantizing input
signals

• min — reports the minimum value encountered while quantizing input
signals

• noperations — reports the total number of quantized operations performed
while quantizing input signals

• noverflows — reports the total number of overflows, both negative and
positive, that occurred while quantizing input signals

• nunderflows — reports the number of underflows that occurred while
quantizing input signals

You cannot set these properties; they are read-only, and reflect the results of
all the quantization operations that you perform with a given quantizer. Use
reset to return quantizers to their initial settings.

Quantized Filters
Quantization, or the effect of word length on filter performance, can lead to
erroneous behavior in filter designs. Finite word lengths can change the
frequency response of a filter from its desired performance. To help you
investigate quantization effects that occur during filtering, the toolbox
provides two ways to construct a quantized filter:

• Use the function qfilt to create a default quantized filter.

• Use qfilt and specify a reference filter to quantize as an input argument.

In both techniques, your quantized filters have the same properties as
quantizers.

Quantized Fast Fourier Transforms
In developing digital signal processing (DSP) algorithms, the fast Fourier
transform (FFT) is one of the essential building blocks. It may be the most
common transform for handling data and signals. To implement an FFT on a
fixed-point DSP, you must consider the effects of word length on the output of
the transform, in much the same way that you must consider the quantization
effects in a digital filter. Filter Design Toolbox includes a quantized FFT (qfft)

1 Filter Design Toolbox Overview

1-10

function that you use to construct and apply quantized FFTs to signals and
data in MATLAB. To help you investigate quantization effects that occur
during the FFT, the toolbox provides you two ways to construct quantized
FFTs:

• Use the function qfft to create a default quantized fast Fourier transform.

• Use qfft and specify a reference filter to quantize as an input argument.

In both techniques, your quantized FFTs have the same properties as
quantizers and quantized filters.

Quantized FFTs have other properties as well; some you can set and some are
read-only:

• length — determines the length of the FFT. Must be a power of the radix

• numberofsections — a read-only property reporting the number of sections
in your quantized FFT

• radix — indicates the form of the FFT to use

• scalevalues — specifies the scaling for the input for each stage of the FFT

Comparison to the Signal Processing Toolbox

1-11

Comparison to the Signal Processing Toolbox
You use Signal Processing Toolbox and Filter Design Toolbox to design and
analyze filters. Filter Design Toolbox offers advanced filter design methods for
FIR and IIR filters that enhance the functionality of Signal Processing Toolbox.

Filters in Signal Processing Toolbox
Signal Processing Toolbox is data-oriented. You create separate variables for
each parameter required to characterize a given filter type. For instance, to
specify a state-space realization of a filter, you need four variables: one for each
of the four parameters that characterize a state-space model.

Filters you design in Signal Processing Toolbox are in double-precision. You
cannot design single-precision, custom-precision, or fixed-point filters. The
filter design methods in Signal Processing Toolbox are listed in the following
tables. Each table includes brief descriptions of the methods and functions,
separated into IIR and FIR architectures:

• Table 1-3 — describes IIR filter design methods

• Table 1-4 — describes filter order estimation functions

• Table 1-5 — describes FIR filter design methods

Table 1-3: IIR Filter Design Methods in Signal Processing Toolbox

IIR Filter Design—Classical and Direct

besself Bessel analog filter design

butter Butterworth analog and digital filter design

cheby1 Chebyshev type I filter design (passband ripple)

cheby2 Chebyshev type II filter design (stopband ripple)

ellip Elliptic (Cauer) filter design

maxflat Generalized digital Butterworth filter design

yulewalk Recursive digital filter design

1 Filter Design Toolbox Overview

1-12

Table 1-4: Filter Order Estimation Functions in Signal Processing Toolbox

IIR Filter Order Estimation

buttord Calculate the order and cutoff frequency for a
Butterworth filter

cheb1ord Calculate the order for a Chebyshev type I filter

cheb2ord Calculate the order for a Chebyshev type II filter

ellipord Calculate the minimum order for elliptic filters

remezord Parks-McClellan optimal FIR filter order estimation

Table 1-5: FIR Filter Design Methods in Signal Processing Toolbox

FIR Filter Design Description

cremez Complex and nonlinear-phase equiripple FIR filter
design

fir1 Design a window-based finite impulse response filter

fir2 Design a frequency sampling-based finite impulse
response filter

fircls Constrained least square FIR filter design for
multiband filters

fircls1 Constrained least square filter design for lowpass and
highpass linear phase FIR filters

firls Least square linear-phase FIR filter design

firrcos Raised cosine FIR filter design

intfilt Interpolation FIR filter design

kaiserord Estimate parameters for an FIR filter design with
Kaiser window

remez Compute the Parks-McClellan optimal FIR filter
design

Comparison to the Signal Processing Toolbox

1-13

Filters in Filter Design Toolbox
To help you create and analyze quantized filters, Filter Design Toolbox is
object-oriented. You encapsulate the parameters needed to specify your
quantized filter under one variable name in a quantized filter object. To specify
the parameters associated with a quantized filter, you set the property values
for its associated named properties. These properties are assigned to the
quantized filter object that represents your quantized filter.

You can design a wide range of fixed-point and custom floating-point filters in
Filter Design Toolbox. You use the double-precision filters you design in Signal
Processing Toolbox and Filter Design Toolbox as reference filters to create
quantized filters in this toolbox. To develop a quantized filter, use either
toolbox to create a double-precision filter that meets your requirements, then
use the quantization functions in this toolbox to convert the double-precision
filter to a quantized filter.

Refer to Table 1-6 for a list of the filter design methods in this toolbox.

remezord Parks-McClellan optimal FIR filter order estimation

sgolay Savitzky-Golay filter design

Table 1-6: Filter Design Methods in the Toolbox—FIR and IIR

Filter Function Filter Description

firlpnorm Design minimax solution FIR filters using the least-pth
algorithm

gremez Use the generalized Remez exchange algorithm to
design optimal solution FIR filters with arbitrary
response curves

iirgrpdelay Design optimal solution IIR filters where you specify
the group delay in the passband frequencies

Table 1-5: FIR Filter Design Methods in Signal Processing Toolbox (Continued)

FIR Filter Design Description

1 Filter Design Toolbox Overview

1-14

You can construct these filters as single-precision, double-precision,
custom-precision floating-point, or fixed-point structures.

iirlpnorm Design minimax solution IIR filters using the least-pth
algorithm

iirlpnormc Design minimax solution IIR filters using the least-pth
algorithm. In addition, restrict the filter poles and
zeros to lie within a fixed radius around the origin of
the z-plane

Table 1-6: Filter Design Methods in the Toolbox—FIR and IIR (Continued)

Filter Function Filter Description

Getting Started with the Toolbox

1-15

Getting Started with the Toolbox
This section provides an example to get you started using Filter Design
Toolbox. You can run the code in this example from the Help browser (select
the code, right-click the selection, and choose Evaluate Selection from the
context menu) or you can enter the code on the command line. This exercise
also introduces Filter Design and Analysis Tool (FDATool). You use it to design
and analyze filters, and to quantize filters.

As you follow the example, you are introduced to some of the basic tasks of
designing a filter and using FDATool. You will engage some of the quantization
capabilities of the toolbox, and a few of the filter design architectures provided
as well.

Before you begin this example, start MATLAB and verify that you have
installed Signal Processing and Filter Design Toolboxes (type ver at the
command prompt). You should see Filter Design Toolbox, version 2.0 and
Signal Processing Toolbox, version 5.0, among others, in the list of installed
products.

Example - Creating a Quantized IIR Filter

Example Background. Wireless communications technologies, such as cellular
telephones, need to account for the receiver’s motion relative to the transmitter
and for path changes between the stations. To model the channel fading and
frequency shifting that occurs when the receiver is moving, wireless
communications models apply a lowpass filter to the transmitted signal. With
a narrow passband of 0 to 40Hz that modifies the transmitted signal, the
lowpass filter simulates the Doppler shift caused by the motion between the
transmitter and receiver. As the lowpass filter requires a rather peculiar rising
shape across the passband and an extremely sharp transition region, designing
and quantizing the filter presents an interesting study in filter design. In
Figure 1-2, you see the frequency response curve for the RFC filter. Notice the
narrow passband with the rising shape and the sharp cutoff transition. Also
note that the y-axis is a linear scale that dramatizes the shape of the passband.

1 Filter Design Toolbox Overview

1-16

Figure 1-2: Frequency Response of the Filter Used to Simulate the Rayleigh
Fading Channel Phenomenon

To create a filter with the passband shape in the figure, we define four vectors
that describe the shape.

Vector Definition

Frequency
vector

Specifies frequency points along the frequency response
curve. frequency can be in Hz or normalized. In our
example, we are using normalized entries.

Edge vector Specifies the edges, in Hz or in normalized values, of the
passband and stopband for the filter. In our example, we
are using normalized entries.

Magnitude
vector

Specifies the filter response magnitude at each frequency
specified in the frequency vector. These values produce the
distinctive passband we require.

Weight
vector

Specifies the weighting for each frequency in the frequency
vector.

 40 Hz cutoff frequency
with sharp transition

Distinctive passband
shape to match the
Doppler shift effects

Getting Started with the Toolbox

1-17

Most filter designs do not require you to define four vectors to specify the filter
response. Because the passband of the filter we want is not standard, we are
going to use the Arbitrary Magnitude filter type in FDATool when we design
our filter. This type requires four input vectors to specify the filter. You can also
design filters with more normal passband specifications directly in FDATool.
You can enter the four vectors in FDATool, but long vectors are easier to enter
at the command line. If the vectors exist as files, you can use MATLAB
commands to import the vectors into your MATLAB workspace.

Designing the IIR Filter
Start to design the filter by clearing the MATLAB workspace and defining the
four required vectors:

1 Clear your MATLAB workspace of all variables and close all your open
figure windows. Enter

clear; close all;

2 At the MATLAB prompt, enter the following commands to create the four
vectors that define the desired IIR filter frequency response.

PBfreq = 0:.0005:.0175; % Define the passband frequencies

Now specify the amplitude at each passband frequency. We use the right
array divide operator (./) to perform element-wise division.

PBamp = .4845 ./ (1-(PBfreq ./ 0.0179).^2).^0.25;

Use PBfreq and PBamp to generate the final frequency F and amplitude A
vectors for our IIR filter. While defining these vectors, define edges and W,
the edge and weight vectors.

F = [PBfreq .02 .0215 .025 1];
edges = [0 .0175 .02 .0215 .025 1];
A = [PBamp 0 0 0 0];
W = [ones(1,length(A)-1) 300];

Issuing these commands created four vectors in your MATLAB workspace.
FDATool uses these vectors to create an IIR lowpass filter with a specified
magnitude response curve. Vectors F and A each contain 40 elements, and
vectors W and edges contain 40 and 6 elements. If we were not designing

1 Filter Design Toolbox Overview

1-18

a specific passband shape, you would not have needed to define these
vectors.

3 Open FDATool by typing fdatool at the command prompt.

FDATool opens in Design Filter mode.

4 Under Filter Type, select Arbitrary Magnitude from the list.

Although we want a lowpass filter, Lowpass does not let us specify the
shape of the passband. So we use the Arbitrary Magnitude option to get
precisely the curve we need. You could plot F and A to see that the curve is
similar to the response in Figure 1-2. Use the command plot(F,A) to view
a simple plot of the specified passband shape.

When you select Arbitrary Magnitude from the list, the options under
Frequency and Magnitude Specifications change to require three vectors:
Freq. vector, Mag. vector, and Weight vector.

5 Continue your IIR filter design by selecting IIR under Design Method,
choosing Least Pth-norm from the list.

A new vector appears under Frequency and Magnitude Specifications —
Freq. edges.

Getting Started with the Toolbox

1-19

6 Under Frequency and Magnitude Specifications, select Normalized (0
to 1) from the Frequency Units list.

7 Under Frequency and Magnitude Specifications, enter the variable
names that define the four vectors required to specify the filter response.

Freq. vector, Freq. edges, Mag. vector, and Weight vector: F, edges, A,
and W.

8 Specify the filter order by entering 8 for the numerator and denominator
orders under Filter Order.

Required Vector Variable

Freq. vector F

Freq. edges edges

Mag. vector A

Weight vector W

1 Filter Design Toolbox Overview

1-20

9 Click Design Filter.

FDATool designs the filter and computes the filter response. In the analysis
area, you see the magnitude response of the filter displayed on a logarithmic
scale.

In the upper left corner, the plot shows the region of interest for this filter.
Click on the FDATool toolbar and use the zoom feature to inspect the
filter passband between 0 and 0.05 (as shown in the figure). You see that the
shape of the passband for the IIR filter generally matches the shape in
Figure 1-2 (accounting for the shift from a linear to a logarithmic y-axis).

For now, we have an eighth-order, stable filter based on the direct form II
transposed structure. It consists of one section.

10 To see the poles and zeros for the filter, select Pole/Zero Plot from the
Analysis menu in FDATool.

For this filter, which is stable, the poles lie on or very close to the unit circle,
and close to one another. Generally, when roots are close, they can be
sensitive to coefficient quantization effects. Changes to the positions of the
poles or zeros could cause the filter to become unstable. This is your first hint
that quantizing this double-precision filter might be difficult.

Getting Started with the Toolbox

1-21

Quantizing the IIR Filter
You used the filter design tools in FDATool to design an IIR filter with a
passband you defined. To demonstrate the effects of quantization on this filter,
we can convert the filter to fixed-point arithmetic and quantize its transfer
function coefficients. So, to complete the design process, we need to quantize
the IIR filter, keeping its performance intact through the quantization process.
You use FDATool in quantization mode to accomplish this operation:

1 In FDATool, click to switch FDATool to quantization mode.

2 To quantize your IIR filter, click

You have quantized the current filter using the defaults. Under Current
Filter Information you see the filter is still stable, eighth-order, and consists
of one section. Notice that Source now reads Designed(Quantized). If you
import a filter into FDATool, Source changes to read Imported.

For now the filter uses the default structure — Direct form II transposed.

3 Look at the Magnitude Response in the FDATool analysis area, which now
shows the response curves for both your original IIR filter (Reference) and
the quantized version (Quantized).

1 Filter Design Toolbox Overview

1-22

While the new filter is stable, quantizing the filter coefficients seriously
degraded its response. Truncating some of the coefficients, as you did when
you quantized the filter, caused the coefficients to exceed the limits [-1,1) of
the fixed data type (called overflow). Those coefficients were truncated to fall
within the range -1 to 1. Maybe we can scale the transfer function
coefficients of the reference filter so that quantizing the filter does not do
such damage.

If you select Filter Coefficients from the Analysis menu in FDATool, you
can review the coefficients of the reference and quantized filters. When you
scroll to the bottom of the display in the analysis area, you see that eight
coefficients overflowed during quantization. In the left column of the
analysis area, the symbols +,-, and 0 appear to indicate which coefficients
overflowed or underflowed, and in which direction (toward ±infinity or
toward zero. The following table summarizes the meaning of the symbols.

Getting Started with the Toolbox

1-23

For example, the ninth numerator coefficient underflowed toward zero, and
eight of the nine denominator coefficients overflowed toward plus or minus
infinity and were saturated to (1-eps) or -1.0. The following data table shows
the filter coefficients.

Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
0 (1) 0.000000000000000 0.000006805499528066
 (2) -0.000030517578125 -0.000037137669916463
 (3) 0.000091552734375 0.000087218236138384
 (4) -0.000122070312500 -0.000115464066452111
 (5) 0.000091552734375 0.000094505093411602
 (6) -0.000061035156250 -0.000048910514376539
 (7) 0.000030517578125 0.000015426381218102
0 (8) 0.000000000000000 -0.000002610607681069
0 (9) 0.000000000000000 0.000000167701400337
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
+ (1) 0.999969482421875 1.000000000000000000
- (2) -1.000000000000000 -7.532602606298016000
+ (3) 0.999969482421875 24.769238091848504000

Symbol Meaning

+ Coefficients marked with this symbol overflowed toward
positive infinity. FDATool handled the overflow as directed
by the Overflow mode property value for the Coefficient
property. In this case the setting is saturate.

- Coefficients marked with this symbol overflowed toward
negative infinity. FDATool handled the overflow as directed
by the Overflow mode property value for the Coefficient
property. In this case the setting is saturate.

0 Coefficients marked with this symbol underflowed to zero.
FDATool handled the underflow as directed by the round
mode property value for the Coefficient property. In this
case the setting is round toward nearest.

1 Filter Design Toolbox Overview

1-24

- (4) -1.000000000000000 -46.426612663362768000
+ (5) 0.999969482421875 54.235802381593018000
- (6) -1.000000000000000 -40.420742464796888000
+ (7) 0.999969482421875 18.759623438876325000
- (8) -1.000000000000000 -4.954375991471868800
 (9) 0.569671630859375 0.569669813719955510

Warning: 8 overflows in coefficients.

4 Click Scale transfer-fcn coeffs<=1.

FDATool scales the reference filter coefficients, then quantizes the reference
filter again. This time, the coefficients do not overflow or underflow and the
filter response in the stop band appears to closely match the reference filter
response, as shown in the next figure.

Your quantized filter is now unstable (check FDATool for the Current Filter
Information). When the reference filter poles and zeros are so close to one
another, they can be very sensitive to the effects of quantization. In this
case, quantizing the filter moved some of the poles outside the unit circle. If

Getting Started with the Toolbox

1-25

you switch to the Pole/Zero plot by selecting Pole/Zero from the Analysis
menu in FDATool, you see the poles and zeros for the quantized filter.

We resolve this problem by converting our filter structure to one that is more
robust to quantization effects. For example, we could change from direct
form II transposed to a lattice structure, or we could use second-order
sections (SOS) to implement our quantized filter. Second-order section form
offers a strong option because when we convert to SOSs, we reduce the order
of the polynomials that define the filter, and thus reduce the filter sensitivity
to quantization.

5 To convert the filter to second-order section form, select Edit->Convert to
Second-Order Sections.

1 Filter Design Toolbox Overview

1-26

In FDATool, you can keep your filter structure the same and convert to SOS
form. Or you can change your filter structure and adopt SOS form. We want
to keep the transposed direct form II structure, but use second-order
sections to implement the filter.

When you convert to second-order sections (SOS), you have the option of
treating the error between the reference filter magnitude response and the
quantized filter magnitude response in one of three ways. The Scale option
determines which method FDATool uses:

- None — ignore scaling when determining the SOS coefficients

- L-2 — use Euclidean norm when determining the SOS coefficients

- L-infininty — use L∞ scaling when determining the SOS coefficients

FDATool optimizes the order of the second-order sections according to the
scaling option you choose. (The tf2sos function that performs the
conversion is called with option 'down' for L-2 and 'up' for L-infinity
scaling.)

Our IIR filter does not need to be scaled to meet our needs, so select None
from the Scale list and Up from the Direction list.

6 Click OK to close the dialog and convert the filter according to your settings.

7 Select Magnitude Response from the FDATool Analysis menu.

Our quantized second-order section filter now has the magnitude response
we require, and matches the unquantized filter specifications. In the
following figure showing the magnitude response curves for both filters, you
cann distinguish between the reference and quantized filter curves only

Getting Started with the Toolbox

1-27

within the beginning of the passband. To emphasize the match between the
reference and quantized filters in the passband, use the zoom function to
look more closely at the passband as shown.

As you followed this example, you created an arbitrary magnitude IIR filter to
match an ideal filter response. Then you quantized the filter and converted it
to second-order section form. All of this you accomplished using FDATool,
although you could have used the command line to perform the same filter
design and quantization operations.

To save the filter you created in FDATool, either select File->Save Session to
save the session and your FDATool interface settings, or choose File->Export
to export the filter to your MATLAB workspace in transfer function form.

1 Filter Design Toolbox Overview

1-28

Selected Bibliography
For further information about the algorithms and computer models used to
design filters and apply quantization in the toolbox, refer to one or more of the
following references.

Digital Filters
[1] Antoniou, Andreas, Digital Filters, Second Edition, McGraw-Hill, Inc., 1993

[2] Mitra, Sanjit K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, Inc, 1998

[3] Oppenheim, Alan. V., R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, Inc, 1989

Quantization and Signal Processing
[4] Lapsley, Phil, J, Bier, A. Shoham, E.A. Lee, DSP Processor Fundamentals,
IEEE Press, 1997

[5] McClellan, James H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W.
Schafer, H.W. Schuessler, Computer-Based Exercises for Signal Processing
Using MATLAB 5, Prentice-Hall, Inc., 1998

[6] Roberts, Richard A., C.T. Mullis, Digital Signal Processing, Addison-Wesley
Publishing Company, 1987

[7] Van Loan, Charles, Computational Frameworks for the Fast Fourier
Transform, SIAM,1992

2
Designing Advanced
Filters

The Optimal Filter Design Problem
(p. 2-2)

Reviews the theory of optimal filter design

Advanced FIR Filter Designs (p. 2-7) Discusses and presents examples of advanced FIR filter
designs

Advanced IIR Filter Designs (p. 2-42) Discusses and proesents examples of advance IIR filter
designs

Robust Filter Architectures (p. 2-64) Talks about robust filters and provides some examples of
robust architectures

Selected Bibliography (p. 2-73) Offers a limited list of books that cover filter design in
detail

2 Designing Advanced Filters

2-2

The Optimal Filter Design Problem
Filter Design Toolbox provides you with the tools to design optimal filters in
the finite impulse response (FIR) and infinite impulse response (IIR) domains.

Often, filter design techniques and algorithms result in filters that are easy to
apply and put relatively light demands on computational systems. While these
filters are acceptable in many instances, they are not optimal solutions to the
filtering needs of some digital signal processing implementations. Suboptimal
filter designs can meet the performance specifications for the filter, but
generally at the expense of increased filter order. This can result in increased
arithmetic computational load for each input sample and lower operating
speed than may be possible and necessary.

You use the functions firlpnorm, gremez, iirlpnorm, and iirlpnormc to
design optimal filters. The following sections review the optimal filter design
problem and introduce the filter design functions included in the toolbox:

• “Optimal Filter Design Theory” on page 2-2

• “Optimal Filter Design Solutions” on page 2-5

• “Advanced FIR Filter Designs” on page 2-7

• “Examples—Using gremez to Design FIR Filters” on page 2-9

• “Advanced IIR Filter Designs” on page 2-42

• “Examples — Using Filter Design Toolbox Functions to Design IIR Filters”
on page 2-43

Optimal Filter Design Theory
How do you design a filter that meets your performance needs, such as having
the required passbands, stopbands, or transition regions, and is also the
optimal solution? (The optimal solution filter minimizes a measure of the error
between your desired frequency response and the actual filter response.)

The Optimal Filter Design Problem

2-3

Consider two filter frequency response curves:

• D(ω) — the response of your ideal filter, as defined by your signal processing
needs and specifications

• H(ω) — the frequency response of the filter implementation you select

In the following figure you see the response curves for D(ω) and H(ω), both
lowpass filters.

Figure 2-1: Response Curves for Ideal and Actual Lowpass Filters

Optimal filter design theory seeks to make H(ω) match D(ω) as closely as
possible by a given measure of closeness.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
a

g
n

itu
d

e

Comparison of desired and actual frequency responses

Ideal Filter Response D(ω)

Actual Filter Response H(ω)

2 Designing Advanced Filters

2-4

More precisely, if we define a weighted error

where E(ω) is the error between the ideal and actual filter response values and
W(ω) is the weighting factor, the optimal filter design problem is to determine
an H(ω) that minimizes some measure or norm of E(ω) given a particular
weighting function W(ω) and a desired response D(ω).

W(ω), the weighting function, lets you determine which portions of the actual
filter response curve are most important to your filter performance, whether
passband response or attenuation in the stopband.

Usually, developers use the Lp norm to measure the error. This norm is given
by

and this is the quantity we minimize.

In practice, the two most commonly used norms are L2 and L∞, meaning that
p equals 2 and p equals infinity.

Filter designs that minimize the L∞ are attractive because they lead to
equiripple solutions. Their equiripple characteristics tend to produce the
lowest order filter that satisfies some prescribed specification.

When p goes to infinity, L∞ norm simplifies to

max|E(ω)|
ωεΩ

meaning that when p equals ∞, the optimal design minimizes the maximum
magnitude of the weighted error. Hence, it yields a minimax solution.

Notice that the Lp norm is computed over a region Ω that uses a subset of the
positive Nyquist interval [0,π]. Ω covers the positive Nyquist interval except
for certain frequency bands deemed to be “don’t care” regions or transition
bands that are not included in the optimization.

E ω() W ω() H ω() D ω()–[]=

E ω[][]
p

Ω
∫

The Optimal Filter Design Problem

2-5

Optimal Filter Design Solutions
We have stated that the optimal filter design problem is to find the filter whose
magnitude response, |H(ω)|, minimizes

for a given Ω, p, W(ω) and D(ω). You can use both FIR and IIR filters to meet
this requirement.

For the FIR case, with p equal to ∞, and the additional constraint that the filter
must have linear phase, you can use a very efficient design method, based on
the Remez exchange algorithm to determine the optimal solution.

Function gremez in the toolbox implements this method. Additionally, gremez
provides optional calling syntaxes that enable variations and enhancements to
the filter design problem.

To design optimal FIR solutions in the general case where p is not necessarily
equal to infinity, the toolbox includes the function firlpnorm. You may find
this useful in cases where minimax solutions lead to abrupt time-domain
responses. firlpnorm does not use the Remez exchange algorithm and
generally takes longer to design a filter than gremez and other filter design
functions. Moreover, firlpnorm is not constrained to linear phase filters.

Note that Signal Processing Toolbox provides the function firls, an efficient
FIR linear phase solution to the optimal filter design problem in the
least-squares sense, that is, when p equals 2.

IIR solutions to the optimal filter design problem are more involved than their
FIR counterparts. Filter Design Toolbox offers two functions that design IIR
filters that are optimal in the least-p norm sense: iirlpnorm and iirlpnormc.

iirplnorm uses a somewhat faster, unconstrained algorithm, while
iirplnormc uses a constrained algorithm that designs an optimal filter that
meets the specifications while restricting the maximum radius of its poles to a
specified value less than one.

Elliptic filters, such as those you use the function ellip (in Signal Processing
Toolbox) to design, are optimal IIR filters for the case p equals infinity, when
the desired magnitude response is piecewise constant, and the filter numerator
and denominator orders are the same.

W w() H w() D w()–()[] p wd
ω
∫

2 Designing Advanced Filters

2-6

The Parks-McClellan method, which implements the Remez exchange
algorithm, produces a filter design that just meets your design requirements,
but does not exceed them. In many instances, when you use the window method
to design a filter, the result is a filter that performs too well in the stopband.
This wastes performance and taxes computational power by using more filter
coefficients than necessary. When you use a rectangular window in the window
design method, the resulting filter can be shown to be the optimal, unweighted
least squares solution to the filter design problem. In summary, the optimal
solution is not always a good solution to the filter design problem.

Filters designed using the Parks-McClellan method have equal ripple in their
passbands and stopbands. For this reason, they are often called equiripple
filters. They represent the most efficient filter designs for a given specification,
meeting your frequency response specification with the lowest order filter.

Advanced FIR Filter Designs

2-7

Advanced FIR Filter Designs
Filter Design Toolbox includes a function, gremez, for designing FIR filters that
represent the optimal solutions to filter design requirements. gremez provides
a minimax filter design algorithm that you use to design the following real FIR
filters:

• Types 1 through 4 linear phase

• Minimum phase

• Maximum phase

• Minimum order, even or odd

• Extra-ripple

• Maximal-ripple

• Constrained-ripple

• Single-point band

• Forced gain

• Arbitrarily shaped frequency response

For examples of filters that use gremez design features, refer to “gremez
Examples” on page 2-8.

gremez implements the Shpak-Antoniou algorithm described in "A generalized
Remez method for the design of FIR digital filters," D.J. Shpak and A.
Antoniou, published in IEEE Trans. Circuits and Systems, pp. 161-174, Feb.
1990.

FIR filters, when implemented nonrecursively, do not use feedback in their
architectures. This limits the filter design so that you include current inputs to
the filter, as opposed to including past outputs (feedback) to calculate the
current output of the filter. In this toolbox, you use the function gremez to
design FIR filters. Among other features, gremez lets you:

• Define filters that have arbitrary shape frequency response curves

• Set a range of performance limits for a filter

• Set the weighting for the error between the desired response and the actual
response in each band of interest in a filter

remez and gremez respond the same way to the same input and output
arguments, where the input arguments are valid for both functions. gremez

2 Designing Advanced Filters

2-8

extends the remez algorithm to support the new filter designs by adding new
input argument options.

Note To provide improved FIR filter design optimization, gremez uses a
generalized Remez algorithm that is not identical to the Remez algorithm
used by remez. Specifically, gremez uses a higher density frequency grid in
filter transition regions, such as at the cutoff points. Thus the frequency grid
is not constant, but changes density across the frequency spectrum, letting the
algorithm more closely optimize filter performance in those areas.

For more straightforward filter designs, remez and gremez generate the same
filter coefficients and the same design. As the filter gets more complex, such as
higher order or more bands or steeper transition regions, the filter designs
may diverge. Generally, gremez provides better optimized filter designs in
these cases.

Using gremez to design filters places the following restrictions on your designs:

• Design must be FIR.

• You can select the number of filter coefficients.

• The frequency response curve must be divided into a series of passbands and
stopbands separated by transition or “don’t care” bands.

• Within each passband and stopband, you specify your desired amplitude
response as a piecewise constant function.

• You cannot constrain the amplitude response in transition bands.

With these considerations in place, gremez designs equiripple, or minimax,
filters to meet your specifications.

gremez Examples
Each of these examples uses one or more features provided in the function
gremez. Review each example to get an overview of the capabilities of the
function.

Advanced FIR Filter Designs

2-9

Examples—Using gremez to Design FIR Filters
gremez provides a wide range of new capabilities for FIR filter design. Because
of the comprehensive nature of the generalized Remez algorithm, the best way
to learn what you can do with the new function is by example. This section
presents a series of examples that investigate the filters you can design
through gremez. You can view these examples as a demonstration program in
MATLAB by opening the MATLAB demos and selecting Filter Design from
Toolboxes. Listed there you see a number of demonstration programs. Select
Minimax FIR Filter Design to see function gremez used to create many filters,
from a lowpass filter to a constrained stopband design to a minimum phase,
lowpass filter with a constrained stopband.

To open the FIR filter design demo.

Follow these steps to open the FIR filter design demo in MATLAB.

1 Start MATLAB.

2 At the MATLAB prompt, enter demos.

The MATLAB Demo Window dialog opens.

3 On the left-hand list, double-click Toolboxes to expand the directory tree.

You see a list of the toolbox demonstration programs available in MATLAB.

4 Select Filter Design.

5 From the right-hand list, select Minimax FIR Filter Design.

A few examples include comparisons to other filter designs and some include
analysis notes. For details about using function gremez, refer to Chapter 13,
“Function Reference.” While this set of examples covers some of the options for
gremez, many options exist that do not appear in these examples. Examples
cover common or interesting gremez options to demonstrate some of the
capabilities.

2 Designing Advanced Filters

2-10

In each of the examples in this section, we use the output argument res to
return the structure res that contains information about the filter.

Structure res
Element

Contents

res.order Filter order.

res.fgrid Vector containing the frequency grid used in the filter
design optimization.

res.H Actual frequency response on the grid in fgrid.

res.error Error at each point on the frequency grid (desired
response- actual response).

res.des Desired response at each point on fgrid.

res.wt Weights at each point on fgrid.

res.iextr Vector of indices into fgrid of extremal frequencies.

res.fextr Vector of extremal frequencies.

res.iterations Number of Remez iterations for the optimization.

res.evals Number of function evaluations for the optimization.

res.edgeCheck Results of the transition-region anomaly check.
Computed when the 'check' option is specified. One
element returned per band edge. Returned values can
be:

• 1 = OK

• 0 = Probable transition-region anomaly

• -1 = Edge not checked. In the normalized frequency
domain, the edges at f=0 and f=1 cannot have
anomalies and are not checked.

Advanced FIR Filter Designs

2-11

Example—Designing a Minimax Filter
To use gremez to design an equiripple or minimax filter, we use the following
statement.

[b,err,res] = gremez(22,[0 0.4 0.5 1],[1 1 0 0],[1,5]);

If you use the same statement, replacing gremez with remez, you get the same
filter. You can reproduce any filter that remez generates by replacing remez
with gremez in the statement. gremez retains full compatibility with remez.

Here’s a plot of the magnitude response of the minimax filter as created by
gremez. The following code creates this figure.

[h,w]=freqz(b); plot(w,abs(h))

Our filter ends up as a 22nd-order filter with magnitude response that has
ripples about 1 in the passband and ripples about 0 in the stopband. Using the
weight vector, we chose to emphasize meeting the stopband performance five
times as much as meeting the passband performance. Hence the reduced ripple

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-12

in the stopband relative to the passband. In the next figure, we switch the
weighting to emphasize the passband, and see that the passband ripple is
much smaller than the stopband ripple.

[b,err,res] = gremez(22,...,[5,1]);
plot(res.fgrid,abs(res.H))

Example—Designing a Minimax Filter, Odd-Order, Antisymmetric
In this example, gremez designs a filter that remez cannot. When you evaluate
the following code in MATLAB, the result is a minimax FIR filter, this time
having odd-order and antisymmetric structure, known as type 4. You can see
from the figure that the magnitude response now represents a high pass filter.
In this example, we specify the filter as type 4 ('4' in the statement) to get the
odd-order, antisymmetric design we want.

[b,err,res]=gremez(21,[0 0.4 0.5 1], [0 0 1 1],[2 1],'4');
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Advanced FIR Filter Designs

2-13

We have weighted the stopband more heavily than the passband ([2 1]) in the
function syntax. The 2 and 1 tell gremez that we care about meeting the
stopband specification twice as much as the passband specification. Notice that
the weighting is relative, not absolute. Our weights say that the stopband is
twice as important as the passband. They do not specify the weighting in
absolute terms.

Example—Designing a “Least Squares-Like” Filter
gremez lets you design filters that resemble least squares design. In this
example, we design a 53rd-order filter and use the user-supplied file
taperedresp.m to specify a frequency response weighting function to perform
the error weighting for the design. So you can reproduce this example, the file
taperedresp.m is in the matlabroot\toolbox\filterdesign\filtdesdemos
folder. taperedresp.m contains the following code to specify the weighting.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-14

% Example for a user-supplied frequency-response function
% taperedresp.m

function [des,wt] = taperedresp(order, ff, grid, wtx, aa)
nbands = length(ff)/2;
% Create output vectors of the appropriate size
des=grid;
wt=grid;

for i=1:nbands
 k = find(grid >= ff(2*i-1) & grid <= ff(2*i));
 npoints = length(k); t = 0:npoints-1;
 des(k) = linspace(aa(2*i-1), aa(2*i), npoints);
 if i == 1
 wt(k) = wtx(i) * (1.5 + cos((t)*pi/(npoints-1)));
 elseif i == nbands
 wt(k) = wtx(i) * (1.5 + cos(pi+(t)*pi/(npoints-1)));
 else
 wt(k) = wtx(i) * (1.5 - cos((t)*2*pi/(npoints-1)));
 end
end

To generate the least-squares-like filter, use the following code.

[b,err,res]=gremez(53, [0 0.3 0.33 0.77 0.8 1],...
{'taperedresp',[0 0 1 1 0 0]}, [2 2 1]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

When you issue these statements at the MATLAB prompt, you get the
following plot for the filter magnitude response.

Advanced FIR Filter Designs

2-15

Example—Designing a Constrained Lowpass Filter
With gremez, you can both apply weighting to the passband and apply a limit
or constraint to the error in the stopband, called constraining. Limiting the
stopband error can be useful in circumstances where your filter must meet a
specified stopband requirement. To create a lowpass filter with a constrained
stopband and weighted passband response, we use gremez with the 'w'
optional input argument to weight the passband. The optional input argument
'c' constrains the filter stopband error not to exceed 0.2. Note that to use the
constraining and weighting options, your filter must have at least one
unconstrained band. That is, cell array c must contain at least one 'w' entry.
In our example, c is {'w' 'c'}.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
a

g
n

itu
d

e

2 Designing Advanced Filters

2-16

The next figure shows the lowpass filter with the constraints applied.

When you use constraining values in your gremez filter design, check to see
that your filter actually touches the constraining value in the stopband. If it
does not, increase the error weighting ('w') for your unconstrained bands. This
change causes the constrained errors to approach the constraint value more
quickly. Notice that the plot shows our filter just touches the desired constraint
of 0.2.

Example—Designing a Constrained Bandstop Filter
Continuing with the concept of using weighting in gremez, we design a
bandstop filter whose passband ripple we constrain not to exceed 0.05 and 0.1.
In this instance, cell array c is {'c' 'w' 'c'} to constrain the passbands and
we use the optional input vector W=[0.05 1 0.1] to constrain the passband
ripple not to exceed 0.05 and 0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Advanced FIR Filter Designs

2-17

[b,err,res]=gremez(22,[0 0.4 0.5 0.7 0.8 1], [1 1 0 0 1 1],...
[0.05 1 0.1], {'c' 'w' 'c'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

As expected the magnitude response shows different peak ripple values in the
passbands — 0.05 for the low frequency band and 0.1 for the high frequency
band.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-18

Example—Designing a Single-Point Band Filter
The following statements

[b,err,res]=gremez(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],...
[1 1 0 1 1 0 1 1], {'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

generate an interesting filter that you cannot design when you use functions in
Signal Processing Toolbox: a multiple stopband filter where the stop bands are
defined by single points. In the gremez command in this example, the syntax is
b=gremez(N,F,A,S). The input vectors F, A, and S, each containing eight
values, define the response curve for the filter.

From the next figure, you see that the filter has just the response we defined,
with zeros at F = 0.25 and F = 0.55.

Input Vector Use

F=[0 0.2 0.25 0.3 0.5 0.55 0.6 1] Defines the points of interest in the frequency
response. In this case, you are working with
frequencies normalized between 0 and 1.

A=[1 1 0 1 1 0 1 1] Set the gain at each frequency point.

S={'n' 'n' 's' 'n' 'n' 's' 'n' 'n'} Specifies whether the frequency points represent
normal or single-point bands. By comparing the
frequency and type vector entries, we see that
F=0.25 and F=0.55 are single point bands (marked
by s), and the gain at those points is 0. The other
bands are normal bands (marked with n) with
gain =1.

Advanced FIR Filter Designs

2-19

Example—Designing a Filter with a Specified In-band Value
In some filter design tasks, you want a filter whose inband value you determine
exactly. For example, you might want a 60 Hz noise rejection filter to have zero
gain at F = 0.06 (F = 60 Hz in real frequency). For this example, the sampling
frequency is 2 KHz, so 60 Hz is F = 0.06 when we normalize the frequency. We
use the following code example to design such a filter.

[b,err,res]=gremez(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

At F = 0.06, we require the gain of the filter response to be exactly 0.0. So we
force the gain at F = 0.06 to zero by adding the 'f' input option to the S vector.
As shown in the plot, the filter response is zero at F = 0.06, and the resulting
filter rejects 60 Hz noise quite effectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-20

You might have noticed in the gremez statement that the S vector includes an
'i' option. Entries in the S vector have any of the following values.

For our noise rejecting filter, the sampling frequency is 2 KHz, so 60 Hz is
f=0.06 in normalized frequency.

Vector Symbol Meaning

n Represents a normal frequency point

s Represents a single-point band frequency

f Forces the gain at this frequency to a fixed value, as
specified in the weighting vector W

i Represents an indeterminate frequency point. Usually
used when the band should abut the next band

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.05

0.1

0.15

0.2

0.25

0.3

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

0.0 at F=0.06

Advanced FIR Filter Designs

2-21

Example—Designing Extra-Ripple and Maximal-Ripple Filters
Extra-ripple and maximal-ripple filters have some interesting properties:

• They have locally minimum transition region widths

• They tend to converge very quickly

gremez lets you use multiple independent approximation errors to directly
design extra- and maximal ripple filters. In this example, we use independent
errors to design two filters, then we revisit our 60 Hz noise rejection filter to
compare these two different approaches to designing the same filter.

Example of an Extra-Ripple Lowpass Filter
The code to design our extra-ripple filter is

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 1],...
{'e1' 'e2'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

The last entries in the command, [1 1] and {'e1' 'e2'}, are the vectors W and
E that determine the weights and independent approximation errors for filters
with special properties. 'e1' is applied to the passband and 'e2' applied to the
stopband. Where the gremez algorithm usually results in equiripple filters,
using the approximations lets gremez adjust the ripple in each band
separately, as we have done in this design.

2 Designing Advanced Filters

2-22

Example of an Extra-Ripple Bandstop Filter With Two Independent
Approximation Errors
Now we extend the extra-ripple concept by using two independent error
approximations. The two passbands share the first approximation error 'e1'.
The stopband uses 'e2'. So you can see the effectiveness of this design
approach, also create and plot a single approximation error filter for
comparison.

[b,err,res]=gremez(28,[0 0.4 0.5 0.7 0.8 1], [1 1 0 0 1 1],...
[1 1 2], {'e1' 'e2' 'e1'}); % Extra-rippple filter design
[b2,err2,res2]=gremez(28,[0 0.4 0.5 0.7 0.8 1],...
[1 1 0 0 1 1],[1 1 2]); % Weighted-Chebyshev design
[H,W]=freqz(b,1,1024);[H2,W]=freqz(b2,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot([H H2],W,S);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Advanced FIR Filter Designs

2-23

In the figure, the responses are similar for the two designs, but the extra-ripple
design shows less ripple in the passbands and slightly more in the stopband. If
you evaluate the example code in MATLAB to create the plot, you can select
Zoom in from the Tools menu in the figure window to examine the curves more
closely.

For this design, we let gremez use the same error approximation for the
passbands and a different one in the stopband. The result is a filter that has
minimum total error in the passbands, and minimum error in the stopband.

Example—Comparing Two 60 Hz Noise Rejection Filters
With the extra-ripple filter design technique available in gremez, we can use
two different design techniques to redo our 60 Hz noise rejection filter. We use
three independent error approximations in this design, one for each band, as
shown in the following code.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-24

[b,err,res]=gremez(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'},[10 1 1],{'e1' 'e2' 'e3'}); % New filter
[b2,err,res]=gremez(82,[0 0.055 0.06 0.1 0.15 1],...
[0 0 0 0 1 1], {'n' 'i' 'f' 'n' 'n' 'n'}); % Original filter
[H,W]=freqz(b,1,1024);
[H2,W]=freqz(b2,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot([H H2],W,S);

We have included the second gremez statement in this example to reproduce
the earlier noise rejection filter for comparison. We plot them on the same
figure for easy reference. In the stopband, the original design has lower ripple;
the new, independent error design has less ripple in the passband. Also, the
new filter has slightly steeper transition region performance.

Using independent approximation errors, as we did in this filter when we
specified 'e1', 'e2', and 'e3', can result in better filter performance. The strings
'e1', 'e2', and so on direct gremez to consider the associated band alone, or with

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Advanced FIR Filter Designs

2-25

other bands that use the same error approximation. By assigning independent
errors to each band, we let the generalized Remez algorithm used by gremez
minimize the error in each band without considering the error in the other
bands. If we do not use independent errors, the algorithm minimizes the total
error in all bands at once.

At times, you need to use independent approximation errors to get designs that
use forced inband values to converge. Error approximations are needed where
the polynomial used to approximate the filter becomes undetermined when you
try to force the inband values to converge.

Example—Checking for Transition-Region Anomalies
To allow you to check your filter designs for anomalies, gremez provides an
input option called 'check'. With the check option included in the command,
gremez reports anomalies in the response curve for the filter. An anomaly in
gremez is defined as out-of-the-ordinary response behavior in a transition, or
“don’t care,” region of the filter response.

To demonstrate anomaly checking, we use gremez to design a filter with an
anomaly, and include the 'check' optional input argument.

[b,err,res]=gremez(44,[0 0.3 0.4 0.6 0.8 1],...
[1 1 0 0 1 1],'check');
[H,W]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

With the 'check' option, gremez returns the results vector res.edgeCheck in
the structure res. Each zero-valued entry in this vector represents the location
of a probable anomaly in the filter response. Entries that are not checked, such
as the edges at f=1 and f=0, have -1 entries in res.edgeCheck.

To check for anomalies, the following command returns the vector containing
the edge check results.

2 Designing Advanced Filters

2-26

res.edgeCheck

ans =

 -1
 1
 1
 0
 0
 -1

There are anomalies between the f=0.6 and f=0.8 edges, as shown clearly in the
figure. This represents a transition region for our filter. Notice that the edges
at f=0 and f=1 were not checked.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Advanced FIR Filter Designs

2-27

In our example, the anomalous behavior happened because of the width of the
transition region. When we define a narrower transition band, the anomaly
disappears. Generally, reducing the transition region width eliminates
anomalies in the filter response.

Example—Using Automatic Minimum Filter Order Determination
Rather than entering the filter order N in the gremez command, you can let the
generalized Remez algorithm determine the minimum order for your filter.
You set the specifications for the filter and the generalized Remez algorithm
repeatedly designs the filter until the design just meets your specifications.

You have three options for setting the minimum order option for the filter:

• 'minorder' directs the Remez algorithm to iterate over the filter design
until it finds a design that just fulfills your design specifications and is the
lowest possible order. Using this option directs gremez to use remezord to get
an initial estimate of the filter order.

• 'mineven' directs the Remez algorithm to iterate over the filter design until
it finds a design that just fulfills your design specifications and is the lowest
possible even order.

• 'minodd' directs the Remez algorithm to iterate over the filter design until it
finds a design that just fulfills your design specifications and is the lowest
possible odd order.

Note When you use the minimum order option 'minorder', gremez treats the
weights in the W vector as maximum error values for the associated
frequencies in the frequency vector F. Also, constraints become absolute limits;
gremez designs a filter that does not exceed the constraints.

For this example, we let the Remez algorithm find a minimum order filter that
implements a lowpass filter with a transition band between f=0.4 and f=0.5.

[b,err,res]=gremez('minorder',[0 0.4 0.5 1], [1 1 0 0],...
[0.1 0.02]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

2 Designing Advanced Filters

2-28

Our filter, shown in the figure, demonstrates the desired ripple in the
passbands and stopbands, 0.1 and 0.02; the transition region meets our
specifications; and the filter order (found from res.order) is 22.

When you use the minimum order feature, you can specify the initial order
(your best guess) in the gremez statement. When you estimate the order,
gremez does not use remezord to make an estimate of the filter order. This is
important when remezord does not support your desired filter type, such as
differentiators and Hilbert transformers, as well as for filters that use
frequency response functions that you supply. For the following filter example,
we provide an initial estimate of 18 for the filter order, and we specify that we
want our filter to have the minimum even order possible by adding the
'mineven' option.

[b,err,res]=gremez({'mineven',18},[0 0.4 0.5 1], [1 1 0 0],...
[0.1 0.02]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Advanced FIR Filter Designs

2-29

freqzplot(H,W,S);

Though we provided an initial estimate of 18 for the order, the final order for
our filter is again 22. If we had specified 'minodd', the result would be a
23rd-order filter.

Example — Designing an Interpolation Filter
Now let us design an interpolation filter. These are usually used to upsample
a band-limited signal by an integer factor, for example after the signal has been
decimated by downsampling. Upsampling is often used while designing
multirate filters to reduce the computational load required to use a filter. In
Signal Processing Toolbox, you can use the function intfilt to design an
interpolation filter. While intfilt provides a way to design the filter, it does
not provide the control that gremez offers. Input options for gremez let you
define the filter response and errors in each passband and stopband, and the
weighting of the band responses in the filter design.

[b,err,res]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
[H,W]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'db';
freqzplot(H,W,S);

We specify a 30th-order filter with edges at 0.1, 0.4, 0.6, and 0.9, and weight
them as [1 100 100]. The resulting design has stopbands between f=0.4 and
f=0.6, and f=0.9 and f=1.0.

The next figure shows a filter designed by gremez.

2 Designing Advanced Filters

2-30

Example—Comparing Filters Designed by gremez and intfilt
Now, to see that gremez lets you develop a better interpolation filter than
intfilt, we compare filters designed by both functions. We need three sets of
code to display the filters for our comparison — the first set generates the detail
plot of the first stopband, the second set displays the second stopband in detail,
and the third plot focuses on the stopband ripple. To keep the frequency
response displays consistent, we use the MATLAB plot function to ensure that
the axes and labels are the same for both filters. freqzplot does not provide
enough control of the plotting functions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Advanced FIR Filter Designs

2-31

Code to display the first stopband.
[b,err]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0.4, 0.6)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
plot(w/pi,20*log10(abs([h' h2']))); ylabel('Stopband #1 (dB)');
v=axis; v=[0.4 0.6 -100 v(4)]; axis(v);

Code set to display the second stopband.
[b,err]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0.9, 1)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
plot(w/pi,20*log10(abs([h' h2']))); ylabel('Stopband #2 (dB)');
v=axis; v=[0.9 1 -100 v(4)]; axis(v);

Code set to display the passband ripple.
[b,err]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0, .1)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
plot(w/pi,20*log10(abs([h' h2']))); ylabel('Passband (dB)');

In the next figure, showing the first stopband in detail, you see that using the
weighting function in gremez improved the minimum stopband attenuation by
almost 20 dB over the intfilt design.

2 Designing Advanced Filters

2-32

If we switch to a plot of the second stopband, shown in the next figure, you see
that the equiripple attenuation throughout the band is about 6 dB larger for
the gremez-generated filter than the minimum stopband attenuation of the
filter designed by intfilt.

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
−100

−95

−90

−85

−80

−75

−70

S
to

pb
an

d
#1

 (
dB

)

gremez

intfilt

Advanced FIR Filter Designs

2-33

Finally, let’s look at the passbands of the two filters, shown in the next figure.
Here, the ripple in the gremez-designed filter is slightly larger than the
passband ripple for the intfilt design. Still, both are very small, less than
0.014 dB peak-to-peak.

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−100

−98

−96

−94

−92

−90

−88

−86

−84

−82

−80

S
to

pb
an

d
#2

 (
dB

)

intfilt

gremez

2 Designing Advanced Filters

2-34

Example—Designing a Minimum Phase Lowpass Filter with a Constrained
Stopband
With gremez you can determine whether the FIR filter you design is minimum
phase, maximum phase, or linear phase. Through this example we show a
minimum phase filter and look at the roots of the filter transfer function to see
that no roots lie outside the unit circle in the z-plane. First, we create the
minimum phase filter by using gremez with the 'minphase' optional input
argument.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0],[1 0.1],...
{'w' 'c'},{64},'minphase');

gremez generates a lowpass filter with constrained stopband magnitude equal
to 0.1, and the filter is minimum phase as well. We could have specified a
maximum phase design by replacing the 'minphase' option with 'maxphase'. In
the gremez statement, you might have noticed the cell array {64} entry. The
cell array entries define the grid density for points across the frequency
spectrum.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
12.034

12.036

12.038

12.04

12.042

12.044

12.046

12.048

P
as

sb
an

d
(d

B
)

intfilt

gremez

Advanced FIR Filter Designs

2-35

Now, plot the filter to view the frequency response.

[H,W]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

We have a lowpass filter with stopband ripple not exceeding 0.1, as desired.

In the next figure, viewing our filter roots on the z-plane plot shows us that the
roots lie in or on the unit circle. The zeros of a minimum phase delay FIR filter
lie on or inside the unit circle. Maximum phase delay filters have zeros that lie
on or outside the unit circle.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0],[1 0.1],...
{'w' 'c'},{64},'minphase');
[H,W]=freqz(b,1,1024);
zplane(roots(b));

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-36

Notice that the filter, with eight zeros on the unit circle, could be very sensitive
to quantization. You could use FDATool to investigate the effects of quantizing
this filter, and to convert the filter to second order sections or make other
changes the reduce the sensitivity to quantization.

firlpnorm Examples
Review the following examples for an overview of the capabilities of the
function—each example uses one or more features provided by firlpnorm and
the least-Pth unconstrained optimization algorithm. Among the filter designs
you can create are filters with arbitrarily defined magnitude response or
minimum phase.

Example—Design a Lowpass Filter With pmin = 4 and pmax = 12
With the filter specifications in this example, the result is a quasi-equiripple
response lowpass filter. You can see from the plot that follows the code the
shape of the magnitude response.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Advanced FIR Filter Designs

2-37

b=firlpnorm(30,[0 0.4 0.45 1],[0 0.4 0.45 1],[1 1 0 0],...
[1 1 10 10],[4 12]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag';
fvtool(b);

Example—Design a Lowpass Least-Squares Filter With a “Peak” In The
Passband
Using the appropriate set of input arguments, you can add a slight peak in the
passband of the filter. The following code creates a lowpass filter that
demonstrates just such tweaking of its passband to add gain. Notice the set of
inputs for a (the specification of the passband response) [1 1.2 1 0 0] in the
calling syntax. The 1.2 raises the passband response at the 0.15 normalized
frequency point defined in f.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

2 Designing Advanced Filters

2-38

b=firlpnorm(15, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.2 1 0 0],[2 2 2 1 1], [2 2]);
fvtool(b)

Example—Create a Low-order Filter With One Band
By using the weighting input arguments and the pmin and pmax options, this
example creates a low order, n = 5, FIR filter with one band. When you define
pmin and pmax as 2 and 16, the optimization algorithm starts at pmin = 2 and
continues to optimize in the filter in the pmax sense. By default, pmin and pmax
are 2 and 128, achieving the L-infinity or Chebyshev norms.

b=firlpnorm(5, [0 .2 .6 1], [0 1], [0 .4 .2 1], [1 1 1 1],...
[2 16]);
fvtool(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
M

ag
ni

tu
de

 (
dB

)

Magnitude Response in dB

Normalized Frequency (×π rad/sample)

 Normalized Frequency: 0.15
 Magnitude (dB): 1.39

Advanced FIR Filter Designs

2-39

Reviewing the figure from FVTool shows the single band nature of the filter
response.

Example—Return a Minimum Phase Bandstop Filter
To generate a minimum phase filter, firlpnorm uses the 'minphase' optional
input argument. For this example of creating a bandstop filter, p = [2 4] and
the filter order is set to 21. Notice that weight vector w emphasizes the error in
the stopband region by using [1 1 5 5 1 1]. Combined with the a vector of
[1 1 0 0 1 1], the result is a bandstop filter, as shown in the figure that
follows the code for designing the filter.

b=firlpnorm(21, [0 .25 .35 .7 .8 1], [0 .25 .35 .7 .8 1],...
[1 1 0 0 1 1], [1 1 5 5 1 1], [2 4], 'minphase');
fvtool(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

2 Designing Advanced Filters

2-40

Plotting the zeros on the unit circle shows the minimum phase nature of the
filter.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Advanced FIR Filter Designs

2-41

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2221

Real Part

Im
ag

in
ar

y
P

ar
t

Pole/Zero Plot

2 Designing Advanced Filters

2-42

Advanced IIR Filter Designs
Many digital filters use both input values and previous output values from the
filter to calculate the current output value. FIR filters can be implemented with
feedback, although this is unusual. Cascaded integrated comb filters are one
example.

For IIR filters, the transfer function is a ratio of polynomials:

• The numerator of the transfer function. When this expression falls to zero,
the value of the transfer function is zero as well. Called a zero of the function.

• The denominator of the transfer function. When this expression goes to zero
(division by zero), the value of the transfer function tends to infinity; called
a pole of the function or filter.

Filter Design Toolbox introduces three functions: iirlpnorm, iirlpnormc, and
iirgrpdelay for designing IIR filters that design optimal solutions to your
filter requirements. With these new filter functions, you can design filters to
meet your specifications that you could not design using the IIR filter design
functions in Signal Processing Toolbox.

Function iirlpnorm uses a least-pth norm unconstrained optimization
algorithm to design IIR filters that have arbitrary shape magnitude response
curves. iirlpnormc uses a least-pth norm optimization algorithm as well, only
this version is constrained to let you restrict the radius of the poles of the IIR
filter.

To let you design allpass IIR filters that meet a prescribed group delay
specification, iirgrpdelay uses a least-pth constrained optimization
algorithm. For basic information about the least-pth algorithms used in the IIR
filter design functions, refer to Digital Filters by Antoniou [1].

This section uses examples to introduce the IIR filter design functions in the
toolbox. As you review these examples, you may notice that the IIR design
functions use the same syntax, input, and output arguments. Because the
design functions use very similar algorithms, common input and output
arguments apply. Arguments are used in the same way, and carry the same
defaults and restrictions. That said, if an example of one IIR function uses a
syntax that does not appear under another IIR design function, chances are
you can use the first syntax in the other design function as well.

Advanced IIR Filter Designs

2-43

Examples — Using Filter Design Toolbox Functions to Design IIR Filters
Filter Design Toolbox provides new capabilities for IIR filter design. Because
of the comprehensive nature of the new IIR design functions, learning by
example is the best way to discover what you can do with them. This section
presents a series of examples that investigate the filters you can implement
through IIR filter design in Filter Design Toolbox. You can view these examples
as a demonstration program in MATLAB by opening the MATLAB demos and
selecting Filter Design from Toolboxes. Listed there you see a number of
demonstration programs. Select one of the following demos to see the IIR filter
design functions being used to design a variety of filters:

• Least P-norm Optimal IIR Filter Design demonstrates IIR filter design
function iirlpnorm. Examples include:

- “Example — Using iirlpnorm to Design a Lowpass Filter” on page 2-45

- “Example — Using iirlpnorm to Design a Low Order Filter” on page 2-46

- “Example — Using iirlpnorm to Design a Bandstop Filter” on page 2-47

- “Example — Using iirlpnorm to Design a Noise-Shaping Filter” on
page 2-49

• Constrained Least P-norm IIR Filter Design demonstrates IIR filter design
function iirlpnormc. This set of examples includes:

- “Example — Using iirlpnormc to Design a Lowpass Filter” on page 2-50

- “Example — Using iirlpnormc to Design a Bandstop Filter with a
Constrained Pole Radius” on page 2-52

- “Example — Using iirlpnormc to Design a High-Order Notch Filter” on
page 2-53

- “Example — Using iirlpnormc to Change an Elliptic Filter to a
Constrained Lowpass Filter” on page 2-54

• IIR Filter Design Given a Prescribed Group Delay demonstrates IIR
filter design function iirgrpdelay. These examples include:

- “Example — Using iirgrpdelay to Design a Filter with a User-Specified
Group Delay Contour” on page 2-57

- “Example — Using iirgrpdelay to Design a Lowpass Elliptic Filter with
Equalized Group Delay” on page 2-59

2 Designing Advanced Filters

2-44

To Open the IIR Filter Design Demos
Follow these steps to open the IIR filter design demos:

1 Start MATLAB.

2 At the MATLAB prompt, enter demos.

The MATLAB Demo Window dialog opens.

3 On the list on the left, double-click Toolboxes to expand the directory tree.

You see a list of the toolbox demonstration programs available in MATLAB.

4 Select Filter Design.

5 From the list on the right, select one of the following demonstration
programs:

- Least P-norm Optimal IIR Filter Design

- Constrained Least P-norm IIR Filter Design

- IIR Filter Design Given a Prescribed Group Delay

A few examples include comparisons to other filter design functions and
analysis notes. For details about using the IIR design functions iirlpnorm,
iirlpnormc, and iirgrpdelay, refer to Chapter 13, “Function Reference.”
While this set of examples covers many of the options for the functions, more
options exist that do not appear in these examples. Examples cover common or
interesting IIR design options to highlight some of the capabilities of the design
functions.

In these examples, you can see that iirlpnorm, iirlpnormc, and iirgrpdelay
use many of the input arguments used by gremez, plus others such as the
denominator order. At the most basic level, each IIR filter design function uses
the input arguments N, D, F, Edges, and A — the filter order for the numerator
and denominator (so you can specify different order numerators and
denominators), the vector containing the filter cutoff frequencies, the band
edge frequencies, and the filter response at each frequency point. F and A must
have matching numbers of elements; they can exceed the number of elements
in Edges. You use this feature to specify a gain contour within a band defined
by the entries in Edges. Every frequency that appears in Edges must also be an
element of F. Also, the first band edge must equal the first frequency and the
last band edge must equal the last frequency in F.

Advanced IIR Filter Designs

2-45

iirlpnorm Examples
Each of these examples uses one or more feature provided in the function
iirlpnorm. The examples build on one another, although they can be run
separately. Review each example to get an overview of the capabilities of the
function.

Example — Using iirlpnorm to Design a Lowpass Filter
To design a lowpass filter with maximum gain of 1.6 in the passband, we use
the syntax iirlpnorm(n,d,f,edges,a,w). To duplicate the filter in the figure,
use this code.

[b,a]=iirlpnorm(3, 11, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.6 1 0 0], [1 1 1 100 100]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 0.15 0.4 0.5 1], [1 1.6 1 0 0], 'r'); hold off;

When you look at the magnitude response curve, notice the response reaches
1.6 in the passband.

2 Designing Advanced Filters

2-46

s

Example — Using iirlpnorm to Design a Low Order Filter
The curves in the next figure show the results of using iirlpnorm to design a
low-order filter with a single band. For this design, we introduce a new
two-element vector P=[Pmin,Pmax] that defines the minimum and maximum
values of P in the least-pth norm algorithm. If you do not specify P, the default
values are [2 128], resulting in the L∞ or Chebyshev norm. Specify Pmin and
Pmax to be even numbers. To view the placement of the poles and zeros for your
filter before the optimization takes place, replace [Pmin Pmax] with the string
'inspect'. With the option 'inspect' in use, the algorithm does not optimize
the filter design.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de Filter response calculated by
iirlpnorm

Ideal filter response
defined by F and A

Advanced IIR Filter Designs

2-47

We specified a lowpass filter with third-order numerator and denominator, and
used the P vector to limit the optimization range, by using the function syntax
iirlpnorm(n,d,f,edges,a,w,p).

[b,a]=iirlpnorm(3, 3, [0 .2 .6 .8 1], [0 1], [0 .4 .2 0 1],...
[1 1 1 1 1], [2 64]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .2 .6 .8 1], [0 .4 .2 0 1], 'r'); hold off;

Setting W=[1 1 1 1 1] is the same as not setting weight values.

Example — Using iirlpnorm to Design a Bandstop Filter
Designing IIR bandstop filters is straightforward. Enter the frequency,
magnitude, edges, and weight vectors using the syntax
iirlpnorm(n,d,f,edges,a,w) as shown here. To ensure that the stopband

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Desired filter
response

Low-order filter
response from
iirlpnorm

2 Designing Advanced Filters

2-48

rejects undesired frequencies aggressively, we weight the magnitude response
in the stopband more heavily by entering the weight vector [1 1 5 5 1 1],
telling the optimization algorithm that meeting the inband response
specification is five times as important as meeting the out-of-band response.

[b,a]=iirlpnorm(10, 7, [0 .25 .35 .7 .8 1],...
[0 .25 .35 .7 .8 1], [1 1 0 0 1 1], [1 1 5 5 1 1]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .25 .35 .7 .8 1], [1 1 0 0 1 1], 'r'); hold off;

As you can see from the following figure, the filter meets our design needs quite
closely.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Designed

Ideal Response

Advanced IIR Filter Designs

2-49

Example — Using iirlpnorm to Design a Noise-Shaping Filter
In this example, we create a lowpass filter with a rising magnitude in the
passband. Communications designers use the filter when they simulate the
effects of motion between a transmitter and receiver, such as you find in
cellular telephone networks. Here, we use iirlpnorm to design the same filter.
Because of the complex shape of the passband, we define the vectors f, a, w, and
edges in the workspace, then use the vector names in the iirlpnorm
statement.

f = 0:0.01:0.4;
a = 1.0 ./ (1 - (f./0.42).^2).^0.25;
f = [f 0.45 1];
a = [a 0 0];
edges = [0 0.4 0.45 1];
w = ones(1, length(a));
[b,a]=iirlpnorm(4, 6, f, edges, a, w);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot(F,A, 'r'); hold off;

When you compare the figure below to the filter design in “Getting Started with
the Toolbox” on page 1-15, you see they match very well.

2 Designing Advanced Filters

2-50

iirlpnormc Examples
Each of these examples uses one or more feature provided in the function
iirlpnormc. Review each example to get an overview of the capabilities of the
function.

Example — Using iirlpnormc to Design a Lowpass Filter
Just as you use iirlpnorm to design lowpass filters, you can use iirlpnormc to
design them as well. iirlpnormc lets you limit the radius of the filter poles
when you specify the filter in the function. By restricting the poles to be less
than a certain distance from the origin of the unit circle in the z-plane, the filter
remains stable, while possibly improving the robustness of the filter to
quantization effects. In this lowpass filter example, we restrict the pole radius
not to exceed 0.95, using the function syntax
iirlpnormc(n,d,f,edges,a,w,radius).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Actual noise-shaping
filter design

Desired filter

Advanced IIR Filter Designs

2-51

[b,a]=iirlpnormc(3, 11, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.6 1 0 0], [1 1 1 100 100], 0.95);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 0.15 0.4 0.5 1], [1 1.6 1 0 0], 'r'); hold off;

radius takes values between 0 and 1.

Compared to the unconstrained iirlpnorm lowpass filter example (refer to
“iirlpnorm Examples” on page 2-45), you see that the filter performance is
about the same, although the ripple in the passband is slightly greater, and the
transition somewhat sharper. The difference between these two designs is the
constraint applied to the poles when you use iirlpnormc with a radius value.
Both filters demonstrate peaks in their passband.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-52

Example — Using iirlpnormc to Design a Bandstop Filter with a
Constrained Pole Radius
Here we use iirlpnormc to design a bandstop filter. Notice that we specify
different orders for the numerator (n=10) and denominator (d=7) and the
frequency and edges vectors are the same. With radius=.91, none of the 11
filter poles lies farther than 0.91 away from the origin, as you can see in the
zero-pole plot.

f = [0 .25 .35 .7 .8 1];
[b,a]=iirlpnormc(10, 7, f, f, [1 1 0 0 1 1], [1 1 5 5 1 1], .91);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .25 .35 .7 .8 1], [1 1 0 0 1 1], 'r'); hold off;

To generate the zero-pole plot, use zplane(b,a) at the MATLAB prompt.

When we plot the magnitude response curve, the emphasis we placed on
reducing the error in the stopband is clear — note the close match between the
desired and calculated responses. (We weighted the magnitude response
w=[1 1 5 5 1 1] to minimize the error in the vicinity of the stopband
frequency points.)

Advanced IIR Filter Designs

2-53

Example — Using iirlpnormc to Design a High-Order Notch Filter
To create an optimized design for an IIR high-order notch filter, use
iirlpnormc to design the filter. The following code results in the optimal
solution to creating a filter with different numerator and denominator orders,
and with a maximum pole radius of 0.92.

f = [0 0.37 0.399 0.401 0.43 1];
[b,a]=iirlpnormc(2, 17, f, f, [1 1 0 0 1 1], [1 1 2 2 1 1], 0.92);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on;
plot([0 0.37 0.399 0.401 0.43 1], [1 1 0 0 1 1], 'r'); hold off;

Note the frequency vector entries 0.37, 0.399, 0.401, and 0.43. These
represent the cutoff points for the filter stopband, a fairly narrow filter.
Looking at the filter response plot, you see it is similar to the single-point filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-54

example we designed with the gremez function (refer to “Example—Designing
a Single-Point Band Filter” on page 2-18). This filter has two pairs of
constrained poles.

Example — Using iirlpnormc to Change an Elliptic Filter to a Constrained
Lowpass Filter
Using an elliptic filter design as the initial conditions, with a maximum pole
radius of 0.96, we reduce the pole radius to 0.95 when we use iirlpnormc to
create an optimal filter solution. The result is a filter with the same band edge
frequencies, and a gain in the passband greater than one. The following code
uses the function ellip from Signal Processing Toolbox to create an elliptical
filter. Then we use the function iirlpnormc with the syntax
iirlpnormc(n,d,f,edges,a,w,radius,p, dens,initnum,initden). initnum
and initden are the initial estimates of the filter numerator and denominator
coefficients. We use be and ae from our elliptic filter as the vectors Initnum and
initden.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Advanced IIR Filter Designs

2-55

[be,ae]=ellip(4,1,20,0.3);
f = [0 0.3 0.323 1];
[b,a]=iirlpnormc(4, 4, f, f, [1 1 0 0], [1 1 1 1], .95,...
[128 128], 20, be, ae);
[h,w,s]=freqz(b,a,1024);
he=freqz(be,ae,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot([h he],w,s);

A few points to think about when you use iirlpnormc. These hints can help you
converge on a good filter design:

• iirlpnormc implements a weighted, least-pth optimization algorithm.

• Check the location and radii of the designed filter poles and zeros.

• If the zeros are on the unit circle and the poles are well inside the circle, try
increasing the numerator order N, or reducing the error weighting (W) in the
stopband.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

2 Designing Advanced Filters

2-56

• If several poles have large radii, and the zeros are well inside the unit circle,
try increasing D, the denominator order, or reducing the error weighting in
the passband.

• As you reduce the pole radius, you may need to increase the denominator
order.

iirgrpdelay Examples
Filter Design Toolbox provides a new filter design function iirgrpdelay for
designing allpass IIR filters that have group delay characteristics that meet
your needs. When you cascade these allpass filters with other IIR filters, they
act as compensating elements. They produce equalized or specified group delay
across the combined filter frequency response while maintaining the IIR filter
pass and stop bands. For more information about group delay in filters, refer
to “Signal Processing Basics” in Signal Processing Toolbox User’s Guide.

Note iirgrpdelay creates allpass filters you use to compensate for the phase
changes caused by other filters. You cannot use iirgrpdelay to create filters
that both filter input signals and compensate for phase changes in output
signals.

In this section, we introduce the function iirgrpdelay through a series of
examples. Each of these examples uses one or more feature provided in the
function. The examples build on one another, although they can be run
separately. By reviewing each example you get an overview of the capabilities
of the design function.

In much the same way that you use other IIR filter design functions to create
filters with arbitrary magnitude response curves, you use iirgrpdelay to
create filters that have arbitrary group delay curves in the filter passband and
stopband. (In most cases, specifying the group delay in the stopband is not
useful; the filter rejects those frequencies by design. Nonetheless, you can
specify the group delay for frequencies that fall within filter stopbands.)

To specify a filter that approximates a given relative group delay, use
iirgrpdelay with the following input argument syntax

iirgrpdelay(N,F,Edges,Gd)

Advanced IIR Filter Designs

2-57

where N is the filter order, F is a vector containing frequencies between 0 and
1, Gd is a vector whose elements are the desired group delay at the frequencies
specified in F, and Edges specifies the band edges. Filter order N must be an
even number, and the vectors F and Gd must have the same number of
elements. To let you specify the shape of the group delay within a band or
bands, vectors F and Gd can contain more elements than Edges.

Considering the following ideas can help you design your group delay
compensator:

• After you use iirgrpdelay to design a filter, use freqz, grpdelay, and
zplane to check your design for undesirable features.

• Remember that allpass filters have positive group delay. You cannot develop
allpass filters that have negative group delay characteristics.

• For some difficult filter optimization problems, use the iirgrpdelay syntax
iirgrpdelay(n,d,edgees,a,w,radius,p,dens,initden)

where initden is a vector containing your estimates of the transfer function
coefficients for the denominator. You can use the Pole-Zero editor in Signal
Processing Toolbox to generate values for initden.

• If the poles and zeros of your filter design cluster together, you may need to
increase the filter order or relax the pole radius restriction (if you used one).

Example — Using iirgrpdelay to Design a Filter with a User-Specified
Group Delay Contour
To show the ability to create an arbitrary shape group delay contour in the
passband of an IIR filter, we use iirgrpdelay and specify the group delay we
desire. Notice that we also specify the maximum pole radius of 0.99. We plot
the ideal group delay contour on the figure as well to compare the desired result
to the designed filter.

[b,a,tau] = iirgrpdelay(8, [0 0.1 1], [0 1], [2 3 1],...
[1 1 1], 0.99);
[G,F] = grpdelay(b,a, 0:0.001:1, 2);
plot(F, G); hold on; plot([0 0.1 1], [2 3 1]+tau, 'r'); hold off;

2 Designing Advanced Filters

2-58

The straight lines represent the desired group delay contour, the wavy line the
designed contour. The desired group delay, [2 3 1], is relative. Note that the
actual group delay approximates [8 9 7]. If we increase the filter order, to 10
for example, the approximation improves, but the absolute group delay
increases.

One of the output arguments for iirgrpdelay is tau, the resulting group delay
offset. In all cases, filters created by iirgrpdelay have a group delay that
approximates (gd + tau) where gd is the specified relative group delay of the
filter.

When you look at the zero-pole plot for our filter (use the function zplane), you
can see that the poles stay well within the radius constraint. Optimizing the
filter may not result in poles that are near the constraint. Pole constraints
come into play only when needed to limit the optimization. In this example, our
design did not require the constraint to stay within the bounds of the unit
circle.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6.5

7

7.5

8

8.5

9

Normalized Frequency

G
ro

up
 D

el
ay

Advanced IIR Filter Designs

2-59

You can verify that this is an allpass filter by plotting the magnitude response
curve for the design. Use freqz(b,a) to plot the curve.

In general, you determine the contour to use for the group delay equalization
of an IIR filter by subtracting the filter group delay from the filter maximum
group delay. In the next example, we use this process to create our lowpass
filter.

Example — Using iirgrpdelay to Design a Lowpass Elliptic Filter with
Equalized Group Delay
The following code designs a pair of filters that together create a lowpass filter
with equalized group delay.

[be,ae] = ellip(4,1,40,0.2); % Lowpass filter
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2);
g1 = max(g)-g;
[b,a,tau] = iirgrpdelay(8, f, [0 0.2], g1); % Phase compensator
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;

Cascading the filters is the same as adding the group delay for each filter
frequency-point by frequency-point (g+gd in the plot function input
arguments). In the figure, the lower curve is the group delay for the elliptic
filter. The compensated, or equalized, group delay is the upper curve — an
essentially flat group delay across the passband from 0 to 0.2. Since this
example used the lowpass elliptic filter from our earlier iirlpnorm examples,
you can see that combining these filters results in a lowpass filter with
equalized group delay. Note that the group delay of the combination is twice
the maximum group delay of the reference filter. When you use an allpass filter
to equalize the group delay of a reference filter, the final group delay is the sum
of the group delays of the reference and allpass filters.

2 Designing Advanced Filters

2-60

To determine the group delay contour necessary to compensate for the phase
effects of our elliptic filter, we use the elliptic filter group delay as a reference.

In the example, we used grpdelay to return vector g containing the group delay
value at many frequencies across the elliptic filter passband. After determining
the maximum group delay in the elliptic filter passband (returned by max(g) in
the example code), we subtract each individual group delay from the maximum
group delay (g1=max(g)-g). The result is vector g1 containing values that
define a curve that is the mirror image of the group delay contour of our elliptic
filter. Then we use g1 as the input group delay values to iirgrpdelay, and the
resulting allpass filter has a group delay contour that equalizes the group delay
of our lowpass elliptic filter, as shown in the figure.

Example — Demonstrating Passband Equalization for a Bandpass
Chebyshev Filter
You can use iirgrpdelay to create filters that compensate for the group delay
of many kinds of filters. In this example, we create an allpass filter that

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

30

35

40

Normalized Frequency

G
ro

up
 D

el
ay

Advanced IIR Filter Designs

2-61

equalizes the group delay of a bandpass filter. In the figure, the lower curve is
the group delay of the bandpass filter and the upper curve is the equalized
group delay for the combination of the bandpass filter and the allpass filter.
Group delay variation across the passband is less than 0.2.

[bc,ac] = cheby1(2,1,[0.3 0.4]); % Bandpass filter design
f = 0.3:0.001:0.4;
g = grpdelay(bc,ac,f,2);
g1 = max(g)-g;
wt = ones(1, length(f));
[b,a,tau] = iirgrpdelay(8, f, [0.3 0.4], g1, wt, 0.95);
f = 0:0.001:1;
g = grpdelay(bc,ac,f,2);
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

Normalized Frequency

G
ro

up
 D

el
ay

Equalized group

Original group delay

Passband

2 Designing Advanced Filters

2-62

Example — Demonstrating Passband Equalization for a Bandstop
Chebyshev Filter
Our final example shows how to equalize the group delay in the passband of a
bandstop filter. Since this filter has two passbands, we equalize the group
delay in each band according to the needs of each band. Vectors g1 and g2 in
the example code contain the group delays within each passband of the
bandpass filter. We ignore the stopband group delay for this case. To determine
the group delay contour across both passbands, we concatenate g1 and g2
(using the command g = [g1; g2]), then use the vector g as the basis for the
group delay input argument gx to iirgrpdelay.

[bc,ac] = cheby2(3,1,[0.3 0.8], 'stop'); % Bandstop filter
f1 = 0.0:0.001:0.3;
g1 = grpdelay(bc,ac,f1,2);
f2 = 0.8:0.001:1;
g2 = grpdelay(bc,ac,f2,2);
f = [f1 f2]; g = [g1; g2]; % Concatenate the passband group delays
gx = max(g)-g;
wt = ones(1, length(f));
[b,a,tau] = iirgrpdelay(14, f, [0 0.3 0.8 1], gx, wt, 0.95);
f = 0:0.001:1;
g = grpdelay(bc,ac,f,2);
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;

The figure shows that our approach works. You see that the group delay in the
passbands is well-equalized (illustrated by the upper curve; the lower curve
presents the nonequalized group delay). The stop band is unaffected, and the
overall equalized group delay variation in the passbands is close to a constant.

Advanced IIR Filter Designs

2-63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Normalized Frequency

G
ro

up
 D

el
ay

g1
g2

Passband 1 (f1) Stopband Passband 2 (f2)

gd

2 Designing Advanced Filters

2-64

Robust Filter Architectures
We have been considering FIR and IIR filters whose transfer function is
represented by constant coefficients and where the input signals and
coefficients can be any double-precision value from -∞ to +∞. These systems
are in the discrete time domain, with infinite precision values for the
dependent variable, often magnitude.

When you represent filters in software, or in general purpose or special purpose
computing hardware, the inputs to the filters and the filter coefficients can be
represented only by discrete values. The process of converting the infinite
precision variables to discrete values is called quantization and represents a
source of error when you implement digital filters.

Converting to the discrete domain produces three sources of errors:

• Error caused by the discrete representation of infinitely precise information,
such as filter transfer function coefficients or signal amplitude values. Real
systems create error when they quantize amplitude values.

• Analog-to-digital conversion error in the input signal.

• Arithmetic round off errors caused by the limited word length available to
represent the data in the arithmetic process.

Transfer Function Coefficient Quantization Error
To illustrate the effects of converting from continuous to discrete
representations, and to show error sources resulting from quantization,
consider the following first-order IIR filter.

The constant coefficient difference equation that defines this filter is

a

Z-1

Xx[n] y[n]

v[n]

y n[] α y n 1–[] x n[]+=

Robust Filter Architectures

2-65

where y[n] and x[n] are the output and input signal variables. In transfer
function form, the following equation describes our IIR filter.

When you implement this filter form in hardware, the filter coefficient
α assumes discrete values that approximate the design value. Therefore, the
actual transfer function that you implement is

where and are the close approximations to the original H and α in the
filter design. Notice that this transfer function differs from the theoretical
function H(z). As a result, the actual filter response can differ substantially
from the ideal response.

The main effect of transfer function coefficient quantization is to move the
poles and zeros to different locations in the z-plane, away from their desired, or
designed locations (the locations for the ideal, nonquantized coefficient filter).
Moving the poles or zeros can have two effects:

• Changing the frequency response of the quantized filter so it is not the same
as the ideal or designed filter.

• Moving poles from inside to outside the unit circle, causing the quantized IIR
filter to be unstable. Applies only to IIR filters.

Input Sampling Error (A/D Error)
Given the difference equation for our IIR filter, from earlier

where x[n] is the sampled output from an analog to digital converter. Sampling
the continuous signal xa(t) results in x[n]. Then the sampled input to the filter
from the A/D convertor, , is

and e[n] is the error in the A/D conversion process. Our discrete input to the
filter no longer matches the continuous signal xa(t). Discrete-time input xa(t)
does not match x[n] because analog-to-digital conversion made the input

H z() 1
1 αz 1––
--------------------- z

z α–
------------= =

Ĥ z() z
z α̂–
------------=

Ĥ α̂

y n[] α y n 1–[] x n[]+=

x̂ n[]

x̂ n[] x n[] e n[]+=

2 Designing Advanced Filters

2-66

discrete in time. Similarly, quantized input does not match x[n] because
it has been convert to discrete data in amplitude.

Arithmetic Quantization Error
Quantization in arithmetic operations causes another error. For our first-order
filter example, the output from our multiplier v[n] is generated by multiplying
the signal, y[n-1] with the transfer function coefficients, α

and storing the result. When we quantize the result to fit it into a storage
register, we generate a quantized value that we write as

where eα[n] is the error sequence resulting from the product quantization
process.

Limitcycles and Arithmetic Quantization
There is another source of errors in digital filter implementation, caused by the
nonlinearity of quantized arithmetic operations. These errors are apparent in
an effect called limit cycling that occurs at the filter output. Limit cycles
usually appear when there is no input to the filter, or the input to the filter is
constant or sinusoidal. For more information on limit cycles and the function
limitcycle, refer to the limitcycle reference page in the online
documentation. To learn more about quantization, refer to Chapter 5,
“Quantization and Quantized Filtering.”

Low Sensitivity Filter Architectures
Quantizing filter coefficients can have serious effects on the performance of
digital filters. As a result of coefficient quantization, the frequency response of
the filter with quantized coefficients can be significantly different from the
desired filter without quantized coefficients. In some cases, the performance of
the quantized filter can make it unsuitable for your application.

Low sensitivity filter architectures, or robust architectures as they are
sometimes called, are interesting because they can reduce the effects of
coefficient quantization. By being inherently less sensitive to coefficient
quantization, these filter architectures withstand the quantization process and
result in filters that retain the performance of the original filter.

x̂ n[]

v n[] α y n 1–[]=

v̂ n[]

v n[] v n[] eα n[]+=

Robust Filter Architectures

2-67

Approaches to Designing Low Sensitivity Filters
Consider either of two approaches to designing low sensitivity filters:

• Convert low sensitivity analog filters composed of inductors, capacitors, and
resistors to digital architectures by replacing the analog components and
connections with their digital equivalents so the digital filter approximates
the analog version.

• Develop digital filter implementations that respond directly to the conditions
that create low coefficient sensitivity in a digital filter designs.

Filter Design Toolbox uses the latter approach to provide low sensitivity filter
architectures.

Generally, filter architecture sensitivity ranges from high for direct forms to
very low for coupled allpass forms. For reference, the following list ranks the
filter forms in the toolbox by their sensitivity to coefficient quantization, from
high sensitivity to low:

1 Direct forms—often very sensitive to quantization

2 Lattice forms—moderately sensitive to quantization

3 Allpass forms—quite robust under quantization

Quantization sensitivity is also a function of the locations of the poles and zeros
for a filter, so use this list for guidance only.

Within the forms

• FIR filters tend to be less sensitive than IIR filters

• For the direct forms, second-order section implementations are often less
sensitive to coefficient quantization

Filter Design Example That Includes Quantization
To demonstrate the effects of coefficient quantization on the performance of a
filter, this example creates a 5th-order, lowpass elliptic IIR filter. We choose a
cutoff frequency of 0.4π radians (normalized frequency from 0 to 1), passband
ripple less than 0.5 dB, and stopband attenuation of at least 40 dB. In the
figure you see the filter response. We used the Filter Design and Analysis tool
(FDATool) to design the filter. Notice that we used the default filter structure

2 Designing Advanced Filters

2-68

df2t, or Direct form 2 transposed. When we want to compare the quantized
version of the filter to the floating-point filter, FDATool lets us quantize the
filter and display the filter response curves together.

We could have used the function ellip from Signal Processing Toolbox to
create the filter.

[b,a] = ellip(5,0.5,40,0.4);

The results are identical because FDATool uses the same function to design the
lowpass filter.

We quantize the filter by selecting Turn quantization on. FDATool quantizes
our elliptic filter and displays the magnitude response for both the original (or
reference) filter and the quantized filter. For this quantization process we use
the default coefficient format settings in FDATool. Later in this example we

Robust Filter Architectures

2-69

change the coefficient format to illustrate the effects of changing the word
length used to represent the filter coefficients.

Quantizing the coefficients has damaged our filter magnitude response. Our
quantized filter transition band starts much earlier and is much shallower, and
the stopband attenuation has been reduced. When we look at the zero-pole plot
for the unquantized and quantized versions of our filter, we see that
quantization has moved the poles from their designed locations. Coefficient
overflow, rather than sensitivity to quantization, caused the terrible quantized
response in this filter. Coefficient quantization changes filter coefficients by at
most one quantization level. Overflow can change the coefficients by an
arbitrarily large amount. In this case, quantization changed the largest
magnitude coefficient from 2.49 to saturation at 1.0. You can see this from the
coefficient view by selecting Analysis -> View Filter Coefficients. Thus we see
how sensitive this direct form IIR filter is to coefficient quantization.

2 Designing Advanced Filters

2-70

To continue this example, we look at the effects of changing the coefficient
format from fixed-point, 16-bits to fixed-point, 8-bits. After we make the
desired change, we see the response curves shown in this figure.

Robust Filter Architectures

2-71

When you inspect the entries in the Set Quantization Parameters dialog, you
see that we changed the coefficient format to [8 7], meaning we are using
eight-bit wordlength and seven-bit fraction length to represent each filter
coefficient. Changing the coefficient format to 8-bit, fixed point representation
causes the effects shown in the figure — the passband rolls off early, the
transition is less sharp, and the cutoff frequency lies beyond our 0.4
specification.

In FDATool, select Analysis->Pole/Zero Plot to view the poles and zeros for
the 8-bit filter plotted on the unit circle. Or you might select Analysis->View
Filter Coefficients to see the coefficient numerical values for the filter.

One more experiment in this example. We try changing the Direct form II
transposed (df2t) filter structure to use second-order sections, which tend to
be resistant to quantization effects. As we see in the figure, the elliptic filter

2 Designing Advanced Filters

2-72

that uses second-order sections, even with the 8-bit coefficient format,
performs identically to our reference filter.

In the Quantization Parameters options, you may note that the Input/output
scaling changed when we converted our filter to second-order sections.
Although we did not explicitly change the scaling by using the Scale
transfer-fcn <=1 option, converting the filter structure required that the gain
for the new sections be changed to maintain the same overall gain for the filter.
Thus our converted filter, which now has three sections, has unique scale
factors for each section. The vector entries [0.0625 1 2 1] represent the scale
factors applied to each section. 0.0625 is the scale factor applied to the input,
1 and 2 are the factors applied to the inputs of the second and third sections,
and 1 is applied to the output from the third section. The resulting filter has
the same gain as the original filter.

Selected Bibliography

2-73

Selected Bibliography
[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc., 1993, 330–360.

[2] Mitra, S. K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, Inc., 1998, 573–584.

2 Designing Advanced Filters

2-74

3

Designing Adaptive Filters

Overview of Adaptive Filters and
Applications (p. 3-4)

Read a short section about adaptive filters and their uses

Adaptive Filters in the Filter Design
Toolbox (p. 3-11)

Learn about the adaptive filters provided in the toolbox

Examples of Adaptive Filters That Use
LMS Algorithms (p. 3-12)

Presents examples of adaptive filters that use LMS
algorithms to determine filter coefficients

Example of Adaptive Filter That Uses
RLS Algorithm (p. 3-33)

Presents examples of adaptive filters that use RLS
algorithms to determine filter coefficients

Examples of Adaptive Kalman Filters
(p. 3-38)

Offers necessarily brief set of examples of adaptive
Kalman filters

Selected Bibliography (p. 3-41) Lists a few books that cover adaptive filters in both detail
and with broad scope

3 Designing Adaptive Filters

3-2

Over the past three decades, digital signal processors have made great
advances in increasing speed and complexity, and reducing power
consumption. As a direct result, real-time adaptive filtering is quickly
becoming an enabling technology for the future of communications, both wired
and wireless. In the following sections, this guide presents an overview of
adaptive filtering; discussions of some of the common applications for adaptive
filters; and details about the adaptive filters available in the toolbox.

Listed below are the sections that cover adaptive filters in this guide. Within
each section, examples and a short discussion of the theory of the filters
introduces the adaptive filter concepts.

• “Overview of Adaptive Filters and Applications” on page 3-4 — presents
a general discussion of adaptive filters and their applications.

- “System Identification” on page 3-7 — talks using adaptive filters to
identify the response of an unknown system such as a communications
channel or a telephone line.

- “Inverse System Identification” on page 3-8 — talks about using adaptive
filters to develop a filter which has a response that is the inverse of an
unknown system. You can overcome echoes in modem connections and
local telephone lines by inserting an inverse adaptive filter and using it to
compensate for the induced noise on the lines.

- “Noise Cancellation (or Interference Cancellation)” on page 3-9 — useful
for performing active noise cancellation where the filter adapts in
real-time to keep the error small. Compare this to system identification
where the filter adapts once and stays fixed thereafter.

- “Prediction” on page 3-9 — describes using adaptive filters to predict a
signals future values.

• “Adaptive Filters in the Filter Design Toolbox” on page 3-11 lists the
adaptive filters included in the toolbox.

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 3-12
presents a discussion of using LMS techniques to perform the filter
adaptation process.

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 3-33
discusses adaptive filters based on the RMS techniques for minimizing the
total error between the known and unknown systems.

3-3

• “Examples of Adaptive Kalman Filters” on page 3-38 presents an example of
as adaptive filter that uses the Kalman algorithm to determine filter
coefficients.

For more detailed information about adaptive filters and adaptive filter theory,
refer to the books listed in “Selected Bibliography” on page 3-41.

3 Designing Adaptive Filters

3-4

Overview of Adaptive Filters and Applications
Adaptive filters self learn. As the signal into the filter continues, the adaptive
filter coefficients adjust themselves to achieve the desired result, such as
identifying an unknown filter or cancelling noise in the input signal. In
Figure 3-1, the shaded box represents the adaptive filter, comprising the
adaptive filter and the adaptive RLS algorithm. For the general adaptive
algorithm block diagram, look at Figure 3-2.

Figure 3-1: Block Diagram That Defines the Inputs and Output of a Generic
RLS Adaptive Filter

text

SUMAdaptive FIR or IIR Digital Filter

RLS Adaptive Algorithm

Input Signal
x(k)

Output Signal
y(k)

Desired Signal
d(k)

Error Signal
e(k)

e(k) = d(k) - y(k)
y(k) = Filter{x(k),w(k)}

+

_

w(k+1) = w(k) + e(k) f {d((k),x(k))}

Overview of Adaptive Filters and Applications

3-5

Figure 3-2: Block Diagram Defining General Adaptive Filter Algorithm Inputs
and Outputs

An adaptive FIR or IIR filter designs itself based on the characteristics of the
input signal to the filter and a signal which represent the desired behavior of
the filter on its input. Designing the filter does not require any other frequency
response information or specification. To define the self learning process the
filter uses, you select the adaptive algorithm used to reduce the error between
the output signal y(k) and the desired signal d(k). When the LMS performance
criteria for e(k) has achieved its minimum value through the iterations of the
adapting algorithm, the adaptive filter is finished and its coefficients have
converged to a solution. Now the output from the adaptive filter matches
closely the desired signal d(k). When you change the input data characteristics,
sometimes called the filter environment, the filter adapts to the new
environment by generating a new set of coefficients for the new data. Notice
that when e(k) goes to zero and remains there you achieve perfect adaptation;
the ideal result but not likely in the real world.

The adaptive filter functions in this toolbox implement the shaded portion of
Figure 3-1, replacing the adaptive algorithm with an appropriate technique.
Therefore, to use one of the functions you provide the input signal or signals
and the initial values for the filter. A later section in this User’s Guide,
“Adaptive Filters in the Filter Design Toolbox” offers details about the
algorithms available and the inputs required to use them in MATLAB.

text

SUMAdaptive FIR or IIR Digital Filter

Adapting Algorithm

Input Signal
x(k)

Output Signal
y(k)

Desired Signal
d(k)

Error Signal
e(k)

e(k) = d(k) - y(k)
y(k) = Filter{x(k),w(k)}

+

_

w(k+1) = w(k) + e(k) x(k)

3 Designing Adaptive Filters

3-6

Choosing an Adaptive Filter
With many adaptive filters to choose from, selecting the one that best meets
your needs requires careful consideration. An exhaustive discussion of the
criteria for selecting your approach is beyond the scope of this User’s Guide.
However, a few guidelines can help you make your choice.

Two main considerations frame the decision — the filter job to do and the filter
algorithm to use.

When you begin to develop an adaptive filter for your needs, most likely the
primary concern is whether using an adaptive filter is a cost-competitive
approach to solving your filtering needs. Generally many areas determine the
suitability of adaptive filters (these areas are common to most filtering and
signal processing applications). Four such areas are:

• Filter consistency — does your filter performance degrade when the filter
coefficients change slightly as a result of quantization, or you switch to
fixed-point arithmetic? Will excessive noise in the signal hurt the
performance of your filter?

• Filter performance — does your adaptive filter provide sufficient
identification accuracy or fidelity, or does the filter provide sufficient signal
discrimination or noise cancellation to meet your requirements?

• Tools — do tools exist that make your filter development process easier?
Better tools can make it practical to use more complex adaptive algorithms.

• DSP requirements — can your filter perform its job within the constraints of
your application. Does your processor have sufficient memory, throughput,
and time to use your proposed adaptive filtering approach? Can you trade
memory for throughput: use more memory to reduce the throughput
requirements or use a faster signal processor?

Of the preceding considerations, characterizing filter consistency or robustness
may be the most difficult.

Using the simulations in the Filter Design Toolbox offers a good first step in
developing and studying these issues. Often, beginning your study using one of
the least mean squares (LMS) algorithm filters provides both a relatively
straightforward filter to implement and a sufficiently powerful tool for
evaluating whether adaptive filtering can be useful for your problem.

Overview of Adaptive Filters and Applications

3-7

Additionally, starting with an LMS approach can form a solid baseline against
which you can study and compare the more complex adaptive filters available
in the toolbox. Finally, your development process should, at some time, test
your algorithm and adaptive filter with real data. For truly testing the value of
your work there is no substitute for actual data.

With these considerations in mind, here are some applications that commonly
use adaptive filters.

System Identification
One common application is to use adaptive filters to identify an unknown
system, such as the response of an unknown communications channel or the
frequency response of an auditorium, to pick fairly divergent applications.
Other applications include echo cancellation and channel identification.

In the figure, the unknown system is placed in parallel with the adaptive filter.

Figure 3-3: Using an Adaptive Filter to Identify an Unknown System

Clearly, when e(k) is very small, the adaptive filter response is close to the
response of the unknown system. In this case the same input feeds both the
adaptive filter and the unknown. When the unknown system is a modem, the
input often represents white noise, and is the sound you hear from your modem
when you log in to your Internet service provider.

text

Unknown System

Adaptive Filter SUM
x(k)

d(k)

y(k) e(k)
_

+

3 Designing Adaptive Filters

3-8

Inverse System Identification
By placing the unknown system in series with your adaptive filter, your filter
becomes the inverse of the unknown system when e(k) gets very small. As
shown in the figure the process requires a delay inserted in the desired signal
d(k) path to keep the data at the summation synchronized. Adding the delay
keeps the system causal.

Figure 3-4: Determining an Inverse Response to an Unknown System

Without the delay element, the adaptive filter algorithm tries to match the
output from the adaptive filter (y(k)) to input data (x(k)) that has not yet
reached the adaptive elements because it is passing through the unknown
system. In essence, the filter ends up trying to look ahead in time. As hard as
it tries, the filter can never adapt: e(k) never reaches a very small value and
your adaptive filter never compensates for the unknown system response. And
it never provides a true inverse response to the unknown system. Including
a delay equal to the delay caused by the unknown system prevents this
condition.

Plain old telephone systems (POTS) commonly use inverse system
identification to compensate for the copper transmission medium. When you
send data or voice over telephone lines, the copper wires behave like a filter,
having a response that rolls off at higher frequencies (or data rates) and
possibly having other anomalies as well. Adding an adaptive filter which has a
response that is the inverse of the wire response, adapting in real time,
removes the rolloff and the anomalies, increasing the available frequency
range and data rate for the telephone system.

Adaptive FilterUnknown System SUM
x(k)

d(k)

y(k) e(k)
+

_

Delay

s(k)

Overview of Adaptive Filters and Applications

3-9

Noise Cancellation (or Interference Cancellation)
In noise cancellation, adaptive filters let you remove noise from a signal in real
time. Here, the desired signal, the one to clean up, combines noise and desired
information. To remove the noise, feed a signal, n'(k) to the adaptive filter that
represents noise that is correlated to the noise to remove from our desired
signal.

Figure 3-5: Using an Adaptive Filter to Remove Noise from an Unknown
System

So long as the input noise to the filter remains correlated to the unwanted noise
accompanying the desired signal, the adaptive filter adjusts its coefficients to
reduce the value of the difference between y(k) and d(k), removing the noise
and resulting in a clean signal in e(k). Notice that in this application, the error
signal actually converges to the input data signal, rather than converging to
zero.

Prediction
Predicting signals may seem to be an impossible task, without some limiting
assumptions. Assume that the signal is either steady or slowly varying over
time, and periodic over time as well.

Adaptive Filter SUMn'(k)

d(k)

y(k) e(k)
+

_

s(k) + n(k)

x(k)

3 Designing Adaptive Filters

3-10

Figure 3-6: Predicting Future Values of a Periodic Signal

Accepting these assumptions, the adaptive filter must predict the future values
of the desired signal based on past values. When s(k) is periodic and the filter
is long enough to remember previous values, this structure with the delay in
the input signal, can perform the prediction. You might use this structure to
remove a periodic signal from stochastic noise signals.

Finally, notice that most systems of interest contain elements of more than one
of the four adaptive filter structures. Carefully reviewing the real structure
may be required to determine what the adaptive filter is adapting to. Also, for
clarity in the figures, the analog-to-digital (A/D) and digital-to-analog (D/A)
components do not appear. Since the adaptive filters are assumed to be digital
in nature, and many of the problems produce analog data, converting the input
signals to and from the analog domain is probably necessary.

Adaptive Filter SUM
s(k)

d(k)

y(k) e(k)
+

_
x(k)

Delay

Adaptive Filters in the Filter Design Toolbox

3-11

Adaptive Filters in the Filter Design Toolbox
Filter Design Toolbox contains more than a half-dozen functions for applying
adaptive filters to data. As you see in Table 3-1, the functions use various
algorithms to determine the weights for the filter coefficients of the adapting
filter. While the algorithms differ in their detail implementations, the LMS and
RLS share a common operational approach — minimizing the error between
the filter output and the desired signal; the Kalman algorithm function is
somewhat different in how it determines the filter coefficients.

Presenting a detailed derivation of the Wiener-Hopf equation and determining
solutions to it is beyond the scope of this User’s Guide. Full descriptions of the
theory appear in the adaptive filter references provided in the “Selected
Bibliography” on page 3-41.

Table 3-1: Adaptive Filter Functions in the Toolbox

Function Description

adaptkalman Use a Kalman algorithm to determine the coefficients for
a filter to model an unknown system.

adaptlms Use a least mean squares (LMS) algorithm to determine
the coefficients for a filter to model an unknown system.

adaptnlms Use a normalized least mean squares algorithm to
determine the coefficients for a filter to model an
unknown system.

adaptrls Use a recursive least squares algorithm to determine the
coefficients for a filter to model an unknown system.

adaptsd Use a sign-data LMS algorithm to determine the
coefficients for a filter to model an unknown system.

adaptse Use a sign-error LMS algorithm to determine the
coefficients for a filter to model an unknown system.

adaptss Use a sign-sign LMS algorithm to determine the
coefficients for a filter to model an unknown system.

3 Designing Adaptive Filters

3-12

Examples of Adaptive Filters That Use LMS Algorithms
This section provides introductory examples using each of the least mean
squares (LMS) adaptive filter functions in the toolbox.

The Filter Design Toolbox provides five adaptive filter design functions that
use the LMS algorithms to search for the optimal solution to the adaptive filter:

• adaptlms — implement the LMS algorithm to solve the Weiner-Hopf
equation and find the filter coefficients for an adaptive filter.

• adaptnlms — implement the normalized variation of the LMS algorithm to
solve the Weiner-Hopf equation and determine the filter coefficients of an
adaptive filter.

• adaptsd — implement the sign-data variation of the LMS algorithm to solve
the Weiner-Hopf equation and determine the filter coefficients of an adaptive
filter. The correction to the filter weights at each iteration depends on the
sign of the input x(k).

• adaptse — implement the sign-error variation of the LMS algorithm to solve
the Weiner-Hopf equation and determine the filter coefficients of an adaptive
filter. The correction applied to the current filter weights for each successive
iteration depends on the sign of the error, e(k).

• adaptss — implement the sign-sign variation of the LMS algorithm to solve
the Weiner-Hopf equation and determine the filter coefficients of an adaptive
filter. The correction applied to the current filter weights for each successive
iteration depends on both the sign of x(k) and the sign of e(k).

To demonstrate the differences and similarities between the various LMS
algorithms supplied in the toolbox, the LMS and NLMS adaptive filter
examples use the same filter for the unknown system. In this case, the
unknown filter is one of the filters used in the examples from “gremez
Examples” on page 2-8 — the constrained lowpass filter.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

From the figure you see that the filter is indeed lowpass and constrained to 0.2
ripple in the stopband. With this as the baseline, the adaptive LMS filter
examples use the adaptive LMS algorithms and their initialization functions,
to identify this filter in a system identification role. To review the general

Examples of Adaptive Filters That Use LMS Algorithms

3-13

model for system ID mode, look at “System Identification” on page 3-7 for the
layout.

For the sign variations of the LMS algorithm, the examples use noise
cancellation as the demonstration application, as opposed to the system
identification application used in the LMS examples.

adaptlms Example — System Identification
To use the adaptive filter functions in the toolbox you need to provide three
things:

• An unknown system or process to adapt to. In this example, the filter
designed by gremez is the unknown system.

• Appropriate input data to exercise the adaptation process. In terms of the
generic LMS model, these are the desired signal d(k) and the input signal
x(k).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

3 Designing Adaptive Filters

3-14

• Both the adaptive LMS function to use and the matching initialization
function to set up the adapting algorithm. Here we use adaptlms and
initlms.

Start by defining an input signal x.

x = 0.1*randn(1,500);

The input is broadband noise. For the unknown system filter, use gremez to
create a twelfth-order lowpass filter:

[b,err,res] = gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

Although you do not need them here, include the err and res output
arguments.

Now filter the signal through the unknown system to get the desired signal.

d = filter(b,1,x);

With the unknown filter designed and the desired signal in place you can apply
the adaptive LMS filter to identify the unknown.

Preparing the adaptive filter algorithm requires that you provide starting
values for estimates of the filter coefficients and the LMS step size in a single
structure s. We use initlms to populate the structure. You could start with
estimated coefficients of some set of nonzero values; this example uses zeros for
the 12 initial filter weights. For the step size, 0.8 is a reasonable value — a good
compromise between being large enough to converge well within the 500
iterations (500 input sample points) and small enough to create an accurate
copy of the unknown filter.

w0 = zeros(1,13);
mu = 0.8;
s = initlms(w0,mu);

Examples of Adaptive Filters That Use LMS Algorithms

3-15

Structure s now comprises the following fields.

Structure
Element

Element Contents initlms
Element

s.coeffs LMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

wo

s.step Sets the LMS algorithm step size. Determines
both how quickly and how closely the adative
filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use adaptlms
in a loop structure, use this element to specify
the initial filter states for the adapting FIR
filter.

zi

 s.leakage Specifies the LMS leakage parameter. Allows
you to implement a leaky LMS algorithm.
Including a leakage factor can improve the
results of the algorithm by forcing the LMS
algorithm to continue to adapt even after it
reaches a minimum value. Ranges between 0
and 1. This is an optional field. Defaults to one
if omitted (specifying no leakage) or set to
empty, [].

lf

s.iter Total number of iterations in the adaptive filter
run. Although you can set this in s, you should
not. Consider it a read-only value.

3 Designing Adaptive Filters

3-16

Finally, using the desired signal, d, the input to the filter, x, and the structure
that contains the algorithm initialization settings, s, we run the adaptive filter
to determine the unknown system and plot the results, comparing the actual
coefficients from gremez to the coefficients found by adaptlms.

[y,e,s] = adaptlms(x,d,s);
stem([b.' s.coeffs.'])

In the stem plot the actual and estimated filter weights are the same. As an
experiment, try changing the step size to 0.2. Repeating the example with
mu = 0.2 results in the following stem plot. The estimated weights fail to
approximate the actual weights closely.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

Examples of Adaptive Filters That Use LMS Algorithms

3-17

Since this may be because we did not iterate over the LMS algorithm enough
times, try using 1000 samples. With 1000 samples, the stem plot, shown in the
next figure, looks much better, albeit at the expense of much more
computation. Clearly you should take care to select the step size with both the
computation required and the fidelity of the estimated filter in mind.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

3 Designing Adaptive Filters

3-18

adaptnlms Example — System Identification
To improve the convergence performance of the LMS algorithm, the
normalized variant uses an adaptive step size based on the signal power. As the
input signal power changes, the algorithm calculates the input power and
adjusts the step size to maintain an appropriate value. Thus the step size
changes with time. As a result, the normalized algorithm converges more
quickly with fewer samples in many cases. For input signals that change slowly
over time, the normalized LMS can represent a more efficient LMS approach.

In the adaptlms example, we used gremez to create the filter that we would
identify. So you can compare the results, we use the same filter, and replace
adaptlms with adaptnlms, to use the normalized LMS algorithm variation. You
should see better convergence with similar fidelity.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

Examples of Adaptive Filters That Use LMS Algorithms

3-19

First, generate the input signal and the unknown filter.

x = 0.1*randn(1,500);
[b,err,res] = gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});
d = filter(b,1,x);

Again d represents the desired signal d(x) as we defined it in Figure 3-1 and
b contains the filter coefficients for our unknown filter.

w0 = zeros(1,13);
mu = 0.8;
s = initnlms(w0,mu);

We use the preceding code to initialize the normalized LMS algorithm, just as
we used initlms to prepare the LMS algorithm in the adaptlms example. You
can see the input arguments are identical in this case. While there are optional
input arguments that you use to refine the normalized algorithm, such as
offset and leakage factor, to maintain the comparison to our LMS example
we use the same set of input arguments used earlier. For more information
about the optional input arguments, refer to initnlms in the reference section
of this User’s Guide.

Running the system identification process is a matter of using adaptnlms with
the desired signal, the input signal, and the initial filter coefficients and
conditions specified in s as input arguments. Then plot the results to compare
the adapted filter to the actual filter.

[y,e,s] = adaptnlms(x,d,s);
stem([b.' s.coeffs.'])

As shown in the following stem plot (a convenient way to compare the
estimated and actual filter coefficients), the two are close to identical.

3 Designing Adaptive Filters

3-20

If we compare the convergence performance of the regular LMS algorithm to
the normalized LMS variant, you see the normalized version adapts in far
fewer iterations to a result almost as good as the nonnormalized version.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Normalized LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

Examples of Adaptive Filters That Use LMS Algorithms

3-21

adaptsd Example — Noise Cancellation
When the amount of computation required to derive an adaptive filter drives
your development process, the sign-data variant of the LMS (SDLS) algorithm
may be a very good choice. Fortunately, the current state of digital signal
processor (DSP) design has relaxed the need to minimize the operations count
by making DSPs whose multiply and shift operations are as fast as add
operations. Thus some of the impetus for the sign-data algorithm (and the
sign-error and sign-sign variations) has been lost to DSP technology
improvements.

In the standard and normalized variations of the LMS adaptive filter,
coefficients for the adapting filter arise from the mean square error between
the desired signal and the output signal from the unknown system. Using the
sign-data algorithm changes the mean square error calculation by using the

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Comparing the LMS and NLMS Convergence Performance

Sample Number

M
ea

n
S

qu
ar

e
E

rr
or

NLMS Derived Filter Weights
LMS Derived Filter Weights

3 Designing Adaptive Filters

3-22

sign of the input data to change the filter coefficients. When the error is
positive, the new coefficients are the previous coefficients plus the error
multiplied by the step size µ. If the error is negative, the new coefficients are
again the previous coefficients minus the error multiplied by µ — note the sign
change. When the input is zero, the new coefficients are the same as the
previous set.

In vector form, the sign-data LMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SDLMS algorithm seeks to
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the SDLMS error falls more
slowly. Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computing.

Note How you set the initial conditions of the sign-data algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the input signal, the algorithm can become unstable
easily. A series of large input values, coupled with the quantization process
may result in the error growing beyond all bounds. You restrain the tendency
of the sign-data algorithm to get out of control by choosing a small step size
(µ<< 1) and setting the initial conditions for the algorithm to nonzero positive
and negative values.

w k 1+() w k() µe k()sgn x k()[]+= sgn x k()[]
 1 x k(), 0>

 0 x k(), 0=

1– x k(), 0<





=

0 µ 1
N InputSignalPower{ }
---< <

Examples of Adaptive Filters That Use LMS Algorithms

3-23

In this noise cancellation example, adaptsd requires two input data sets:

• Data containing a signal corrupted by noise. In Figure 3-5, this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving the
signal.

• Data containing random noise (x(k) in Figure 3-5) that is correlated with the
noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, then add the filtered
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the algorithm for processing, set the input conditions w0 and mu in
structure s. As noted earlier in this section, the values you set for w0 and mu
determine whether the adaptive filter can remove the noise from the signal
path. In “adaptlms Example — System Identification” on page 3-13, you set w0,
the filter coefficients, to zeros. Except in rare cases, that approach does not
work for the sign-data algorithm. The closer you set your initial filter
coefficients to the expected values, the more likely it is that the algorithm
remains well behaved and converges to a filter solution that removes the noise
effectively. For this example, we start with the coefficients in the filter we used
to filter the noise (nfilt), and modify them slightly so the algorithm has to
adapt.

w0 = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the set size for algorithm updating.
s=initsd(w0,mu); % Initialize the input structure for adaptsd.

3 Designing Adaptive Filters

3-24

With the required input arguments for adaptsd prepared, run the adaptation
and view the results.

[y,e,s] = adaptsd(noise,d,s);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptsd runs, it uses far fewer multiply operations than either of the
LMS algorithms. Also, performing the sign-data adaptation requires only bit
shifting multiplys when the step size is a power of two. Although the
performance of the sign-data algorithm as shown in the next figure is quite
good, the sign-data algorithm is much less stable than the standard LMS
variations. In this noise cancellation example, the signal after processing is a
very good match to the input signal, but the algorithm could very easily grow
without bound rather than achieve good performance. Changing w0, mu, or even
the lowpass filter you used to create the correlated noise can cause noise
cancellation to fail and the algorithm to become useless.

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Noise Cancellation by the Sign−Data Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Result of Noise Cancellation

Examples of Adaptive Filters That Use LMS Algorithms

3-25

adaptse Example — Noise Cancellation
In some cases, the sign-error variant of the LMS algorithm may be a very good
choice for an adaptive filter application. In the standard and normalized
variations of the LMS adaptive filter, the coefficients for the adapting filter
arise from calculating the mean square error between the desired signal and
the output signal from the unknown system, and applying the result to the
current filter coefficients. Using the sign-error algorithm replaces the mean
square error calculation by using the sign of the error to modify the filter
coefficients. When the error is positive, the new coefficients are the previous
coefficients plus the error multiplied by the step size µ. If the error is negative,
the new coefficients are again the previous coefficients minus the error
multiplied by µ — note the sign change. When the input is zero, the new
coefficients are the same as the previous set.

In vector form, the sign-error LMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SELMS algorithm seeks to
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the SELMS error falls more
slowly. Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

w k 1+() w k() µ e k()[]sgn x k()[]+= sgn e k()[]
 1 e k(), 0>

 0 e k(), 0=

1– e k(), 0<





=

0 µ 1
N InputSignalPower{ }
---< <

3 Designing Adaptive Filters

3-26

Note How you set the initial conditions of the sign-data algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the error signal, the algorithm can become unstable
easily. A series of large error values, coupled with the quantization process
may result in the error growing beyond all bounds. You restrain the tendency
of the sign-error algorithm to get out of control by choosing a small step size
(µ<< 1) and setting the initial conditions for the algorithm to nonzero positive
and negative values.

In this noise cancellation example, adaptse requires two input data sets:

• Data containing a signal corrupted by noise. In Figure 3-5, this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving the
signal.

• Data containing random noise (x(k) in Figure 3-5) that is correlated with the
noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, then add the filtered
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter.
fnoise=filter(nfilt,1,noise); % Correlated noise data.
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the SSLMS algorithm for processing, set the input conditions in
structure s. As noted earlier in this section, the values you set for w0 and mu
determine whether the adaptive filter can remove the noise from the signal
path. In the LMS tutorial, you set w0, the filter coefficients, to zeros. Except in
rare cases, that approach does not work for the sign-data algorithm. The closer

Examples of Adaptive Filters That Use LMS Algorithms

3-27

you set your initial filter coefficients to the expected values, the more likely it
is that the algorithm remains well-behaved and converges to a filter solution
that removes the noise effectively. For this example, we start with the
coefficients of the filter we used to filter the noise (nfilt), and modify them
slightly so the algorithm has to adapt.

w0 = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the set size for algorithm updating.
s=initse(w0,mu); % Initialize the input structure for adaptse.

With the required input arguments for adaptse prepared, run the adaptation
and view the results.

[y,e,s] = adaptse(noise,d,s);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptse runs, it uses far fewer multiply operations than either of the
LMS algorithms. Also, performing the sign-error adaptation requires only bit
shifting multiplys when the step size is a power of two. Although the
performance of the sign-data algorithm as shown in the next figure is quite
good, the sign-data algorithm is much less stable than the standard LMS
variations. In this noise cancellation example, the signal after processing is
a very good match to the input signal, but the algorithm could very easily
become unstable rather than achieve good performance. Changing w0, mu, or
even the lowpass filter you used to create the correlated noise can cause noise
cancellation to fail and the algorithm to become useless.

3 Designing Adaptive Filters

3-28

adaptss Example — Noise Cancellation
The final variation of the LMS algorithm in the toolbox is the sign-sign variant
(SSLMS). The rationale for this version matches those for the sign-data and
sign-error algorithms presented in preceding sections. For more details, refer
to “adaptsd Example — Noise Cancellation” on page 3-21.

The sign-sign algorithm (SSLMS) replaces the mean square error calculation
to using the sign of the input data to change the filter coefficients. When the
error is positive, the new coefficients are the previous coefficients plus the error
multiplied by the step size µ. If the error is negative, the new coefficients are
again the previous coefficients minus the error multiplied by µ — note the sign
change. When the input is zero, the new coefficients are the same as the
previous set. In essence, the algorithm quantizes both the error and the input
by applying the sign operator to them.

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Noise Cancellation Performance by the Sign−Error LMS Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Error After Noise Reduction

Examples of Adaptive Filters That Use LMS Algorithms

3-29

In vector form, the sign-sign LMS algorithm is

,

where

Vector w contains the weights applied to the filter coefficients and vector
x contains the input data. e(k) (= desired signal - filtered signal) is the error at
time k and is the quantity the SSLMS algorithm seeks to minimize. µ (mu) is
the step size. As you specify mu smaller, the correction to the filter weights gets
smaller for each sample and the SSLMS error falls more slowly. Larger mu
changes the weights more for each step so the error falls more rapidly, but the
resulting error does not approach the ideal solution as closely. To ensure good
convergence rate and stability, select mu within the following practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

Note How you set the initial conditions of the sign-sign algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the input signal and the error signal, the algorithm can
become unstable easily. A series of large error values, coupled with the
quantization process may result in the error growing beyond all bounds. You
restrain the tendency of the sign-sign algorithm to get out of control by
choosing a small step size (µ<< 1) and setting the initial conditions for the
algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptss requires two input data sets:

w k 1+() w k() µ e k()[]sgn x k()[]sgn+= sgn z k()[]
 1 z k(), 0>

 0 z k(), 0=

1– z k(), 0<





=

z k() e k()[] x k()[]sgn=

0 µ 1
N InputSignalPower{ }
---< <

3 Designing Adaptive Filters

3-30

• Data containing a signal corrupted by noise. In Figure 3-5, this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving the
cleaned signal as the content of the error signal.

• Data containing random noise (x(k) in Figure 3-5) that is correlated with the
noise that corrupts the signal data, called. Without the correlation between
the noise data, the adapting algorithm cannot remove the noise from the
signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, then add the filtered
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the algorithm for processing, set w0 and mu — the input conditions
in structure s. As noted earlier in this section, the values you set for w0 and mu
determine whether the adaptive filter can remove the noise from the signal
path. In the LMS tutorial, you set w0, the filter coefficients, to zeros. Except in
rare cases, that approach does not work for the sign-sign algorithm. The closer
you set your initial filter coefficients to the expected values, the more likely it
is that the algorithm remains well-behaved and converges to a filter solution
that removes the noise effectively. For this example, we start with the
coefficients in the filter we used to filter the noise (nfilt), and modify them
slightly so the algorithm has to adapt.

w0 = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the set size for algorithm updating.
s=initss(w0,mu); % Initialize the input structure for adaptss.

With the required input arguments for adaptsd prepared, run the adaptation
and view the results.

Examples of Adaptive Filters That Use LMS Algorithms

3-31

[y,e,s] = adaptss(noise,d,s);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptss runs, it uses far fewer multiply operations than either of the
LMS algorithms. Also, performing the sign-sign adaptation requires only bit
shifting multiplys when the step size is a power of two. Although the
performance of the sign-sign algorithm as shown in the next figure is quite
good, the sign-sign algorithm is much less stable than the standard LMS
variations. In this noise cancellation example, the signal after processing is a
very good match to the input signal. The algorithm could very easily fail to
converge rather than achieve good performance if the quantization process
produces very small or large changes. Changing w0, mu, or even the lowpass
filter you used to create the correlated noise can cause noise cancellation to fail
and the algorithm to become useless.

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Noise Cancellation Performance of the Sign−Sign LMS Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Error After Noise Reduction

3 Designing Adaptive Filters

3-32

As an aside, the sign-sign LMS algorithm is part of the international CCITT
standard for 32 Kb/s ADPCM telephony.

Example of Adaptive Filter That Uses RLS Algorithm

3-33

Example of Adaptive Filter That Uses RLS Algorithm
This section provides an introductory example that uses the RLS adaptive
filter function adaptrls.

If LMS algorithms represent the simplest and most easily applied adaptive
algorithms, the recursive least squares (RLS) algorithms represents increased
complexity, computational cost, and fidelity. In performance, RLS approaches
the Kalman filter (adaptkalman) in adaptive filtering applications, at
somewhat reduced required throughput in the signal processor. Compared to
the LMS algorithm, the RLS approach offers faster convergence and smaller
error with respect to the unknown system, at the expense of requiring more
computations.

In contrast to the least mean squares algorithm, from which it can be derived,
the RLS adaptive algorithm minimizes the total squared error between the
desired signal and the output from the unknown system. Referring to
Figure 3-2, you see the signal flow graph (or model) for the RLS adaptive filter
system. Note that the signal paths and identifications are the same whether
the filter uses RLS or LMS. The difference lies in the adapting portion. Within
limits, you can use any of the adaptive filter algorithms to solve an adaptive
filter problem by replacing the adaptive portion of the application with a new
algorithm. Examples of the sign variants of the LMS algorithms demonstrated
this feature to demonstrate the differences between the sign-data, sign-error,
and sign-sign variations of the LMS algorithm.

One interesting input option that applies to RLS algorithms is not present in
the LMS processes — a forgetting factor, λ, that determines how the algorithm
treats past data input to the algorithm. When the LMS algorithm looks at the
error to minimize, it considers only the current error value. In the RLS method,
the error considered is the total error from the beginning to the current data
point. Said another way, the RLS algorithm has infinite memory — all error
data is given the same consideration in the total error. In cases where the error
value might come from a spurious input data point or points, the forgetting
factor lets the RLS algorithm reduce the value of older error data by
multiplying the old data by the forgetting factor. Since 0 ≤ λ < 1, applying the
factor is equivalent to weighting the older error. When λ = 1, all previous error
is considered of equal weight in the total error. As λ approaches zero, the past
errors play a smaller role in the total. For example, when λ = 0.9, the RLS
algorithm multiplies an error value from 50 samples in the past by an

3 Designing Adaptive Filters

3-34

attenuation factor of 0.950 = 5.15 x 10-3, considerably deemphasizing the
influence of the past error on the current total error.

adaptrls Example — Inverse System Identification
Rather than use a system identification application, or a noise cancellation
model, this example use the inverse system identification model shown in
Figure 3-4. Cascading the adaptive filter with the unknown filter causes the
adaptive filter to converge to a solution that is the inverse of the unknown
system. If the transfer function of the unknown is H(z) and the adaptive filter
transfer function is G(z), the error measured between the desired signal and
the signal from the cascaded system reaches its minimum when the product of
H(z) and G(z) is 1, G(z)*H(z) = 1. For this relation to be true, G(z) must equal
-H(z), the inverse of the transfer function of the unknown system.

To demonstrate that this is true, create a signal to input to the cascaded filter
pair.

x = randn(1,3000);

In the cascaded filters case, like this one, the unknown filter results in a delay
in the signal arriving at the summation point after both filters. To prevent the
adaptive filter from trying to adapt to a signal it has not yet seen (equivalent
to predicting the future), delay the desired signal by 32 samples, the order of
the unknown system. Generally, you do not know the order of the system you
are trying to identify. In that case, delay the desired signal by about the
number of samples that is equal to half the order of the adaptive filter.
Delaying the input requires prepending 12 zero-values samples to x.

delay = zeros(1,12);
d = [delay x(1:2988)]; %Concatenate the delay and the signal.

You have to keep the desired signal vector d the same length as x, hence adjust
the signal element count to allow for the delay samples. Although it is not
generally true, for this example you know the order of the unknown filter, so
you add a delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

ufilt = fir1(12,0.55,'low');

Filtering x provides the input data signal for the adaptive algorithm function.

xdata = filter(ufilt,1,x);

Example of Adaptive Filter That Uses RLS Algorithm

3-35

Use initrls to set the initial conditions for the algorithm. initrls produces
the structure s, one of the input arguments to adaptrls. You can set the initial
conditions without using initrls by including each input argument to
adaptrls on its own — w0, p0, lambda, zi, and alg. For more about initrls and
the input conditions to prepare the RLS algorithm, refer to initrls and
adaptrls in the reference section of this User’s Guide.

w0 = zeros(13,1);
p0 = 2*eye(13);
lambda = 0.99;
s = initrls(w0,p0,lambda);

Most of the process to this point is the same as the preceding examples.
However, since this example is looking to develop an inverse solution, you need
to be careful about which signal carries the data and which is the desired
signal. Earlier examples of adaptive filters use the filtered noise as the desired
signal. In this case, the filtered noise (xdata) carries the unknown system
information. With Gaussian distribution and variance of 1, the unfiltered
noise d is the desired signal. The code to run this adaptive filter example is

[y,e,s] = adaptrls(xdata,d,s);

where y returns the coefficients of the adapted filter and e contains the error
signal as the filter adapts to find the inverse of the unknown system. You can
review the returned elements of the adapted filter in s.

Figure 3-7 presents the results of the adaptation. In the figure, we present the
magnitude response curves for the unknown and adapted filters. As a
reminder, the unknown filter was a lowpass filter with cutoff at 0.55, on the
normalized frequency scale from 0 to 1.

3 Designing Adaptive Filters

3-36

Figure 3-7: Comparing the Results of the RLS Inverse System Identification

Viewed alone in Figure 3-8, the inverse system looks like a fair compensator for
the unknown lowpass filter — a high pass filter with linear phase.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Comparing the Inverse Filter to the Unknown System

Inverse Filter
Unknown System

Example of Adaptive Filter That Uses RLS Algorithm

3-37

Figure 3-8: After Adapting, the RLS Algorithm Produces a Highpass Filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Inverse Filter Resulting from RLS Adaptation

3 Designing Adaptive Filters

3-38

Examples of Adaptive Kalman Filters
Without going into details because the specifics are beyond the scope of this
User’s Guide, the adaptive filter functions in the toolbox represent variations
of Kalman filtering. Thus, Kalman filters are the basis of all the other
functions, and perhaps the most effective and efficient since each succeeding
filter update in the Kalman algorithm depends only on the most recent input
data.

adaptkalman shares many input arguments with the LMS and RLS adaptive
functions. To completely specify the Kalman algorithm requires a few
additional inputs — k0, qm, and qp as listed in the following table.

Structure
Element

Element Description initkalman
Argument

s.coeffs Kalman adaptive filter coefficients. Should be
initialized with the initial values for the FIR
filter coefficients. Updated coefficients are
returned when you use s as an output
argument.

w0

s.errcov The state error covariance matrix. Initialize
this element with the initial error state
covariance matrix. An updated matrix is
returned when you use s as an output
argument.

k0

s.measvar Contains the measurement noise variance
matrix.

qm

s.procov Contains the process noise covariance matrix. qp

s.states Returns the states of the FIR filter. This is an
optional element. If omitted, it defaults to a
zero vector of length equal to the filter order.

zi

Examples of Adaptive Kalman Filters

3-39

Befitting the nature of the Kalman approach to adaptive filtering, arguments
k0, qm, and qp are matrices that define the known parameters for the algorithm
— the initial conditions. Often you do not know the initial state of the update
process equation that defines each filter update. To overcome this fact, we use
mean and correlation matrices of the initial state to define the equation.

adaptkalman Example — System Identification

x = 0.1*randn(1,500);
b = fir1(31,0.5);
d = filter(b,1,x);
w0 = zeros(1,32);
k0 = 0.5*eye(32);
qm = 2;
qp = 0.1*eye(32);
s = initkalman(w0,k0,qm,qp);
[y,e,s] = adaptkalman(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR Filter via Kalman Filter');
grid on;

s.gain Kalman gain vector. Computed and returned
after every iteration. This is a read-only value.

Not
applicable

s.iter Total number of iterations in the adaptive
filter run. Although you can set this number
in s, you should not.

Not
applicable

Structure
Element

Element Description initkalman
Argument

3 Designing Adaptive Filters

3-40

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification of an FIR filter via Kalman Filter

Filter Coefficient

C
oe

ffi
ci

en
t V

al
ue

Actual
Estimated

Selected Bibliography

3-41

Selected Bibliography
[1] Hayes, Monson H., Statistical Digital Signal Processing and Modeling,
John Wiley & Sons, 1996, 493–552.

[2] Haykin, Simon, Adaptive Filter Theory, Prentice-Hall, Inc., 1996

3 Designing Adaptive Filters

3-42

4
Digital Frequency
Transformations

Introduction (p. 4-2) Provides background about digital frequency
transformations for filters

Definition of the Problem (p. 4-3) Presents and defines the problem of using digital
frequency transformation

Frequency Transformations for Real
Filters (p. 4-11)

Discusses the functions in the toolbox used for
transforming real filters to other real filters

Frequency Transformations for
Complex Filters (p. 4-26)

Talks about the functions in the toolbox used for
transforming complex filters to other complex filters, or
real filters to complex filters

4 Digital Frequency Transformations

4-2

Introduction
Converting existing FIR or IIR filter designs to a modified IIR form is often
done using allpass frequency transformations. Although the resulting designs
can be considerably more expensive in terms of dimensionality than the
prototype (original) filter, their ease of use in fixed or variable applications is a
big advantage.

The general idea of the frequency transformation is to take an existing
prototype filter and produce another filter from it that retains some of the
characteristics of the prototype, in the frequency domain. Transformation
functions achieve this by replacing each delaying element of the prototype filter
with an allpass filter carefully designed to have a prescribed phase
characteristic for achieving the modifications requested by the designer.

This tutorial gives an overview and interpretation of the frequency
transformations, and describes the range of transformations available to the
toolbox user. To aid this purpose the tutorial has been arranged into three
sections:

• “Definition of the Problem” on page 4-3 introduces the frequency
transformation concept and provides its mathematical and intuitive
interpretations.

• “Frequency Transformations for Real Filters” on page 4-11 describes the real
frequency transformations available in the toolbox. Such transformations
start from a real prototype filter and return a real target filter.

• “Frequency Transformations for Complex Filters” on page 4-26 describes
complex frequency transformations available in the toolbox. Such
transformations start from the any real or complex prototype filter and
return a complex target filter.

Definition of the Problem

4-3

Definition of the Problem
The basic form of mapping in common use is

The HA(z) is an Nth-order allpass mapping filter given by

where

Ho(z)— Transfer function of the prototype filter

HA(z)— Transfer function of the allpass mapping filter

HT(z)— Transfer function of the target filter

Let’s look at a simple example of the transformation given by

The target filter has its poles and zeroes flipped across the origin of the real and
imaginary axes. For the real filter prototype, it gives a mirror effect against 0.5,
which means that lowpass Ho(z) gives rise to a real highpass HT(z). This is
shown in the following figure for the prototype filter designed as a third-order
halfband elliptic filter.

HT z() Ho HA z()[]=

HA z() S

α iz
i–

i 0=

N

∑

α iz
N– i+

i 0=

N

∑

NA z()
DA z()
----------------= =

α0 1=

HT z() Ho z–()=

4 Digital Frequency Transformations

4-4

Figure 4-1: Example of a Simple Mirror Transformation

The choice of an allpass filter to provide the frequency mapping is necessary to
provide the frequency translation of the prototype filter frequency response to
the target filter by changing the frequency position of the features from the
prototype filter without affecting the overall shape of the filter response.

The phase response of the mapping filter normalized to π can be interpreted as
a translation function:

The graphical interpretation of the frequency transformation is shown in the
figure below. The complex multiband transformation takes a real lowpass filter
and converts it into a number of passbands around the unit circle.

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)
0 0.2 0.4 0.6 0.8 1

−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

Prototype filter Pole−Zero plot Target filter Pole−Zero plot

H wnew() ωold=

Definition of the Problem

4-5

Figure 4-2: Graphical Interpretation of the Mapping Process

Most of the frequency transformations are based on the second-order allpass
mapping filter:

The two degrees of freedom provided by α1 and α2 choices are not fully used by
the usual restrictive set of “flat-top” classical mappings like lowpass to
bandpass. Instead, any two transfer function features can be migrated to
(almost) any two other frequency locations if α1 and α2 are chosen so as to keep
the poles of HA(z) strictly outside the unit circle (since HA(z) is substituted for
z in the prototype prototype transfer function). Moreover, as first pointed out
by Constantinides, the selection of the outside sign influences whether the
original feature at zero can be moved (the minus sign, a condition known as

HA z()
1 α1z 1– α2z 2–

+ +

α2 α1z 1– z 2–
+ +

--±=

4 Digital Frequency Transformations

4-6

“DC mobility”) or whether the Nyquist frequency can be migrated (the “Nyquist
mobility” case arising when the leading sign is positive).

All the transformations forming the package are explained in the next sections
of the tutorial. They are separated into those operating on real filters and those
generating or working with complex filters. The choice of transformation
ranges from standard Constantinides first and second-order ones [13][14] up to
the real muliband filter by Mullis and Franchitti [15], and the complex
multiband filter and real/complex multipoint ones by Krukowski, Cain and
Kale [16].

Selecting Features Subject to Transformation
Choosing the appropriate frequency transformation for achieving the required
effect and the correct features of the prototype filter is very important and
needs careful consideration. It is not advisable to use a first-order
transformation for controlling more than one feature. The mapping filter will
not give enough flexibility. It is also not good to use higher order
transformation just to change the cutoff frequency of the lowpass filter. The
increase of the filter order would be too big, without considering the additional
replica of the prototype filter that may be created in undesired places.

Figure 4-3: Feature Selection for Real Lowpass to Bandpass Transformation

To illustrate the idea, the second-order real multipoint transformation was
applied three times to the same elliptic halfband filter in order to make it into

Definition of the Problem

4-7

a bandpass filter. In each of the three cases, two different features of the
prototype filter were selected in order to obtain a bandpass filter with passband
ranging from 0.25 to 0.75. The position of the DC feature was not important,
but it would be advantageous if it were in the middle between the edges of the
passband in the target filter. In the first case the selected features were the left
and the right band edges of the lowpass filter passband, in the second case they
were the left band edge and the DC, in the third case they were DC and the
right band edge.

Figure 4-4: Result of choosing different features

The results of all three approaches are completely different. For each of them
only the selected features were positioned precisely where they were required.
In the first case the DC is moved toward the left passband edge just like all the
other features close to the left edge being squeezed there. In the second case the
right passband edge was pushed way out of the expected target as the precise
position of DC was required. In the third case the left passband edge was pulled
toward the DC in order to position it at the correct frequency. The conclusion
is that if only the DC can be anywhere in the passband, the edges of the
passband should have been selected for the transformation. For most of the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

Left & right band−edges (solid)

Left band−edge and DC (dashed)

DC and right band−edges (dotted)

Magniture responses |H(ω)| in dB

Normalized Frequency (×π rad/sample)

4 Digital Frequency Transformations

4-8

cases requiring the positioning of passbands and stopbands, designers should
always choose the position of the edges of the prototype filter in order to make
sure that they get the edges of the target filter in the correct places. Frequency
responses for the three cases considered are shown in the figure. The prototype
filter was a third-order elliptic lowpass filter with cutoff frequency at 0.5.

The MATLAB code used to generate the figure is given here.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

In the example the requirements are set to create a real bandpass filter with
passband edges at 0.1 and 0.3 out of the real lowpass filter having the cutoff
frequency at 0.5. This is attempted in three different ways. In the first
approach both edges of the passband are selected, in the second approach the
left edge of the passband and the DC are chosen, while in the third approach
the DC and the right edge of the passband are taken:

[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [0.0, 0.5], [0.2, 0.3]);

Mapping from Prototype Filter to Target Filter
In general the frequency mapping converts the prototype filter, Ho(z), to the
target filter, HT(z), using the NAth-order allpass filter, HA(z). The general form
of the allpass mapping filter is given in Equation . The frequency mapping is a
mathematical operation that replaces each delayer of the prototype filter with
an allpass filter. There are two ways of performing such mapping. The choice
of the approach is dependent on how prototype and target filters are
represented.

When the Nth-order prototype filter is given with pole-zero form

Ho z()

z zi–()

i 1=

N

∑

z pi–()

i 1

N

∑

-----------------------------=

Definition of the Problem

4-9

the mapping will replace each pole, pi, and each zero, zi, with a number of poles
and zeros equal to the order of the allpass mapping filter:

The root finding needs to be used on the bracketed expressions in order to find
the poles and zeros of the target filter.

When the prototype filter is described in the numerator-denominator form:

Then the mapping process will require a number of convolutions in order to
calculate the numerator and denominator of the target filter:

For each coefficient αi and βi of the prototype filter the NAth-order polymonials
must be convolved N times. Such approach may cause rounding errors for large
prototype filters and/or high order mapping filters. In such a case the user
should consider the alternative of doing the mapping using via poles and zeros.

Summary of Frequency Transformations

Advantages

• Most frequency transformations are described by closed-form solutions or
can be calculated from the set of linear equations.

• They give predictable and familiar results.

• Ripple heights from the prototype filter are preserved in the target filter.

• They are architecturally appealing for variable and adaptive filters.

Ho z()

S αkzk

k 0=

∑ zi αkzN k–

k 0=

∑⋅–
 
 
 
 

i 1=

∑

S αkzk

k 0

N 1–

∑ pi αkzN k–

k 0

N 1–

∑⋅–
 
 
 
 

i 1

N

∑

--=

HT z()
β0zN β1zN 1– … βN+ + +

α0zN α1zN 1– … αN+ + +
--

z HA z()=

=

HT z()
β1NA z()N β2NA z()N 1– DA z() … βNDA z()N

+ + +

β1NA z()N β2NA z()N 1– DA z() … βNDA z()N
+ + +

---=

4 Digital Frequency Transformations

4-10

Disadvantages

• There are cases when using optimization methods to design the required
filter gives better results.

• High-order transformations increase the dimensionality of the target filter,
which may give expensive final results.

• Starting from fresh designs helps avoid locked-in compromises.

Frequency Transformations for Real Filters

4-11

Frequency Transformations for Real Filters
This section discusses real frequency transformations that take the real
lowpass prototype filter and convert it into a different real target filter. The
target filter has its frequency response modified in respect to the frequency
response of the prototype filter according to the characteristic of the applied
frequency transformation:

• “Real Frequency Shift” on page 4-12

• “Real Lowpass to Real Lowpass” on page 4-13

• “Real Lowpass to Real Highpass” on page 4-15

• “Real Lowpass to Real Bandpass” on page 4-17

• “Real Lowpass to Real Bandstop” on page 4-19

• “Real Lowpass to Real Multiband” on page 4-21

• “Real Lowpass to Real Multipoint” on page 4-23

4 Digital Frequency Transformations

4-12

Real Frequency Shift
Real frequency shift transformation uses a second-order allpass mapping filter.
It performs an exact mapping of one selected feature of the frequency response
into its new location, additionally moving both the Nyquist and DC features.
This effectively moves the whole response of the lowpass filter by the distance
specified by the selection of the feature from the prototype filter and the target
filter. As a real transformation, it works in a similar way for positive and
negative frequencies.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

The example below shows how this transformation can be used to move the
response of the prototype lowpass filter in either direction. Please note that
because the target filter must also be real, the response of the target filter will
inherently be disturbed at frequencies close to Nyquist and close to DC. Here
is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

HA z() z 1– 1 αz 1–
–

α z 1–
–

---------------------⋅=

α

π
2
--- ωold 2ωnew–()cos

π
2
---ωoldcos

--- for π
2
--- ωold 2ωnew–()cos 1<

π
2
--- ωold 2ωnew–()sin

π
2
---ωoldsin

--- otherwise













=

Frequency Transformations for Real Filters

4-13

Figure 4-5: Example of Real Frequency Shift Mapping

Real Lowpass to Real Lowpass
Real lowpass filter to real lowpass filter transformation uses a first-order
allpass mapping filter. It performs an exact mapping of one feature of the
frequency response into the new location keeping DC and Nyquist features
fixed. As a real transformation, it works in a similar way for positive and
negative frequencies. It is important to mention that using first-order mapping
ensures that the order of the filter after the transformation is the same as it
was originally.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

4 Digital Frequency Transformations

4-14

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to modify the cutoff frequency of the prototype
filter. The MATLAB code for this example is shown in the figure below.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The cutoff frequency moves from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

HA z() 1 αz 1–
–

α z 1–
–

 
 
 

–=

α

π
2
--- wold wnew–()sin

π
2
--- wold wnew+()sin

---=

Frequency Transformations for Real Filters

4-15

Figure 4-6: Example of Real Lowpass to Real Lowpass Mapping

Real Lowpass to Real Highpass
Real lowpass filter to real highpass filter transformation uses a first-order
allpass mapping filter. It performs an exact mapping of one feature of the
frequency response into the new location additionally swapping DC and
Nyquist features. As a real transformation, it works in a similar way for
positive and negative frequencies. Just like in the previous transformation
because of using a first-order mapping, the order of the filter before and after
the transformation is the same.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

4 Digital Frequency Transformations

4-16

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to convert the lowpass filter into a highpass
filter with arbitrarily chosen cutoff frequency. In the MATLAB code below, the
lowpass filter is converted into a highpass with cutoff frequency shifted from0.5
to 0.75. Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example moves the cutoff frequency from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

HA z() 1 αz 1–
+

α z 1–
+

 
 
 

–=

α

π
2
--- wold wnew+()cos

π
2
--- wold wnew–()cos

 
 
 
 
 

–=

Frequency Transformations for Real Filters

4-17

Figure 4-7: Example of Real Lowpass to Real Highpass Mapping

Real Lowpass to Real Bandpass
Real lowpass filter to real bandpass filter transformation uses a second-order
allpass mapping filter. It performs an exact mapping of two features of the
frequency response into their new location additionally moving a DC feature
and keeping the Nyquist feature fixed. As a real transformation, it works in a
similar way for positive and negative frequencies.

with α and β given by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

HA z() 1 β 1 α+()z 1–
– αz 2–

–

α β 1 α+()z 1–
– z 2–

+
--
 
 
 

–=

4 Digital Frequency Transformations

4-18

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how to move the response of the prototype lowpass
filter in either direction. Please note that because the target filter must also be
real, the response of the target filter will inherently be disturbed at frequencies
close to Nyquist and close to DC. Here is the MATLAB code for generating the
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates the passband between 0.5 and 0.75:

[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2,– wnew 1,+()sin

π
4
--- 2wold wnew 2, wnew 1,–+()sin

---=

β π
2
--- wnew 1, wnew 2,+()cos=

Frequency Transformations for Real Filters

4-19

Figure 4-8: Example of Real Lowpass to Real Bandpass Mapping

Real Lowpass to Real Bandstop
Real lowpass filter to real bandstop filter transformation uses a second-order
allpass mapping filter. It performs an exact mapping of two features of the
frequency response into their new location additionally moving a Nyquist
feature and keeping the DC feature fixed. This effectively creates a stopband
between the selected frequency locations in the target filter. As a real
transformation, it works in a similar way for positive and negative frequencies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

HA z() 1 β 1 α+()z 1–
– αz 2–

+

α β 1 α+()z 1–
– z 2–

+
--=

4 Digital Frequency Transformations

4-20

with α and β given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how this transformation can be used to convert the
prototype lowpass filter with cutoff frequency at 0.5 into a real bandstop filter
with the same passband and stopband ripple structure and stopband
positioned between 0.5 and 0.75. Here is the MATLAB code for generating the
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2, wnew 1,–+()cos

π
4
--- 2wold wnew 2, wnew 1,+–()cos

---=

β π
2
--- wnew 1, wnew 2,+()cos=

Frequency Transformations for Real Filters

4-21

Figure 4-9: Example of Real Lowpass to Real Bandstop Mapping

Real Lowpass to Real Multiband
This high-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into a number of new
locations in the target filter. Its most common use is to convert a real lowpass
with predefined passband and stopband ripples into a real multiband filter
with N arbitrary band edges, where N is the order of the allpass mapping filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

4 Digital Frequency Transformations

4-22

The coefficients α are given by

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility or either DC or Nyquist feature:

The example below shows how this transformation can be used to convert the
prototype lowpass filter with cutoff frequency at 0.5 into a filter having a
number of bands positioned at arbitrary edge frequencies 1/5, 2/5, 3/5 and 4/5.
Parameter S was such that there is a passband at DC. Here is the MATLAB
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates three passbands, from DC to 0.2, from 0.4
to 0.6 and from 0.8 to Nyquist:

[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], pass);

HA z() S

α iz
i–

i 0=

N

∑

α iz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

α0 1= k 1 … N, ,=

αk S

π
2
--- Nωnew 1–()kωold+()sin

π
2
--- N 2k–()ωnew 1–()kωold+()sin

--–=









S
1 Nyquist
1– DC




=

Frequency Transformations for Real Filters

4-23

Figure 4-10: Example of Real Lowpass to Real Multiband Mapping

Real Lowpass to Real Multipoint
This high-order frequency transformation performs an exact mapping of a
number of selected features of the prototype filter frequency response to their
new locations in the target filter. The mapping filter is given by the general IIR
polynomial form of the transfer function as given below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

4 Digital Frequency Transformations

4-24

For the Nth-order multipoint frequency transformation the coefficients α are

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility of either DC or Nyquist feature:

The example below shows how this transformation can be used to move
features of the prototype lowpass filter originally at -0.5 and 0.5 to their new
locations at 0.5 and 0.75, effectively changing a position of the filter passband.
Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], pass);

HA z() S

α iz
i–

i 0=

N

∑

α iz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

αN i– zold k, znew k,
i S znew k,

N i–⋅–⋅

i 1=

N

∑ zold k, S znew k,⋅––=

zold k, e
jπωold k,=

znew k, e
jπωnew k,=

k 1 … N, ,=











S
1 Nyquist
1– DC




=

Frequency Transformations for Real Filters

4-25

Figure 4-11: Example of Real Lowpass to Real Multipoint Mapping

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

4 Digital Frequency Transformations

4-26

Frequency Transformations for Complex Filters
This section discusses complex frequency transformation that take the complex
prototype filter and convert it into a different complex target filter. The target
filter has its frequency response modified in respect to the frequency response
of the prototype filter according to the characteristic of the applied frequency
transformation from:

• “Complex Frequency Shift” on page 4-26

• “Real Lowpass to Complex Bandpass” on page 4-28

• “Real Lowpass to Complex Bandstop” on page 4-29

• “Real Lowpass to Complex Multiband” on page 4-31

• “Real Lowpass to Complex Multipoint” on page 4-33

• “Complex Bandpass to Complex Bandpass” on page 4-36

Complex Frequency Shift
Complex frequency shift transformation is the simplest first-order
transformation that performs an exact mapping of one selected feature of the
frequency response into its new location. At the same time it rotates the whole
response of the prototype lowpass filter by the distance specified by the
selection of the feature from the prototype filter and the target filter.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

A special case of the complex frequency shift is a, so called, Hilbert
Transformer. It can be designed by setting the parameter to |α|=1, that is

HA z() αz 1–
=

α e
j2π νnew νold–()

=

α
1 forward
1– inverse




=

Frequency Transformations for Complex Filters

4-27

The example below shows how to apply this transformation to rotate the
response of the prototype lowpass filter in either direction. Please note that
because the transformation can be achieved by a simple phase shift operator,
all features of the prototype filter will be moved by the same amount. Here is
the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

Figure 4-12: Example of Complex Frequency Shift Mapping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

4 Digital Frequency Transformations

4-28

Real Lowpass to Complex Bandpass
This first-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into two new locations in the
target filter creating a passband between them. Both Nyquist and DC features
can be moved with the rest of the frequency response.

with α and β are given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real
halfband lowpass filter into a complex bandpass filter with band edges at 0.5
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a half band elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);

HA z() β αz 1–
–

z 1– αβ–
---------------------=

α

π
4
--- 2wold wnew 2, wnew 1,+–()sin

π 2wold wnew 2, wnew 1,–+()sin
---=

β e
j– π wnew wold–()

=

Frequency Transformations for Complex Filters

4-29

Figure 4-13: Example of Real Lowpass to Complex Bandpass Mapping

Real Lowpass to Complex Bandstop
This first-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into two new locations in the
target filter creating a stopband between them. Both Nyquist and DC features
can be moved with the rest of the frequency response.

with α and β are given by

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1

ωt2

HA z() β αz 1–
–

αβ z 1–
–

---------------------=

4 Digital Frequency Transformations

4-30

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real
halfband lowpass filter into a complex bandstop filter with band edges at 0.5
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);

α
π 2wold νnew 2, νnew 1,–+()cos
π 2wold νnew 2, νnew 1,+–()cos

--=

β e
j– π wnew wold–()

=

Frequency Transformations for Complex Filters

4-31

Figure 4-14: Example of Real Lowpass to Complex Bandstop Mapping

Real Lowpass to Complex Multiband
This high-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into a number of new
locations in the target filter. Its most common use is to convert a real lowpass
with predefined passband and stopband ripples into a multiband filter with
arbitrary band edges. The order of the mapping filter must be even, which
corresponds to an even number of band edges in the target filter. The Nth-order
complex allpass mapping filter is given by the general transfer function form
as shown below.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

4 Digital Frequency Transformations

4-32

The coefficients α are calculated from the system of linear equations:

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,i — Position of features originally at ±ωold in the target filter

Parameter S is the additional rotation factor by the frequency distance ∆C,
giving the additional flexibility of achieving the required mapping:

The example shows the use of such a transformation for converting a prototype
real lowpass filter with the cutoff frequency at 0.5 into a multiband complex
filter with band edges at 0.2, 0.4, 0.6 and 0.8, creating two passbands around
the unit circle. Here is the MATLAB code for generating the figure.

HA z() S

α iz
i–

i 0=

N

∑

α i
∗ z N– i+

i 0=

N

∑

------------------------------------=

α0 1=

ℜ α i() β1 k, β2 k,cos–cos[] ℑ α i() β1 k, β2 k,sin+sin[]⋅+⋅

i 1=

N

∑ β3 k,cos=

ℜ α i() β1 k,sin β2 k,sin–[] ℑ α i() β1 k, β2 k,cos+cos[]⋅–⋅

i 1=

N

∑ β3 k,sin=

β1 k, π νold 1–()k⋅ νnew k, N k–()+[]–=

β2 k, π ∆C νnew k, k+[]–=

β3 k, π νold 1–()k⋅ νnew k, N+[]–=

k 1…N=



















S e jπ∆C–
=

Frequency Transformations for Complex Filters

4-33

Figure 4-15: Example of Real Lowpass to Complex Multiband Mapping

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two complex passbands:

[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);

Real Lowpass to Complex Multipoint
This high-order transformation performs an exact mapping of a number of
selected features of the prototype filter frequency response to their new
locations in the target filter. The Nth-order complex allpass mapping filter is
given by the general transfer function form as shown below.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

4 Digital Frequency Transformations

4-34

The coefficients α can be calculated from the system of linear equations:

where

ωold,k — Frequency location of the first feature in the prototype filter

ωnew,k — Position of the feature originally at ωold,k in the target filter

Parameter S is the additional rotation factor by the frequency distance ∆C,
giving the additional flexibility of achieving the required mapping:

The example below shows how this transformation can be used to move one
selected feature of the prototype lowpass filter originally at -0.5 to two new
frequencies -0.5 and 0.1, and the second feature of the prototype filter from 0.5
to new locations at -0.25 and 0.3. This creates two nonsymmetric passbands

HA z() S

α iz
i–

i 0=

N

∑

α i
∗ z N– i+

i 0=

N

∑

------------------------------------=

α0 1=

ℜ α i() β1 k, β2 k,cos–cos[] ℑ α i() β1 k, β2 k,sin+sin[]⋅+⋅

i 1=

N

∑ β3 k,cos=

ℜ α i() β1 k,sin β2 k,sin–[] ℑ α i() β1 k, β2 k,cos+cos[]⋅–⋅

i 1=

N

∑ β3 k,sin=

β1 k,
π
2
--- wold k, wnew k, N k–()+[]–=

β2 k,
π
2
--- 2∆C wnew k, k+[]–=

β3 k,
π
2
--- wold k, wnew k, N+[]–=

k 1…N=





















S e jπ∆C–
=

Frequency Transformations for Complex Filters

4-35

around the unit circle, creating a complex filter. Here is the MATLAB code for
generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two nonsymmetric passbands:

[num,den] = iirlp2xc(b,a,0.5*[-1,1,-1,1], [-0.5,-0.25,0.1,0.3]);

Figure 4-16: Example of Real Lowpass to Complex Multipoint Mapping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo1 ωo2

ωo3 ωo4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

4 Digital Frequency Transformations

4-36

Complex Bandpass to Complex Bandpass
This first-order transformation performs an exact mapping of two selected
features of the prototype filter frequency response into two new locations in the
target filter. Its most common use is to adjust the edges of the complex
bandpass filter.

with α and β are given by

where

ωold,1 — Frequency location of the first feature in the prototype filter

ωold,2 — Frequency location of the second feature in the prototype filter

ωnew,1 — Position of the feature originally at ωold,1 in the target filter

ωnew,2 — Position of the feature originally at ωold,2 in the target filter

The example below shows how this transformation can be used to modify the
position of the passband of the prototype filter, either real or complex. In the
example below the prototype filter passband spanned from 0.5 to 0.75. It was
converted to having a passband between -0.5 and 0.1. Here is the MATLAB
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.25 to 0.75:

[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);

HA z() α γ βz 1–
–()

z 1– β– γ
-----------------------------=

α

π
4
--- wold 2, wold 1,–() wnew 2, wnew 1,–()–()sin

π
4
--- wold 2, wold 1,–() wnew 2, wnew 1,–()+()sin

--=

α e
j– π wold 2, wold 1,–()

=

γ e
j– π wnew 2, wnew 1,–()

=

Frequency Transformations for Complex Filters

4-37

Figure 4-17: Example of Complex Bandpass to Complex Bandpass Mapping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo1 ωo2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

4 Digital Frequency Transformations

4-38

5
Quantization and
Quantized Filtering

Binary Data Types (p. 5-3) Read this for an introduction to binary data types in the
toolbox

Introductory Quantized Filter Example
(p. 5-7)

To help you become familiar with quantized filters, this
provides an example of using and analyzing a quantized
filter

Fixed-Point Arithmetic (p. 5-16) Reviews the fundamentals of fixed-point arithmetic and
how the toolbox uses it

Floating-Point Arithmetic (p. 5-19) Reviews the fundamentals of floating-point arithmetic
and the data types in the toolbox

5 Quantization and Quantized Filtering

5-2

In the Filter Design Toolbox you can implement and analyze single-input
single-output filters either as fixed-point filters, or as custom floating-point
filters. Either type of filter is referred to as a quantized filter.

You can create a quantized filter from a reference filter, that is, a filter whose
coefficients and arithmetic operations you want to quantize in some fashion.

You can also implement quantized FFTs and quantized inverse FFTs in this
toolbox.

You can specify quantization parameters for quantized filters and FFTs with
quantizers. Quantizers specify how data is quantized. You can also quantize
any data set with a quantizer.

When you apply a quantized filter to data, not only are the filter coefficients
quantized to your specification, but so are:

• The data that you filter

• The results of any arithmetic operations that occur during filtering

See “Bibliography” for a list of relevant references on quantized filtering.

Binary Data Types

5-3

Binary Data Types
Binary data is coded and stored as ones and zeros.

Binary Data for Fixed-Point Arithmetic
Binary data that is coded for fixed-point arithmetic is characterized by word
length (in bits) and the placement of the radix (binary) point. The radix point
placement determines the fraction length of a binary word, and also
determines how the binary words are scaled. You can specify fixed-point words
in this toolbox with word lengths up to the limits of memory on your PC. The
fraction length can range from 0 bits (for integers) to one bit less than the word
length.

Binary Data for Floating-Point Arithmetic
Binary data that is coded for floating-point arithmetic is characterized by the
lengths of the fraction (mantissa) and the exponent (or equivalently, by the
word length and the exponent length). In addition to having the ability to
specify the standard IEEE single-precision and double-precision formats, you
can specify filters in a custom floating-point format, with word lengths ranging
from 2 to up to the limits of memory on your PC, and exponent lengths ranging
from 0 to 11 bits.

Different data coding methods and precisions affect the following:

• The numerical range of the result

• The quantization error

You can use the Filter Design Toolbox to analyze quantized filters, quantized
FFTs, or quantizers, and see how all of these factors affect your filter
performance on data sets.

Digital Filters
Digital computers generate coded binary data. Binary data is usually coded in
a fixed-point or floating-point format. You use digital filters to process binary
data. Digital filters are modeled as discrete-time linear systems.

You can use digital filters to:

• Filter out noise in measurements

5 Quantization and Quantized Filtering

5-4

• Enhance signals

• Represent signals

Quantized Filter Types
You can specify any type of filter in this toolbox as a quantized filter:

• Fixed-point filters

Fixed-point filters are useful for modeling fixed-point Digital Signal
Processing (DSP) processors that operate on data using fixed-point
arithmetic.

• Double-precision floating-point filters

• Single-precision floating-point filters

• Custom floating-point filters

You can use custom floating-point filters in this toolbox to model
floating-point DSP processors that operate on data using specific
floating-point formats.

Quantized Filter Structures
The quantized filters you can implement in this toolbox can have any of the
following structures:

• Direct form I

• Direct form I transposed

• Direct form II

• Direct form II transposed

• Direct form finite impulse response (FIR)

• Direct form FIR transposed filters

• Direct form antisymmetric FIR filters

• Direct form symmetric FIR filters

• Lattice allpass

• Lattice coupled-allpass filters

• Lattice moving average (MA) minimum phase filters

• Lattice MA maximum phase filters

Binary Data Types

5-5

• Lattice autoregressive (AR) filters

• Lattice ARMA filters

• Lattice coupled-allpass power complementary filters

• Single-input single-output state-space filters

Data Format for Quantized Filters
You can specify the precision and dynamic range for fixed-point filters with two
fixed-point data format parameters:

• Word length

• Fraction length

The word length is the length in bits of any binary word. The fraction length is
the length in bits of the binary word up to the radix point.

You can specify the precision, dynamic range, and other quantization
parameters for floating-point filters with two floating-point data format
parameters:

• Word length

• Exponent length

You can specify the precision, dynamic range, and other quantization
parameters when you specify the data format properties. You can specify these
properties using quantizers.

Except for when you specify a double- or single-precision quantized filter, you
can specify the precision and dynamic range for each of the following
quantization results individually:

• Inputs to a filtering operation

• Outputs of a filtering operation

• Quantized filter coefficients

• Sums that result from filtering

• Products that result from filtering

• Terms that are multiplied by filter coefficients (multiplicands)

These filter characteristics allow you to specify different quantization
parameters for data and arithmetic instructions.

5 Quantization and Quantized Filtering

5-6

Quantized FFTs and Quantized Inverse FFTs
You can specify any type of radix two or radix four quantized FFT in this
toolbox with the following data formats:

• Fixed-point FFTs

• Double-precision floating-point FFTs

• Single-precision floating-point FFTs

• Custom floating-point FFTs

The data formats for quantized FFTs are identical to those of quantized filters.

Introductory Quantized Filter Example

5-7

Introductory Quantized Filter Example
Follow the example in this section to:

• Construct a quantized filter.

• Plot the filter’s poles and zeros.

• Plot the filter’s impulse response.

• Plot the filter’s frequency response from the quantized filter coefficients. The
method used does not account for other quantization effects on the frequency
response computation.

• Plot the filter’s frequency response using the noise loading method. This
method takes all quantization effects into account.

• Test the filter for limit cycles.

You can construct quantized filters by either:

• Using the quantized filter constructor function qfilt

• Copying a quantized filter from an existing one

Quantized filters have many properties, including the filter structure and the
quantization formats.

When you use the function qfilt to create a quantized filter Hq, you can either:

• Type
Hq = qfilt

at the command line to accept the default filter properties, and change the
property values later.

• Use a modified syntax for qfilt to set property values when you create Hq.

You can construct quantized filters with any of several filter structures.

Once you construct a filter, use the filter command to apply it to data. In
addition, the following analysis functions apply to quantized filters:

• zplane for pole/zero plots

• impz for quantized impulse response plots

• freqz for computing and plotting the linear frequency response from the
quantized filter coefficients

5 Quantization and Quantized Filtering

5-8

• nlm for estimating and plotting the frequency response using the noise
loading method

• limitcycle for limit cycle detection and analysis

The first three of these Filter Design Toolbox functions are overloaded for
quantized filters. They behave similarly to the functions with the same name
in the Signal Processing Toolbox.

The introductory example presented in this section is included to illustrate
some of the features of this toolbox. In this example, you can use the code
presented to construct an eight-bit fixed-point quantized FIR filter, and
analyze it with the response functions listed above.

To learn more about quantized filters, see Chapter 8, “Working with Quantized
Filters” and Chapter 10, “Quantized Filtering Analysis Examples.”

Constructing an Eight-Bit Quantized Filter

1 Use gremez to design an FIR low-pass filter in the frequency domain with a
normalized cutoff frequency of approximately 0.4 radians/sample. Specify:

- 27 filter coefficients

- Four frequency points [0 .4 .6 1]

- Four corresponding gains [1 1 0 0]
b = gremez(27,[0 .4 .6 1],[1 1 0 0]);

The entries in the vector b are the coefficients of the (numerator) polynomial
of the FIR filter. This is your reference filter.

2 Construct a fixed-point quantized FIR filter from your reference filter with
the following characteristics:

- 8-bit word length for all data formats

- 7-bit fraction length for all data formats

- Direct form finite impulse response (FIR) filter structure

- The 'convergent' method used to round quantized numbers to the
nearest allowable quantized value.

You can create quantized filters using the qfilt command. When you create a
quantized filter, you must enter the vector of reference filter coefficients b in
a cell array by enclosing the coefficients in curly braces, {b}.

Introductory Quantized Filter Example

5-9

Hq = qfilt('fir',{b},'Format',{[8,7],'convergent'})

Hq =
Quantized Direct form FIR filter.
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
0 (1) 0.0000000 0.001722275146612721
0 (2) 0.0000000 0.003409515867936453
 (3) -0.0078125 -0.004898115162792102
 (4) -0.0078125 -0.006325311495727597
 (5) 0.0078125 0.009418759615173328
 (6) 0.0156250 0.012524352890295399
 (7) -0.0156250 -0.017394015777896423
 (8) -0.0234375 -0.022634462311564768
 (9) 0.0312500 0.030838037214625479
 (10) 0.0390625 0.040914907859937441
 (11) -0.0546875 -0.057578619191314129
 (12) -0.0859375 -0.084552886463529736
 (13) 0.1484375 0.147259140040687880
 (14) 0.4453125 0.448759881582659110
 (15) 0.4453125 0.448759881582659110
 (16) 0.1484375 0.147259140040687880
 (17) -0.0859375 -0.084552886463529736
 (18) -0.0546875 -0.057578619191314129
 (19) 0.0390625 0.040914907859937441
 (20) 0.0312500 0.030838037214625479
 (21) -0.0234375 -0.022634462311564768
 (22) -0.0156250 -0.017394015777896423
 (23) 0.0156250 0.012524352890295399
 (24) 0.0078125 0.009418759615173328
 (25) -0.0078125 -0.006325311495727597
 (26) -0.0078125 -0.004898115162792102
0 (27) 0.0000000 0.003409515867936453
0 (28) 0.0000000 0.001722275146612721

 FilterStructure = fir
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [27]

5 Quantization and Quantized Filtering

5-10

 CoefficientFormat = unitquantizer('fixed', 'convergent',
'saturate', [8 7])
 InputFormat = quantizer('fixed', 'convergent', 'saturate',
[8 7])
 OutputFormat = quantizer('fixed', 'convergent', 'saturate',
[8 7])
MultiplicandFormat = quantizer('fixed', 'convergent', 'saturate',
[8 7])
 ProductFormat = quantizer('fixed', 'convergent', 'saturate',
[8 7])

SumFormat = quantizer('fixed', 'convergent', 'saturate', [8 7])

Notice that the display provides information about the filter and its property
values. For this example, we created a filter whose product and sum quantizer
formats are the same size as the coefficient format to illustrate the
quantization effects.

Analyzing Poles and Zeros with zplane
To compare poles and zeros of the reference filter to those of the quantized filter
Hq you just constructed, type

zplane(Hq)

Notice that the quantized zeros are not very close to the reference poles and
zeros on the plot.

Introductory Quantized Filter Example

5-11

Analyzing the Impulse Response with impz
To compare the impulse response plot of the quantized filter Hq you just
constructed to that of its floating-point reference (b), use the impz command.

impz(Hq)

The impulse response computed by impz is the response of the fixed-point
quantized filter Hq to a quantized impulse.

−3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Real part

Im
ag

in
ar

y
pa

rt

27
227

Quantized zeros
Quantized poles
Reference zeros
Reference poles

5 Quantization and Quantized Filtering

5-12

Analyzing the Frequency Response with freqz
To compare the frequency response plot of the quantized filter Hq you just
constructed to that of its floating-point reference (b), use the freqz command.

freqz(Hq)

0 5 10 15 20 25
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Quantized response
Reference response

Introductory Quantized Filter Example

5-13

The freqz command computes the linear frequency response of the two filters
whose coefficients are, respectively:

• The quantized filter coefficients

• The reference filter coefficients

Noise Loading Frequency Response Analysis: nlm
You can estimate the frequency response of the filter Hq you just created using
the noise loading method computed with nlm. The noise loading method takes
quantization effects into account. This method estimates the quantization
noise figure when it runs a set of Monte Carlo frequency response calculations
by filtering a set of sinusoids with randomly varying phase.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2000

−1500

−1000

−500

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Quantized response
Reference response

5 Quantization and Quantized Filtering

5-14

nlm(Hq)

Difference Between nlm and freqz for Frequency Response Analysis
The frequency response computed by freqz is determined using the true linear
frequency response of the transfer function associated with the quantized filter
coefficients. It does not take any other quantization effects into account, and is
not computed from the filter structure you specify.

The frequency response computed by nlm is an estimate of the frequency
response that accounts for nonlinear quantization effects due to your choice of:

• Filter structure

• Other quantization parameters

Analyzing Limit Cycles with limitcycle
You can analyze limit cycles of the filter Hq with limitcycle. This function
computes a Monte Carlo simulation to detect the presence of limit cycles.

limitcycle(Hq)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3000

−2500

−2000

−1500

−1000

−500

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Noise Loading Method. Noise figure = 7.6573 dB

Quantized NLM
Quantized FREQZ
Reference FREQZ
Noise Power Spectrum

Introductory Quantized Filter Example

5-15

No limit cycles detected after 20 Monte Carlo trials.

As is guaranteed for FIR filters, no limit cycles are detected for this model.

5 Quantization and Quantized Filtering

5-16

Fixed-Point Arithmetic
You can specify how numbers are quantized using fixed-point arithmetic in this
toolbox with two quantities:

• Word length in bits

• Fraction length in bits

Note This toolbox does bit-true fixed-point arithmetic for word lengths of 53
bits and fewer. It simulates fixed-point arithmetic for word lengths greater
than 53 bits, such as 64 bits.

Although the 64-bit fixed-point arithmetic is not be bit-true to the last bit, it
properly handles overflows and the results are almost indistinguishable from
bit-true results when the numbers are scaled properly. For example, (small
numbers + small numbers) work correctly and (large numbers + large
numbers) are right as well, but (large numbers + small numbers) will be
dominated by the large number and some precision loss will occur.

Fraction length can be up to one bit less than the word length.

A general representation for a two’s complement binary fixed-point number is

where:

• bi are the binary digits (bits, zeros or ones).

•
… b0b1bw 2– b5 b3b4 b2bw 1–

Least significant bitRadix pointSign bit

Word length

Fraction length

Fixed-Point Arithmetic

5-17

• The word length in bits is given by w.

• The most significant bit (MSB) is the leftmost bit. It is represented by the
location of bw-1. In Filter Design Toolbox, this number represents the sign
bit; a 1 indicates the number is negative, and a 0 indicates it is nonnegative.

• The least significant bit (LSB) is the rightmost bit, represented by the
location of b0.

• The radix (binary) point is shown four places to the left of the LSB for this
example.

• The fraction length f is the distance from the LSB to the radix point.

Radix Point Interpretation
Where you place the radix point determines how fixed-point numbers are
interpreted in two’s complement arithmetic. For example, the five bit binary
number:

• 10110 represents the integer –24+22+2 = –10.

• 10.110 represents –2+2–1+2–2 = –1.25.

• 1.0110 represents –2–0+2–2+2–3 = –0.625.

Dynamic Range and Precision
A fixed-point quantization scheme determines the dynamic range of the
numbers that can be applied to it. Numbers outside of this range are always
mapped to fixed-point numbers within the range when you quantize them. The
precision is the distance between successive numbers occurring within the
dynamic range in a fixed-point representation. The dynamic range and
precision depend on the word length and the fraction length.

For a signed fixed-point number with word length w and fraction length f, the
range is from –2w–f–1 to 2w–f–1–2–f.

For an unsigned fixed-point number with word length w and fraction length f,
the range is from 0 to 2w–f–2–f.

In either case the precision is 2–f.

5 Quantization and Quantized Filtering

5-18

Overflows and Scaling
When you quantize a number that is outside of the dynamic range for your
specified precision, overflows occur. Overflows occur more frequently with
fixed-point quantization than with floating-point, because the dynamic range
of fixed-point numbers is much less than that of floating-point numbers with
equivalent word lengths.

Overflows can occur when you create a fixed-point quantized filter from an
arbitrary floating-point design. You can normalize your fixed-point filter
coefficients and introduce a corresponding scaling factor for filtering to avoid
overflows in the coefficients.

In this toolbox you can specify how you want overflows to be handled:

• Saturate on the overflow

• Wrap on the overflow

Floating-Point Arithmetic

5-19

Floating-Point Arithmetic
Fixed-point numbers are limited in that they cannot simultaneously represent
very large or very small numbers using a reasonable word length. This
limitation is overcome by using scientific notation. With scientific notation, you
can dynamically place the radix point at a convenient location and use powers
of the radix to keep track of that location. Thus, a range of very large and very
small numbers can be represented with only a few digits.

Any binary floating-point number can be represented in floating-point using

scientific notation form as where F is the fraction or mantissa (of
length f), 2 is the radix or base (binary in this case), and E is the exponent of
the radix (of length e). The floating-point word length w is f+e+1. The extra bit
is for the sign bit.

You can specify single-precision and double-precision floating-point quantized
filters with the Filter Design Toolbox. In addition, you can specify custom
floating-point quantized filters with word lengths of up to 64 bits, and exponent
lengths of up to 11 bits.

See http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf
for more information on floating-point computation.

Scientific Notation
A direct analogy exists between scientific notation and radix point notation.
For example, scientific notation using five decimal digits for the mantissa
would take the form

where p is an integer of unrestricted range. Radix point notation using 5 bits
for the mantissa is the same except for the number base

where q is an integer of unrestricted range. The previous equation is valid for
both fixed- and floating-point numbers. For both these data types, the mantissa
can be changed at any time by the processor. However, for fixed-point numbers,
the exponent never changes, while for floating-point numbers, the exponent
can be changed any time by the processor.

 F± 2× E±

d.dddd 10× p ddddd.0± 10× p 4– 0± .ddddd 10× p 1+
==±

b.bbbb 2× q± bbbbb.0 2× q 4–± 0.bbbbb 2× q 1+±= =

5 Quantization and Quantized Filtering

5-20

The IEEE Format
The IEEE 754 Standard for binary floating-point arithmetic has been widely
adopted for use on DSP processors.

This standard specifies four floating-point number formats including single-
and double-precision. Each format contains three components:

• Exponent

• Fraction

• Sign bit

The Exponent
In the IEEE format, exponent representations are biased. This means a fixed
value (the bias) is subtracted from the field to get the true exponent value. For
example, if the exponent field is 8 bits, then the numbers 0 through 255 are
represented, and there is a bias of 127. Some values of the exponent are
reserved for flagging inf, NaN, and denormalized numbers, so the true
exponent values range from –126 to 127. If the exponent length is e, the bias is
given by 2e–1–1.

The Fraction
In general, floating-point numbers can be represented in many different ways
by shifting the number to the left or right of the radix point and decreasing or
increasing the exponent of the radix by a corresponding amount. To simplify
operations on these numbers, they are normalized in the IEEE format.
A normalized binary number has a fraction with the form 1.F where F has a
fixed size for a given data type. Since the leftmost fraction bit is always a 1, it
is unnecessary to store this bit and is therefore implicit (or hidden). Thus, an
n-bit fraction stores an n+1-bit number. If the exponent length is e and the
word length is w, then the fraction length f = w–e–1. IEEE also supports
denormalized numbers.

The Sign Bit
IEEE floating-point numbers use a sign/magnitude representation where the
sign bit is explicitly included in the word. Using this representation, a sign bit
of 0 represents a positive number and a sign bit of 1 represents a negative
number. Both the fraction and the exponent can be positive or negative, but

Floating-Point Arithmetic

5-21

only the fraction has a sign bit. The sign of the exponent is determined by the
bias.

Single-Precision Format
The IEEE 754 single precision floating-point format is a 32-bit word divided
into a 1-bit sign indicator s, an 8-bit biased exponent E, and a 24-bit fraction F.
A representation of this format is given below.

The relationship between this format and the representation of real numbers
is given below.

Denormalized values are discussed in “Exceptional Arithmetic” on page 5-24.

Double-Precision Format
The IEEE 754 double precision (64-bit) floating-point format consists of a 1-bit
sign indicator s, an 11-bit biased exponent E, and a 52-bit fraction F.
A representation of this format is given below.

Number Characterization Value

Normalized, 0<E<255 (–1)s(2E–127)(1.F)

Denormalized, E=0; F≠0 (–1)s(2–126)(0.F)

Zero, E=0; F=0 (–1)s(0)

Otherwise exceptional value

b0b22b30b31

Fs E

b0b51b62b63

Fs E

5 Quantization and Quantized Filtering

5-22

The relationship between this format and the representation of real numbers
is given below.

Denormalized values are discussed in “Exceptional Arithmetic” on page 5-24.

Custom Floating-Point Data Types
This toolbox supports custom (nonstandard) IEEE-style floating-point data
types. These data types adhere to the definitions and formulas previously given
for IEEE single- and double-precision numbers.

The fraction length and the bias for the exponent are calculated from the word
length and exponent length you supply. You can specify:

• Any exponent length up to 11 bits

• Any word length greater than the exponent length up to 64 bits

When specifying a custom format, keep in mind that the exponent length
largely determines the dynamic range, while the fraction length largely
determines the precision of the result.

Dynamic Range
A floating-point quantization scheme determines the dynamic range of the
numbers that can be applied to it. Numbers outside of this range are always
mapped to ±inf.

Number Characterization Value

Normalized, 0<E<2047 (–1)s(2E–1023)(1.F)

Denormalized, E=0; F≠0 (–1)s(2–1022)(0.F)

Zero, E=0; F=0 (–1)s(0)

Otherwise exceptional value

Floating-Point Arithmetic

5-23

The range of representable numbers for an IEEE floating-point number with
word length w, exponent length e, fraction length f = w–e–1, and the exponent
bias given by bias = 2e – 1– 1 is described in the following diagram

where:

• Normalized positive numbers are defined within the range 21–bias to
(2 – 2–f).2bias.

• Normalized negative numbers are defined within the range –21–bias to
–(2 – 2–f).2bias.

• Positive numbers greater than (2 – 2–f).2bias, and negative numbers greater
than –(2 – 2–f).2bias are called overflows.

• Positive numbers less than 21–bias, and negative numbers less than –21–bias

are either underflows or denormalized numbers.

• Zero is specified by a E=0; F=0.

Overflows and underflows result from exceptional arithmetic conditions.
Exceptional arithmetic is discussed “Exceptional Arithmetic” on page 5-24.

Note You can use the MATLAB functions realmin and realmax to determine
the dynamic range of double-precision floating-point values for your computer.

Precision
The precision is the distance between 1.0 and the next largest floating-point
number. The dynamic range and precision depend on the word length and the
exponent length.

The precision for floating-point numbers is 2–f.

positive
underflow

negative
underflow

positive
overflow

negative
overflow

negative numbers positive numbers

5 Quantization and Quantized Filtering

5-24

Note In MATLAB, floating-point relative accuracy is given by the command
eps which returns the distance from 1.0 to the next largest floating-point
number. For computers that support the IEEE standard for floating-point
numbers, eps = 2–52 or 2.2204 ✕ 10–16.

Floating-Point Data Type Parameters
The maximum and minimum absolute values, exponent bias, and precision for
the floating-point formats supported by this toolbox are given below.

Due to the sign/magnitude representation of floating-point numbers, there are
two representations of zero, one positive and one negative. For both
representations E = 0 and F = 0.

Exceptional Arithmetic
In addition to specifying a floating-point format, the IEEE 754 Standard for
binary floating-point arithmetic specifies practices and procedures so that
predictable results are produced independent of the hardware platform.
Specifically, denormalized numbers, are defined to deal with exceptional
arithmetic (underflow and overflow).

Denormalized Numbers
Denormalized numbers are used to handle cases of exponent underflow. When
the exponent of the result is too small (such as a negative exponent whose
magnitude is too large), the result is denormalized by right-shifting the
fraction and leaving the exponent at its minimum value. Using denormalized
numbers is also referred to as gradual underflow. Without denormalized

Table 5-1: Floating-Point Data Type Parameters

Floating-Point
Data Type

Normalized
Minimum

Maximum Exponent
Bias

 Precision

Single 2–126≈10–38 (2–2–23)2127≈3(1038) 127 2–23≈10–7

Double 2–1022≈2(10–308) (2–2–52)21023≈1.7(10308) 1023 2–52≈10–16

Custom 21–bias (2–2–f)2bias 2e–1–1 2–f

Floating-Point Arithmetic

5-25

numbers, the gap between the smallest representable nonzero number and
zero is much wider than the gap between the smallest representable nonzero
number and the next larger number. Gradual underflow fills that gap and
reduces the impact of exponent underflow to a level comparable with roundoff
among the normalized numbers. Thus, denormalized numbers provide
extended range for small numbers at the expense of precision.

For more information about denormalized single- and double-precision
numbers, refer to “Single-Precision Format” on page 5-21 and
“Double-Precision Format” on page 5-21.

5 Quantization and Quantized Filtering

5-26

6

Working with Objects

Objects for Quantized Filtering (p. 6-2) Describes the objects the toolbox uses for quantized
filtering

Properties and Property Values (p. 6-5) Outlines the properties of the quantized filter objects

Functions Acting on Objects (p. 6-11) Lists the functions (methods) that apply to quantized
filter objects

Using Command Line Help (p. 6-12) Describes how to get help on quantized objects,
properties, and methods

Using Cell Arrays (p. 6-14) Provides information on using cell arrays, which are
common when you use the objects in the toolbox

6 Working with Objects

6-2

Objects for Quantized Filtering
The Filter Design Toolbox uses objects to create:

• Quantizers

• Quantized filters

• Quantized FFTs

Concepts you need to know about the objects for quantized filtering in this
toolbox are covered in these sections:

• “Constructing Objects”

• “Copying Objects to Inherit Properties”

• “Properties and Property Values”

• “Setting and Retrieving Property Values”

- “Setting Property Values Directly at Construction”

- “Setting Property Values with the set Command”

- “Retrieving Properties with the get Command”

- “Direct Property Referencing to Set and Get Values”

• “Functions Acting on Objects”

• “Using Command Line Help”

• “Using Cell Arrays”

- “Indexing into a Cell Array of Vectors or Matrices”

- “Indexing into a Cell Array of Cell Arrays”

Note Although the examples in this section use quantized filters, the
techniques discussed here apply to quantizers and quantized FFTs. See
“MATLAB Classes and Objects” in your MATLAB documentation for more
details on object-oriented programming in MATLAB.

Objects for Quantized Filtering

6-3

Constructing Objects
You use one of the two methods Filter Design Toolbox offers to construct
objects:

• Use the object constructor function

• Copy an existing object

For example, when you create a quantized filter using the qfilt command, you
are creating a Qfilt object. The Qfilt object implementation relies on MATLAB
object-oriented programming capabilities.

Like other MATLAB structures, objects in this toolbox have predefined fields
called object properties.

You specify object property values by either:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all of
these property values later

For examples of setting quantized filter properties, see “Quantized Filter
Properties” on page 8-6.

Example — Constructor for Quantized Filters
The easiest way to create a quantized filter (qfilt object) is to create one with
the default properties. You can create a quantized filter Hq by typing

Hq = qfilt

MATLAB lists the properties of the filter Hq you created along with the
associated default property values.

Quantized Direct form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
+ (1) 0.999969482421875 1.000000000000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
+ (1) 0.999969482421875 1.000000000000000000

 FilterStructure = df2t
 ScaleValues = [1]
 NumberOfSections = 1

6 Working with Objects

6-4

 StatesPerSection = [0]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
Warning: 2 overflows in coefficients.

The properties of this filter are described in Table 12-3, Quick Guide to
Quantized Filter Properties, on page 12-10, and in more detail in “Quantized
Filter Properties Reference” on page 12-11. All of these properties are set to
default values when you construct them.

For information on quantizer properties, see “A Quick Guide to Quantizer
Properties” on page 12-2 or “Quantizer Properties Reference” on page 12-3 for
more details.

For information on quantized FFT properties, see “A Quick Guide to Quantized
FFT Properties” on page 12-51, or “Quantized FFT Properties Reference” on
page 12-52 for more details.

Copying Objects to Inherit Properties
If you already have an object with the property values set the way you want
them, you can create a new one with the same property values by copying the
first object.

This feature is convenient to use when you want to change a small number of
properties on a set of objects.

Example — Copying Quantized Filters to Inherit Properties
To create a new quantized filter Hq2 with the same property values as an
existing quantized filter Hq, type

Hq2 = copyobj(Hq);

Properties and Property Values

6-5

Properties and Property Values
All objects in this toolbox have properties associated with them. Each property
associated with an object is assigned a value. You can set the values of most
properties. However, some properties have read-only values.

To learn about properties that are specific to quantized filters, see “Quantized
Filter Properties” on page 8-6.

To learn about properties that are specific to quantizers, see “Quantizer
Properties Reference” on page 12-3.

To learn about properties that are specific to quantized FFTs, see “Quantized
FFT Properties Reference” on page 12-52.

Setting and Retrieving Property Values
You can set Filter Design Toolbox object property values:

• Directly when you create the object

• By using the set command with an existing object

You can retrieve quantized filter property values using the get command.

In addition, direct property referencing lets you either set or retrieve property
values.

Setting Property Values Directly at Construction
To set property values directly when you construct an object, simply include the
following in the argument list for the object construction command:

• A string for the property name you want to set followed by a comma

• The associated property value. Sometimes this value is also a string

Include as many property names in the argument list for the object
construction command as there are properties you want to set directly.

Example — Setting Quantized Filter Property Values at Construction
Suppose you want to set the following filter characteristics when you create a
fixed-point quantized filter:

• The filter structure has a direct form II transposed structure

6 Working with Objects

6-6

• The reference filter transfer function has numerator [1 .5] and denominator
[1 .7 .89]

Do this by typing

Hq = qfilt('FilterStructure','df2t','ReferenceCoefficients',...
{[1 .5] [1 .7 .89]});

These properties are described in “Quantized Filter Properties Reference” on
page 12-11.

Note When you set any object property values, the strings for property
names and their values are case-insensitive. In addition, you only need to type
the shortest uniquely identifying string in each case. For example, you could
have typed the above code as

Hq = qfilt('filt','df2t','ref',{[1 .5] [1 .7 .89]});

Setting Property Values with the set Command
Once you construct an object, you can modify its property values using the set
command.

You can use the set command to both:

• Set specific property values

• Display a listing of all property values you can set

Example — Setting Fixed-Point Quantized Filter Property Values Using set
For example, set the following specifications for the fixed-point filter Hq you
just created:

• Set the input quantization format to [24 23]

• Set the filter structure to a direct form I structure

To do this, type

set(Hq,'inputformat',[24 23],'filterstructure','df1')
Hq.input.format

Properties and Property Values

6-7

ans =
 24 23

Hq.filt

ans =
df1

Notice how the display reflects the changes in the property values.

To display a listing of all of the properties associated with a quantized filter Hq
that you can set, type

set(Hq)

QuantizedCoefficients: Quantized from reference coefficients.
ReferenceCoefficients: Cell array of coefficients. One cell per
section.
 {num,den} | {{num1,den1},{num2,den2},...} |
 {num} | {{num1},{num2},...} |
 {k} | {{k1},{k2},...} |
 {k,v} | {{k1,v1},{k2,v2},...} |
 {k1,k2,beta} |
{{k11,k21,beta1},{k12,k22,beta2},...} |
 {A,B,C,D} | {{A1,B1,C1,D1},{A2,B2,C2,D2},...}
 FilterStructure: [df1 | df1t | df2 | <df2t> | fir | firt |
 symmetricfir | antisymmetricfir |
 latticear | latcallpass |
 latticema | latcmax | latticearma |
 latticeca | latticecapc | statespace]
 ScaleValues: Vector of scale values between sections.
 CoefficientFormat: quantizer
 InputFormat: quantizer
 OutputFormat: quantizer
 MultiplicandFormat: quantizer
 ProductFormat: quantizer
 SumFormat: quantizer

6 Working with Objects

6-8

Retrieving Properties with the get Command
You can use the get command to:

• Retrieve property values for an object

• Display a listing of all the properties associated with an object and the
associated property values

Example — Retrieving Quantized Filter Property Values
For example, to retrieve the value of the quantization data format for the input,
type

v = get(Hq,'FilterStructure')

v =
df1

Note When you retrieve properties, the strings for property names and their
values are case-insensitive. In addition, you only need to type the shortest
uniquely identifying string in each case. For example, you could have typed
the above code as

v = get(Hq,'filt');

Note To display a listing of the properties of a quantized filter Hq, and their
values, type

get(Hq)

Quantized Direct Form I (df1) filter.
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
 (1) 1.000000000000000 1.000000000000000000
 (2) 0.500000000000000 0.500000000000000000

Properties and Property Values

6-9

Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
 (1) 1.000000000000000 1.000000000000000000
 (2) 0.699981689453125 0.699999999999999960
 (3) 0.889984130859375 0.890000000000000010

 FilterStructure = df1
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [3]
 CoefficientFormat = unitquantizer('fixed', 'floor', 'saturate',
[16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [24
23])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32
30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32
30])

Direct Property Referencing to Set and Get Values
You can reference directly into a property for setting or retrieving property
values using MATLAB structure-like referencing. You do this by using a period
to index into a property by name.

Example — Direct Property Referencing in Quantized Filters
For example:

1 Create a filter with default values.

2 Change its reference filter coefficients.

Hq = qfilt;
Hq.ref = {[1 .5],[1 .7 .89]};

6 Working with Objects

6-10

Notice that you do not have to type the full name of the
ReferenceCoefficients property, and you can use lower case to refer to the
property.

To retrieve any property values, you can also use direct property referencing.

v = Hq.ref

v =
 [1x2 double] [1x3 double]

Notice that v is a cell array, and you need to index into it to retrieve its values.
See “Using Cell Arrays” on page 6-14 for help about indexing into cell arrays.

Functions Acting on Objects

6-11

Functions Acting on Objects
Several functions in this toolbox have the same name as functions in the Signal
Processing Toolbox or in MATLAB. These Filter Design Toolbox functions
behave similarly to their original counterparts, but you apply these functions
directly to an object. This concept of having functions with the same name
operate on different types of objects (or on data) is called overloading of
functions.

For example, the filter command is overloaded for quantized filters (qfilt
objects). Once you specify your quantized filter by assigning values to its
properties, you can apply many of the functions in this toolbox (such as freqz
for frequency response analysis) directly to the variable name you assign to
your quantized filter, without having to specify filter parameters again.

For a complete list of the functions that act on quantizers, see “Functions
Operating on Quantizers” on page 13-12.

For a complete list of the functions that act on quantized filters, see “Functions
Operating on Quantized FFTs” on page 13-14.

For a complete list of the functions that act on quantized FFTs, see “Functions
Operating on Quantized FFTs” on page 13-14.

6 Working with Objects

6-12

Using Command Line Help
How you get command line help on a function depends on whether the function
is overloaded.

Command Line Help For Nonoverloaded Functions
You can use the usual syntax for getting command line help on functions that
are not overloaded.

Type

help FuncName

to get command line help on functions in this toolbox that are not overloaded.

Command Line Help For Overloaded Functions
Because many of the toolbox functions are overloaded, you need to refer to the
object name when you are trying to get command line help for overloaded
functions.

Command Line Help for Overloaded Functions on Quantized Filters
To get command line help for an overloaded function MethodName that operates
on quantized filters (Qfilt objects), type

help qfilt/MethodName

Similarly, for command line help on overloaded methods for quantizers or
quantized FFTs, type

help quantizer/MethodName
help qfft/MethodName

For example, to get help on the zplane function in this toolbox, type

help qfilt/zplane

You can find a list of the overloaded functions for quantized filters in
“Functions Operating on Quantized FFTs” on page 13-14.

You can find a list of the overloaded functions for quantizers, in “Functions
Operating on Quantizers” on page 13-12.

Using Command Line Help

6-13

You can find a list of the overloaded functions for quantized FFTs, in
“Functions Operating on Quantized FFTs” on page 13-14.

Note Many of the toolbox functions are overloaded. MATLAB does not
necessarily display the appropriate help text for a given object command
MethodName when you type

help MethodName

To get the appropriate help for an overloaded function, you may need to
specify the type of object to which you are applying the function. For example,

help qfilt/MethodName
help qfft/MethodName

6 Working with Objects

6-14

Using Cell Arrays
The syntax for constructing quantized filters requires you to enter the
reference filter coefficients as cell arrays.

Cell arrays can store any type of data: strings, vectors, matrices, cell arrays,
and so forth. You specify a cell array using curly braces ({}). You need to use
these braces to index into a cell array to retrieve its contents.

When you index into a cell array you use one set of braces to index into each
layer of a cell array.

For details on constructing and using quantized filters in this toolbox, see
Chapter 8, “Working with Quantized Filters.” For detailed information on cell
arrays, see Using MATLAB.

The next sections provide guidance and examples of how to index into a cell
array:

• “Indexing into a Cell Array of Vectors or Matrices” on page 6-14

• “Indexing into a Cell Array of Cell Arrays” on page 6-15

Indexing into a Cell Array of Vectors or Matrices
To index into a cell array of matrices (as opposed to a cell array of cell arrays),
you only need one set of braces to index into the cell array.

Here’s an example of accessing cell array information from a quantized filter
with a single section. In this case, the filter coefficient information is stored as
a cell array of vectors.

Example — Accessing Coefficient Information from Filters with One
Section
You can specify a sample quantized filter by typing

Hq = qfilt('ref',{[1 .5],[1 .7 .89]});
Hq.ReferenceCoefficients

ans =
 [1x2 double] [1x3 double]

Notice that the filter reference coefficients are stored in a two-by-one cell array
of vectors, the way you specified them.

Using Cell Arrays

6-15

Suppose that you want to retrieve the values stored in this property.

Use curly braces to index into and access the first entry of the cell array
Hq.ReferenceCoefficients. You can use the shorthand for property names
when you index into the properties of Hq.

Hq.ref{1}

ans =
 1.0000 0.5000

Similarly,

Hq.ref{2}

ans =
 1.0000 0.7000 0.8900

To access the third entry in Hq.ref{2}, index into Hq.ref{2} in the standard
way.

Hq.ref{2}(3)

ans =
 0.8900

Indexing into a Cell Array of Cell Arrays
To index into a cell array of cell arrays, you have to use as many sets of braces
as you have layers of cells.

Here’s an example of indexing into the cell arrays of multisection quantized
filters.

Example — Accessing Coefficient Information from Multisection Filters
When you create quantized filters with multiple sections, specify the reference
filter coefficients as a cell array of cell arrays, using one cell array to enter the
numerator and denominator of each section. In this case, use sequences of curly
braces to index into these cell arrays.

For example, suppose you want to quantize and design a sixth-order
Butterworth filter you create using the Signal Processing Toolbox.

[b,a] = butter(6,.5);

6 Working with Objects

6-16

Filters whose transfer functions are factored into second-order sections are
much more robust against quantization error, so use sos to put your direct
form II filter into a second-order sections form.

Hq = sos(qfilt('df2',{b,a}));
Hq.ReferenceCoefficients

ans =
 {1x2 cell} {1x2 cell} {1x2 cell}

The reference coefficients are contained in a three-by-one cell array of cells
Hq.ReferenceCoefficients. This cell array is created from the values you set
for the ReferenceCoefficients property. You can index into one of the three
cell arrays of cells by:

1 Creating a cell array c from the cell array Hq.ReferenceCoefficients

2 Indexing into it

c = Hq.ref;
c{2}{1:2}

ans =
 0.2500 0.5012 0.2511
ans =
 1.0000 0.0000 0.1716

Notice that you can use the colon operator to obtain the contents of both entries
in the cell array contained in the cell array c{2}.

Note You do not have to create another cell array to index into the reference
coefficients data for one section of the filter. You do have to create another cell
array if you want to index into multiple entries of the cell array, as in this
example.

7

Working with Quantizers

Quantizers and Unit Quantizers
(p. 7-2)

Describes the two kinds of quantizers in the toolbox

Constructing Quantizers (p. 7-3) Explains how to create quantizer objects

Quantizer Properties (p. 7-4) Outlines the properties of the quantizer objects

Quantizing Data with Quantizers
(p. 7-6)

Talks about using quantizers to quantize data—how and
what quantizing data does

Transformations for Quantized Data
(p. 7-8)

Offers a brief explanation of transforming quantized data
between representations, such as hex

Quantizer Data Functions (p. 7-9) Introduces the functions in the toolbox that work on
quantized data

7 Working with Quantizers

7-2

Quantizers and Unit Quantizers
There are two types of quantizers you can construct in this toolbox:

• Quantizers

• Unit quantizers

These two types of quantizers are the same, except that unit quantizers
quantize any number within the quantization level (eps(q)) of 1 to 1, where q
is a quantizer.

You can construct quantizers to specify quantization parameters you want to
use when you quantize data sets. You can also use quantizers for:

• Specifying data formats for quantized filters or FFTs

• Obtaining information about the data sets you quantize

This chapter covers quantizer-specific information:

• Constructing quantizers

• Quantizer properties

• Quantizing data with quantizers

- Accessing data-related quantization information using a quantizer

• Displaying quantized data in binary or hexadecimal format

• Accessing quantizer data

The quantizers you create in this toolbox are objects with properties. Most of
the basic information you need to know about setting and retrieving property
values is found in Chapter 6, “Working with Objects.” See “Quantizer
Properties Reference” on page 12-3 for information on quantizer properties.

Constructing Quantizers

7-3

Constructing Quantizers
You can construct quantizers by either:

• Using either quantizer constructor function:

- quantizer

- unitquantizer

• Copying a quantizer from an existing one using the copyobj function

Note You can also use the constructor unitquantizer to transform an
existing quantizer into a unit quantizer.

All quantizer parameters are stored as properties that you can set or retrieve.
Some of these quantizer parameters include:

• Quantization format

• Data type (signed or unsigned fixed-point, or double-, single-, or
custom-precision floating-point)

• Rounding method used in quantization

• Overflow method used in quantization

Constructor for Quantizers
The easiest way to create a quantizer is to create one with the default
properties. You can create a quantizer q by typing

q = quantizer

A listing of all of the properties of the quantizer q you just created is displayed
along with the associated property values. All property values are set to
defaults when you construct a quantizer this way. See “Example —
Constructor for Quantized Filters” on page 6-3 for more details.

To construct a unit quantizer q with all of the default quantizer properties, type

q = unitquantizer

7 Working with Quantizers

7-4

Quantizer Properties
Since a quantizer is an object, it has properties associated with it. You can set
the values of some quantizer properties. However, some properties have
read-only values. This sections covers both settable and read-only properties:

• “Settable Quantizer Properties” on page 7-4

• “Read-Only Quantizer Properties” on page 7-5

Properties and Property Values
Each property associated with a quantizer is assigned a value. When you
construct a quantizer, you can assign some of the property values.

Most of the basic information you need to know about setting and retrieving
property values is found in Chapter 6, “Working with Objects.”

A complete list of properties of quantized filters is provided in Table 12-3,
Quick Guide to Quantized Filter Properties, on page 12-10. Properties are
described in more detail in “Quantized Filter Properties Reference” on
page 12-11.

Settable Quantizer Properties
You can set the following four quantizer properties:

• Mode property — specifying the data type:

- Fixed-point (signed or unsigned)

- Custom floating-point

- Double-precision floating-point

- Single-precision floating-point

• Format property — specifying quantization format parameters

• OverflowMode property — specifying how overflows are handled in
arithmetic operations

• RoundMode property — specifying the rounding method used in quantization

See “Quantizer Properties Reference” on page 12-3 for full details on all
properties.

For example, create a fixed-point quantizer with:

Quantizer Properties

7-5

• The Format property value set to [16,14]

• The OverflowMode property value set to 'saturate'

• The RoundMode property value set to 'ceil'

You can do this with the following command.

q = quantizer('mode','fixed','format',[16,14],'overflowmode',...
'saturate','roundmode','ceil')

Setting Quantizer Properties Without Naming Them
You don’t have to include quantizer property names when you set quantizer
property values.

For example, you can create quantizer q from the previous example by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note You do not have to include default property values when you construct
a quantizer. In this example, you could leave out 'fixed' and 'saturate'.

Read-Only Quantizer Properties
Quantizers have five read-only properties:

• Max

• Min

• NOperations

• NOverflows

• NUnderflows

These properties log quantization information each time you use quantize to
quantize data with a quantizer. The associated property values change each
time you use quantize with a given quantizer. You can reset these values to
the default value using reset.

For an example, see “Example — Data-Related Quantizer Information” on
page 7-6.

7 Working with Quantizers

7-6

Quantizing Data with Quantizers
You construct a quantizer to specify the quantization parameters to use when
you quantize data sets. You can use the quantize function to quantize data
according to a quantizer’s specifications.

Once you quantize data with a quantizer, its data-related, read-only property
values may change.

The following example shows:

• How you use quantize to quantize data

• How quantization affects the read-only properties

• How you reset the read-only properties to their default values using reset

Example — Data-Related Quantizer Information

1 Construct an example data set and a quantizer.

randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the Max and Noverflows properties.

q.max

ans =
reset

q.noverflows

ans =
 0

3 Quantize the data set according to the quantizer’s specifications.

y = quantize(q,x);

4 Check the quantizer property values.

q.max

Quantizing Data with Quantizers

7-7

ans =
2.3726

q.noverflows

ans =
 15

5 Reset the read-only properties and check them.

reset(q)
q.max

ans =
reset

q.noverflows

ans =
 0

7 Working with Quantizers

7-8

Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according
to a quantizer’s specifications.

Use:

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
 x = [0.75 -0.25
 0.50 -0.50
 0.25 -0.75
 0 -1];
 b = num2bin(q,x)

b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of three-bit
fixed-point numbers.

Quantizer Data Functions

7-9

Quantizer Data Functions
Filter Design Toolbox provides a number of data functions to retrieve
information about a quantizer. These functions include:

• denormalmax — the largest denormalized quantized number

• denormalmin — the smallest denormalized quantized number

• eps — the quantization level

• exponentbias — the exponent bias of a quantizer

• exponentlength — the exponent length of a floating-point quantizer

• exponentmax — the maximum exponent allowable for a floating-point
quantizer

• fractionlength — the fraction length of a fixed-point quantizer

• range — the numerical range of a quantizer

• realmax — the largest positive number a quantizer can produce

• realmin — the smallest positive normal number a quantizer can produce

• wordlength — the word length of a quantizer

For example, to find the largest positive quantized number the default
quantizer can create, type

format long
q = quantizer;
r = realmax(q)

r =
 0.99996948242188

7 Working with Quantizers

7-10

8
Working with Quantized
Filters

Constructing Quantized Filters (p. 8-3) Describes how you construct quantized filters in the
toolbox

Quantized Filter Properties (p. 8-6) Lists and explains the properties associated with
quantized filter objects, called quantized filters

Filtering Data with Quantized Filters
(p. 8-14)

Uses examples to show you how to use quantized filters to
filter data

Transformation Functions for
Quantized Filter Coefficients (p. 8-15)

Introduces the hex and binary functions for changing the
way you display quantized filters

8 Working with Quantized Filters

8-2

This chapter covers what you need to know to construct and use quantized
filters:

• Constructing quantized filters

• Quantized filter properties

• Filtering data with quantized filters

• Transformation Functions for Quantized Filter Coefficients

The quantized filters you create in this toolbox are objects with properties.
Most of the basic information you need to know about setting and retrieving
property values is found in Chapter 6, “Working with Objects.”

Constructing Quantized Filters

8-3

Constructing Quantized Filters
You can construct quantized filters in the Filter Design Toolbox by either:

• Using the quantized filter constructor function qfilt

• Copying an existing one

All filter characteristics are stored as properties that you can set or retrieve.
Some of these quantized filter characteristics include:

• Filter structure.

• Reference filter coefficients.

• Filter topology (single section or cascaded nth-order sections). The syntax
you use to enter the reference filter coefficients determines the topology.

• Quantized filter data format parameters:

- Quantization parameters (precisions).

- Data type (signed or unsigned fixed-point, or, double-, single-, or
custom-precision floating-point).

- Rounding method used in quantization.

- Overflow method used in quantization.

• Scaling factors for each section of a cascade of nth-order sections.

You can specify quantized filter properties by either:

• Specifying all of the filter properties when you create it

• Creating a quantized filter with default property values, and changing some
or all of these property values later

Constructor for Quantized Filters
The most direct way to create a quantized filter (Qfilt object) is to create one
with the default properties. You create a default quantized filter Hq by typing

Hq = qfilt

A listing of all of the properties of the filter Hq you just created is displayed
along with the associated property values. All property values are set to
defaults when you construct a quantized filter this way.

8 Working with Quantized Filters

8-4

To construct a quantized filter with properties other than the default values,
follow the procedure outlined in “Setting Property Values Directly at
Construction” on page 6-5.

For some examples of using the quantized filter constructor to construct a filter
while specifying some properties at construction, see:

• “Constructing an Eight-Bit Quantized Filter” on page 5-8

• “Example — Accessing Coefficient Information from Filters with One
Section” on page 6-14

• “Example — Accessing Coefficient Information from Multisection Filters” on
page 6-15

Constructing a Quantized Filter from a Reference
In general you construct quantized filters from reference filters. You begin with
a set of unquantized (or quantized) reference filter coefficients to implement in
a quantized filter.

Suppose you design a quantized filter from a fourth-order elliptic filter. You can
use the Signal Processing Toolbox filter design functions to help you. First,
design a filter with parameters in transfer function form.

[b,a] = ellip(4,3,20,.6);

Filters designed with a second-order section topology are more robust against
quantization errors than those composed of higher order transfer functions.

Converting a Filter to Second-Order Sections Form
You can construct a quantized filter in second-order sections form as follows:

1 Create a quantized filter using the elliptic filter’s transfer function
parameters as reference coefficients.

Hq = qfilt('df2t',{b,a});

This filter is not in second-order sections form and has coefficient overflow.

2 Use sos to convert the filter to second-order sections form.

Hq = sos(Hq);

Constructing Quantized Filters

8-5

Copying Filters to Inherit Properties
If you already have a quantized filter Hq with the property values set the way
you want them, you can create a new quantized filter Hq2 with the same
property values as Hq by typing

Hq2 = copyobj(Hq)

This function is convenient to use when you are changing a small number of
properties on a set of filters.

For example, create a 16-bit precision filter Hq from an FIR reference filter with

b = fir1(80,0.5,kaiser(81,8)); % Reference filter
Hq = qfilt('fir',{b})

Except for the filter coefficients provided by {b}, Hq inherits the default property
values for a quantized filter.

Changing Filter Property Values After Construction
Now suppose you want to analyze the response of this same reference filter b
when you:

• Change all of the data format property values using setbits

• Change the ScaleValues property value to [0.5 0.5]

You can do this by first copying Hq, and then changing only those properties you
want to change.

Hq2 = copyobj(Hq);
setbits(Hq2,[16,14])
Hq2.ScaleValues = [0.5 0.5];
Hq2.scale

ans =
 0.5000 0.5000

For more information on setting filter properties, see “Setting Property Values
with the set Command” on page 6-6 and “Direct Property Referencing to Set
and Get Values” on page 6-9.

8 Working with Quantized Filters

8-6

Quantized Filter Properties
Since a quantized filter is a Qfilt object, it has properties associated with it.
These properties prescribe the most basic filter qualities, such as the data
format for each data path or the rounding methods used for quantization and
filtering. You can set the values of most properties. However, some properties
have read-only values.

Properties and Property Values
Each property associated with a quantized filter is assigned a value. When you
construct a quantized filter, you assign some of the quantized filter property
values to design a quantized filter to your own specifications. You can set or
retrieve quantized filter properties according to the information in “Setting and
Retrieving Property Values” on page 6-5.

A complete list of properties of quantized filters is provided in Table 12-3,
Quick Guide to Quantized Filter Properties, on page 12-10. Properties are
described in more detail in “Quantized Filter Properties Reference” on
page 12-11.

Basic Filter Properties
Basic filter properties include:

• The ReferenceCoefficients property — specifying the filter reference
coefficients

• The FilterStructure property — specifying the quantized filter structure

• The data format properties for setting quantization parameters for data and
arithmetic operations:

- CoefficientFormat — specifying how the reference filter coefficients are
quantized

- InputFormat — specifying how the inputs are quantized

- MultiplicandFormat — specifying how data is quantized before it is
multiplied by a coefficient

- OutputFormat — specifying how the outputs are quantized

- ProductFormat — specifying how the results of multiplication are
quantized

Quantized Filter Properties

8-7

- SumFormat — specifying how the results of addition are quantized

See “Quantized Filter Properties Reference” on page 12-11 for full details on all
properties.

Specifying the Filter Reference Coefficients
The ReferenceCoefficients property value contains the filter parameters for
the reference filter that specifies your quantized filter. “Constructing a
Quantized Filter from a Reference” on page 8-4 uses the
ReferenceCoefficients property in an example of quantized filter
construction.

The syntax you use for assigning reference filter coefficients depends on the
filter structure and topology to assign. See “Assigning Reference Filter
Coefficients” on page 12-40 for more information on the syntax for each filter
structure and topology.

For example, to assign a direct form II transposed filter structure with one
second-order section for the transfer function

type

Hq = qfilt('FilterStructure','df2t','ReferenceCoefficients',...
{[1 .5] [1 .7 .89]});

In this example, you use the constructor qfilt to specify the quantized filter.
You set the FilterStructure and the ReferenceCoefficients property values
at the same time that you specify the filter. All other filter properties retain
their default values.

Notice that you enter the numerator and denominator polynomial coefficients
in one cell array for this filter with one second-order section. In general you use
a separate cell array to specify the reference filter coefficients for each cascaded
section in a quantized filter.

H z() 1 0.5z 1–
+

1 0.7z 1– 0.89z 2–
+ +

---=

8 Working with Quantized Filters

8-8

Specifying the Quantized Filter Structure
In Filter Design Toolbox, you can create quantized filters with 16 different
filter structures:

• Direct form I

• Direct form I transposed

• Direct form II

• Direct form II transposed

• Direct form Finite Impulse Response (FIR)

• Direct form FIR transposed

• Direct form antisymmetric FIR (odd and even orders)

• Direct form symmetric FIR filters (odd and even orders)

• Lattice allpass

• Lattice coupled-allpass filters

• Lattice coupled allpass power-complementary filters

• Lattice Moving Average (MA) minimum phase filters

• Lattice MA maximum phase filters

• Lattice Autoregressive (AR) filters

• Lattice ARMA filters

• Single-input single-output state-space filters

Filter structures are described in detail in the description for the property
FilterStructure on page 12-12.

You can create filters with two possible filter topologies:

• A single section

• Cascaded nth-order sections

Topology. You set the topology when you specify the reference filter coefficients
for your quantized filter. See “Assigning Reference Filter Coefficients” on
page 12-40 for more information. After you create your quantized filter with
the topology you choose, use Filter Design and Analysis Tool (FDATool) in
quantization mode to change the filter topology. For more information about
FDATool, refer to Chapter 11, “Using FDATool with the Filter Design Toolbox.”

Quantized Filter Properties

8-9

For example, you can construct a quantized filter with a lattice AR structure
by:

1 Specifying a vector of AR reflection coefficients

k = [.66 .7 .44];

2 Constructing a quantized filter with a lattice AR filter structure

Hq = qfilt('latticear',{k});

Notice that:

• You don’t have to type the 'FilterStructure' property name at
construction

• You specify the reflection reference filter coefficients in a cell array

Specifying the Data Formats
Quantized filters have six data format properties you can set:

• CoefficientFormat

• InputFormat

• MultiplicandFormat

• OutputFormat

• ProductFormat

• SumFormat

Specify the data format property values for quantized filters using quantizers.
For each data format, you can specify:

• Data type

• Quantization format parameters

• Method for handling quantization overflows

• Method for rounding

For example, the quantization format of the CoefficientFormat property for
Hq has the default value of [16,15] (as do all data format properties for this
filter). To change the quantization format for the CoefficientFormat property
value to [16,14], type

8 Working with Quantized Filters

8-10

Hq.CoefficientFormat.Format = [16,14];
Hq.CoefficientFormat.Format
ans =
 16 14

Here you are changing the Format property of the quantizer for the
CoefficientFormat property. This syntax leaves all other property values for
the quantizer for the CoefficientFormat property unchanged.

Specifying All Data Format Properties at Once
To implement the quantized lattice filter Hq you just specified using
floating-point calculations, you need to set the Mode property value for each
data format property quantizer for Hq to 'float'. You can do this using the
quantizer syntax for accessing the data format properties. See qfilt for more
information on this syntax.

Hq.quantizer = {'float', [24,8]}

Hq =

Quantized Autoregressive Lattice (latticear) filter.
Lattice
 QuantizedCoefficients{1} ReferenceCoefficients{1}
 (1) 0.659988403320313 0.660000000000000030
 (2) 0.699996948242188 0.699999999999999960
 (3) 0.439994812011719 0.440000000000000000

 FilterStructure = latticear
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [3]
 CoefficientFormat = quantizer('float', 'round', [24 8])
 InputFormat = quantizer('float', 'floor', [24 8])
 OutputFormat = quantizer('float', 'floor', [24 8])
MultiplicandFormat = quantizer('float', 'floor', [24 8])
 ProductFormat = quantizer('float', 'floor', [24 8])
 SumFormat = quantizer('float', 'floor', [24 8])

Quantized Filter Properties

8-11

Note The quantizer syntax lets you use one line of code to change the Mode
and Format property values for all data format quantizers. You can also do
this with the following six commands.

Hq.CoefficientFormat = quantizer('float',[24,8])
Hq.InputFormat = quantizer('float',[24,8])
Hq.MultiplicandFormat = quantizer('float',[24,8])
Hq.OutputFormat = quantizer('float',[24,8])
Hq.ProductFormat = quantizer('float',[24,8])
Hq.SumFormat = quantizer('float',[24,8])

Specifying the Format Parameters with setbits
Suppose you want to change all of the arithmetic and quantization data format
parameters for the custom floating-point filter Hq in the previous example to
[24 8]. You can do this in three ways:

• Using the setbits command

• Using the quantizer syntax

• Setting each data format property separately

To do this using the setbits command, type

setbits(Hq,[24,8])

To do this using the quantizer syntax, type

Hq.quantizer = [24,8];

These two commands are equivalent for floating-point filters.

Note The setbits command behaves slightly differently for fixed-point
filters. It doubles the quantization data formats for products and sums.

8 Working with Quantized Filters

8-12

Using normalize to Scale Coefficients
Even though you can specify how overflows are treated, they are not corrected
for automatically. You can use normalize to account for coefficient
quantization overflows for all of the direct form and FIR fixed-point filter
structures. This function normalizes the coefficients and modifies the filter
scaling.

For example, if you create an elliptic filter with Signal Processing Toolbox and
directly quantize it with fixed-point arithmetic, there may be some coefficient
overflows.

[b,a] = ellip(5,2,40,0.4);
Hq = qfilt('df2t',{b,a})

Warning: 5 overflows in coefficients.

A warning is displayed indicating that there are coefficient overflows in this
fixed-point filter. This type of warning is displayed whenever you create a filter
with coefficient overflow and you have MATLAB warning set on.

You can normalize the coefficients and modify the scaling using normalize.

Hq = normalize(Hq)

Hq.ScaleValues
ans =
 0.0313 1.0000

Notice that:

• The ScaleValues property value has been modified from its original (default)
value of 1.

• There is no longer any coefficient overflow in Hq.

You can apply normalize to direct form IIR and FIR filters. The
FilterStructure property value must be one of the following:

• 'antisymmetricfir'

• 'df1'

• 'df1t'

• 'df2'

Quantized Filter Properties

8-13

• 'df2t'
• 'fir'
• 'firt'
• 'symmetricfir'

8 Working with Quantized Filters

8-14

Filtering Data with Quantized Filters
You can filter data with quantized filters using the filter function.

Example: Filtering Data with a Quantized Filter
warning on
randn('state',0);
x = randn(100,2);
[b,a] = butter(3,.9,'high');
Hq = sos(qfilt('ReferenceCoefficients',{0.5* b,0.5*a},...
'CoefficientFormat',unitquantizer([26 24])));
y = filter(Hq,x);

Warning: 64 overflows in QFILT/FILTER.

 Max Min NOverflows NUnderflows NOperations
 Coefficient 1.187 -1 0 0 12
 1.648 -2 0 0 18
 Input 2.183 -2.202 64 0 200
 Output 0.4345 -0.4477 0 0 200
Multiplicand 1 -1 0 2 800
 0.4345 -0.4477 0 0 1000
 Product 0.009246 -0.008869 0 0 800
 0.7158 -0.7377 0 0 1000
 Sum 0.01274 -0.0122 0 0 600

0.4345 -0.4477 0 0 1000

Notice that a record of the overflows that occurred in filtering is displayed if
you have set warning on.

Use qreport to get this listing when needed as well.

Transformation Functions for Quantized Filter Coefficients

8-15

Transformation Functions for Quantized Filter Coefficients
You can change the display for quantized filter coefficients to:

• Binary, using num2bin

• Hexidecimal, using num2hex

For example, to display the coefficients of the filter Hq you just created as
hexidemimal numbers, type

num2hex(Hq)
Hq.QuantizedCoefficients{1} =

05D8
0655
0B99
0B99
0655
05D8

Hq.QuantizedCoefficients{2} =

7FFF
8000
7FFF
8000
7FFF
CAE8

8 Working with Quantized Filters

8-16

9
Working with Quantized
FFTs

Constructing Quantized FFTs (p. 9-3) Talks about how you construct quantized FFTs

Quantized FFT Properties (p. 9-6) Explains the properties of quantized FFT objects

Computing a Quantized FFT or Inverse
FFT of Data (p. 9-10)

Shows you how to compute both the FFT and inverse FFT
of a data set in MATLAB

9 Working with Quantized FFTs

9-2

Use quantized fast Fourier transforms (FFTs) to specify quantization
parameters for computing a quantized FFT or inverse FFT.

This chapter covers what you need to know to construct and use quantized
FFTs:

• Constructing quantized FFTs

• Quantized FFT properties

• Computing quantized FFTs and quantized inverse FFTs

The quantized FFTs you create in this toolbox are called QFFT objects. These
objects have properties. Most of the basic information you need to know about
setting and retrieving property values is found in Chapter 6, “Working with
Objects.”

Constructing Quantized FFTs

9-3

Constructing Quantized FFTs
You can construct quantized FFTs in the Filter Design Toolbox by either:

• Using the quantized FFT constructor function qfft

• Copying a quantized FFT from an existing one

All quantized FFT characteristics are stored as properties that you can set or
retrieve. Some of these quantized FFT characteristics include:

• The FFT length.

• The radix number. Either 2 or 4.

• The number of sections in the FFT. Computed from the length and radix of
the FFT.

• Quantized FFT data format parameters:

- Quantization parameters (precisions).

- Data type (signed or unsigned fixed-point; or double-, single-, or
custom-precision floating-point).

- Rounding method used in quantization.

- Overflow method used in quantization.

• Scaling factors for each stage of the FFT.

You can specify quantized FFT properties by either:

• Specifying them when you create a quantized FFT

• Creating a quantized FFT with default property values, and changing some
or all of these property values later

Constructor for Quantized FFTs
The easiest way to create a quantized FFT (QFFT object) is to create one with
the default properties. You create a default quantized FFT F by typing

F = qfft

A listing of the properties of the FFT F you just created is displayed along with
the associated property values. All property values are set to defaults when you
create a quantized FFT this way.

9 Working with Quantized FFTs

9-4

To construct a quantized FFT with properties other than the default values,
follow the procedure outlined in “Setting Property Values Directly at
Construction” on page 6-5.

Copying Quantized FFTs to Inherit Properties
If you have a quantized FFT F with the property values set the way you want
them, you can create a new quantized FFT F2 with the same property values
as F by typing

F2 = copyobj(F)

For example, create a length 32, radix 2, FFT F by typing

F = qfft('length',32, 'radix', 2)

F =
 Radix = 2

 Length = 32
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16
15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32
30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32
30])
 NumberOfSections = 5
 ScaleValues = [1]

Except for the length and the number of sections, F inherits all of the default
property values for a quantized filter.

Changing Some FFT Property Values After Construction
You can create another quantized FFT F2, which has the same properties as F,
but scales each stage of the FFT differently. To do this:

Constructing Quantized FFTs

9-5

1 Copy F.

2 Change the ScaleValues property value.

For example, you can do this by typing

F2 = copyobj(F);
F2.ScaleValues = [1 0.5 0.25 0.5 1];

For more information on setting FFT properties, see “Setting Property Values
with the set Command” on page 6-6 and “Direct Property Referencing to Set
and Get Values” on page 6-9.

9 Working with Quantized FFTs

9-6

Quantized FFT Properties
Since a quantized FFT is a QFFT object, it has properties associated with it.
These properties prescribe the FFT characteristics, such as the FFT length and
the radix number. You can set the values of most properties. However, some
properties have read-only values.

Properties and Property Values
Each property associated with a quantized FFT is assigned a value. When you
construct a quantized FFT, you can assign some of the quantized FFT property
values. You can set or retrieve quantized FFT properties according to the
information in “Setting and Retrieving Property Values” on page 6-5.

A complete list of properties of quantized FFTs is provided in Table 12-6, Quick
Guide to Quantized FFT Properties, on page 12-51. Properties are described in
more detail in “Quantized FFT Properties Reference” on page 12-52.

Basic Quantized FFT Properties
Basic quantized FFT properties include:

• The Radix property — specifying the FFT’s radix number (2 or 4)

• The Length property — specifying the quantized FFT length (a power of the
radix number)

• The data format properties for setting quantization parameters for data and
arithmetic operations:

- CoefficientFormat — specifying how the FFT coefficients (twiddle
factors) are quantized

- InputFormat — specifying how the inputs are quantized

- MultiplicandFormat — specifying how data is quantized before it is
multiplied by a coefficient

- OutputFormat — specifying how the outputs are quantized

- ProductFormat — specifying how the results of multiplication are
quantized

- SumFormat — specifying how the results of addition are quantized

See “Quantized FFT Properties Reference” on page 12-52 for full details on all
properties.

Quantized FFT Properties

9-7

Specifying the Data Formats
Quantized FFTs have six data format properties you can set:

• CoefficientFormat

• InputFormat

• MultiplicandFormat

• OutputFormat

• ProductFormat

• SumFormat

Specify the data format property values for quantized FFTs using quantizers.
For each data format, you can specify:

• Data type

• Quantization format parameters

• Method for handling quantization overflows

• Method for rounding

For example:

1 Create a default quantized FFT F.

2 Change the quantization format parameters for the CoefficientFormat
property value to [16,14].

% Create a default quantized FFT.
F = qfft;
% Display the format of the coefficient quantization.
F.CoefficientFormat.Format

ans =
 16 15
% Change the coefficient quantization to [16,14].
F.CoefficientFormat.Format = [16,14];
F.CoefficientFormat.Format

ans =
 16 14

9 Working with Quantized FFTs

9-8

Here you are changing the Format property of the quantizer for the quantized
FFT’s CoefficientFormat property. This syntax leaves all other property
values for the quantizer for the CoefficientFormat property unchanged.

Specifying All Data Format Properties at Once
To implement the quantized FFT F you just specified using floating-point
calculations, set the Mode property value for each data format property
quantizer for F to 'float'. You do this using the quantizer syntax for
accessing the data format properties. See qfft for more information on this
syntax.

F.quantizer = {'float', [24,8]}

F =
 Radix = 2
 Length = 16
CoefficientFormat = quantizer('float', 'floor', [24 8])
 InputFormat = quantizer('float', 'floor', [24 8])
 OutputFormat = quantizer('float', 'floor', [24 8])
MultiplicandFormat = quantizer('float', 'floor', [24 8])
 ProductFormat = quantizer('float', 'floor', [24 8])
 SumFormat = quantizer('float', 'floor', [24 8])
 NumberOfSections = 4
 ScaleValues = [1]

Specifying the Format Parameters with setbits
Suppose you want to change all of the arithmetic and quantization data format
parameters for the custom floating-point FFT F in the previous example to
[24 4]. You can do this in three ways:

• Using the setbits command

• Using the quantizer syntax

• Setting each data format property separately

To do this using the setbits command, type

setbits(F,[24,4])

To do this using the quantizer syntax, type

Quantized FFT Properties

9-9

F.quantizer = [24,4];

These two commands are equivalent for floating-point FFTs.

Note The setbits command behaves slightly differently for fixed-point FFTs
in that it doubles the quantization data formats for products and sums.

9 Working with Quantized FFTs

9-10

Computing a Quantized FFT or Inverse FFT of Data
To compute a quantized FFT or inverse FFT of a data set:

1 Create a quantized FFT F.

2 Obtain or create the data set.

3 Apply fft to F for a quantized FFT or ifft to F for a quantized inverse FFT.

For example, type

warning on
randn('state',0)
F = qfft; % Create a quantized FFT.
x = randn(100,3); % Create a sample data set x.
y = fft(F,x); % Compute a quantized FFT of x.

Warning: 542 overflows in quantized fft.

 Max Min NOverflows NUnderflows NOperations

 Coefficient 1 -1 5 4 62

 Input 2.309 -2.365 97 0 300

 Output 2 -2 71 0 192

Multiplicand 2 -2 350 0 3840

 Product 1 -1 0 0 960

 Sum 2.414 -2.414 24 0 2400

Notice that a record of the overflows that occurred in filtering is displayed if
you have warnings turned on.

You can also use qreport to get this report.

10
Quantized Filtering
Analysis Examples

Example — Quantized Filtering of
Noisy Speech (p. 10-3)

To help explain quantized filtering, this example
demonstrates one way to remove noise from a signal

Example — A Quantized Filter Bank
(p. 10-17)

In this example, you see how to create a filter bank to
filter data

Example — Effects of Quantized
Arithmetic (p. 10-23)

Using quantized filters on data may change the data; this
example describes some of those changes and how to
account for them

10 Quantized Filtering Analysis Examples

10-2

This chapter includes the following examples of how you use the quantized
filtering features of this toolbox:

• “Example — Quantized Filtering of Noisy Speech”

• “Example — A Quantized Filter Bank”

• “Example — Effects of Quantized Arithmetic”

Example — Quantized Filtering of Noisy Speech

10-3

Example — Quantized Filtering of Noisy Speech
This example covers the following procedure that demonstrates filtering of a
noisy signal:

1 “Loading a Speech Signal” on page 10-3

2 “Analyzing the Frequency Content of the Speech” on page 10-4

3 “Adding Noise to the Speech” on page 10-4

4 “Creating a Filter to Extract the 3000Hz Noise” on page 10-5

5 “Quantizing the Filter as a Fixed-Point Filter” on page 10-8

6 “Normalizing the Quantized Filter Coefficients” on page 10-8

7 “Analyzing the Filter Poles and Zeros Using zplane” on page 10-9

8 “Creating a Filter with Second-Order Sections” on page 10-12

9 “Quantized Filter Frequency Response Analysis” on page 10-13

10 “Filtering with Quantized Filters” on page 10-14

11 “Analyzing the filter Function Logged Results” on page 10-15

Loading a Speech Signal
To load a speech signal contained in a matrix mtlb, along with its associated
sampling frequency Fs, type

load mtlb

If you have speakers and a sound card, you can type

sound(mtlb)

and hear this speech signal.

10 Quantized Filtering Analysis Examples

10-4

Analyzing the Frequency Content of the Speech
Next look at the power spectral density of this signal using the pwelch
command.

n = length(mtlb);
nfft = 128;
pwelch(mtlb,[],[],nfft,Fs)

Adding Noise to the Speech
Now add noise to the speech signal at 3000 hertz (Hz) and 3100 Hz and look at
its power spectral density.

f1 = 3000; % Noise frequency in Hz.
f2 = 3100; % Noise frequency in Hz.
t = (0:n-1)'/Fs; % Time duration of the noise signal.

noise = sin(2*pi*f1*t) + 0.8*sin(2*pi*f2*t);
u = mtlb + noise; % Add noise to the mtlb signal.

0 500 1000 1500 2000 2500 3000 3500
−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
/H

z)

Welch PSD Estimate

Example — Quantized Filtering of Noisy Speech

10-5

If you have speakers and a sound card, type

sound(u)

Otherwise, use pwelch to look at the power spectral density for u and compare
it to that of mtlb.

pwelch(u,[],[],nfft,Fs);

Notice the difference between the two power spectral densities in the 3000 to
3100 Hz range.

Creating a Filter to Extract the 3000Hz Noise
Consider this simple notched filter design to remove the 3000Hz noise.

A Notched Filter Design
To design a notched filter in MATLAB to remove noise at a given frequency, for
each frequency you want to remove:

1 Calculate the (normalized) frequency you want to remove in rad/sample.

0 500 1000 1500 2000 2500 3000 3500
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

Frequency (Hz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
/H

z)

Welch PSD Estimate

10 Quantized Filtering Analysis Examples

10-6

2 Place a complex zero on the unit circle at this normalized frequency.

3 Place a stable complex pole close to this zero, but inside the unit circle.

4 Determine the filter numerator and denominator by:

a Specifying factors of the numerator and denominator polynomials using
the pole and zero

b Using conv to multiply the factors by their conjugates

For this example, you want to remove noise at both 3000 Hz and 3100 Hz, so
you can follow these steps for both f1=3000 and f2=3100, and put the two
notched filters together.

Here are the steps for f1=3000. Repeat these for f2=3100 for the final design.

The frequency you want to remove is calculated in rad/sample as

 wo = 2*pi*f1/Fs;

A notched filter has a zero on the unit circle at a frequency corresponding to an
angle of wo radians. This removes any noise at this frequency. You can find the
real and imaginary parts (x and y) of the corresponding zero using

rez = cos(wo);
imz = sin(wo);

The next step in the notched filter design is to add a pole close to the zero, but
inside the unit circle. This essentially eliminates the effect of the notched filter
at frequencies other than 3000 Hz, while keeping the filter stable. The closer
the pole is to the zero, the narrower the notch will be.

rez1 = .99*cos(wo);
imz1 = .99*sin(wo);

You can define this portion of the filter’s numerator and denominator
polynomials b and a by introducing the complex conjugate factors and using
conv.

 b1 = conv([1 -rez-i*imz],[1 -rez+i*imz]);
 a1 = conv([1 -rez1-i*imz1],[1 -rez1+i*imz1]);

Similarly, you can follow these steps to remove 3100 Hz noise.

Example — Quantized Filtering of Noisy Speech

10-7

b2 = conv([1 -cos(2*pi*f2/Fs)-i*sin(2*pi*f2/Fs)],...
[1 -cos(2*pi*f2/Fs)+i*sin(2*pi*f2/Fs)]);

a2 = conv([1 -0.99*cos(2*pi*f2/Fs)-i*0.99*sin(2*pi*f2/Fs)],...
[1 -0.99*cos(2*pi*f2/Fs)+i*0.99*sin(2*pi*f2/Fs)]);

Finally, put these two filters together and look at the frequency response.

b = conv(b1,b2);
a = conv(a1,a2);
freqz(b,a,512,Fs);

0 500 1000 1500 2000 2500 3000 3500
−60

−40

−20

0

20

40

60

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 500 1000 1500 2000 2500 3000 3500
−6

−5

−4

−3

−2

−1

0

1

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10 Quantized Filtering Analysis Examples

10-8

Quantizing the Filter as a Fixed-Point Filter
You can create a direct form II transposed fixed-point quantized filter using the
elliptic filter you just created as a reference. Name the filter Hq1.

Hq1 = qfilt('df2t',{b,a});

Warning: 9 Overflows in coefficients.

Normalizing the Quantized Filter Coefficients
MATLAB displays a warning because the filter you just created has some
coefficient overflow associated with it. You can use the normalize command to
scale the coefficients and account for this overflow.

Hq1 = normalize(Hq1);

In addition to scaling the filter coefficients, the normalize also modifies the
ScaleValues property value to account for the coefficient scaling when you
filter.

Hq1

Hq1 =
Quantized Direct form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
 (1) 0.125000000000000 0.125000000000000000
 (2) 0.423736572265625 0.423728525076514370
 (3) 0.608825683593750 0.608840299517598550
 (4) 0.423736572265625 0.423728525076514370
 (5) 0.125000000000000 0.125000000000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
 (1) 0.125000000000000 0.125000000000000000
 (2) 0.419494628906250 0.419491239825749210
 (3) 0.596710205078125 0.596724377557198320
 (4) 0.411132812500000 0.411143364153216890
 (5) 0.120086669921875 0.120074501250000020

 FilterStructure = df2t
 ScaleValues = [1 1]

Example — Quantized Filtering of Noisy Speech

10-9

 NumberOfSections = 1
 StatesPerSection = [4]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16
15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16
15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32
30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])

Note In this example, the ScaleValues property value is [1 1]. There is
effectively no scaling associated with the sections of this particular filter, even
after it has been normalized. This is because the required scaling for the
numerator and denominator of each filter section is the same.

Analyzing the Filter Poles and Zeros Using zplane
You can apply zplane to a quantized filter to analyze its poles and zeros.

10 Quantized Filtering Analysis Examples

10-10

zplane(Hq1)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

Quantized zeros
Quantized poles
Reference zeros
Reference poles

Example — Quantized Filtering of Noisy Speech

10-11

At first glance, this looks like you’ve done a good job at the fixed point notched
filter design. If you zoom in, you can see that the quantized poles are not really
at the correct angles for the notched filter. This is caused by quantization error.

Having poles located at incorrect angles is not the only problem in the filter.
There are overflow limit cycles that you detect by

rand('state',0)
limitcycle(Hq1)

resulting in the warning

Overflow limit cycle detected.

To see the destructive behavior of the limit cycles, look at the plot from the
noise loading method nlm.

nlm(Hq1)

The quantized noise loading method is random noise around the filter notches.
Also, zplane(Hq1) shows oscillating behavior for the filter.

−0.89 −0.885 −0.88 −0.875 −0.87 −0.865 −0.86 −0.855 −0.85

0.475

0.48

0.485

0.49

0.495

0.5

0.505

Real part

Im
ag

in
ar

y
pa

rt

Quantized zeros
Quantized poles
Reference zeros
Reference poles

10 Quantized Filtering Analysis Examples

10-12

Creating a Filter with Second-Order Sections
Filters whose transfer functions have been factored into second-order sections
are less susceptible to coefficient quantization errors. If you are using a
quantized filter with a transfer function filter structure, you can use sos to
convert the normalized quantized filter to second-order sections form.

Hq2 = sos(Hq1);

Now look at the poles and zeros using zplane.

zplane(Hq2)

Zoom in, as shown in the next figure, to see that the quantized notched filter
design poles and zeros are lined up the way you designed them.

Also, the overflow limit cycle problem has cleared up. You can verify this with

limitcycle(Hq2)

and

nlm(Hq2)

1 0 5 0 0 5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
pa

rt

Sections 1 − 2

Quantized zeros
Quantized poles
Reference zeros
Reference poles

Example — Quantized Filtering of Noisy Speech

10-13

By zooming in on the tail of the impulse response, plotted by impz(Hq2), you
see the granular limit cycle, but this is not as big an issue as overflow limit
cycles.

Quantized Filter Frequency Response Analysis
You can use freqz to analyze the frequency response of a quantized filter.

[H,F,units,Hr] = freqz(Hq2,512,Fs);

This syntax allows you to compare the frequency response H of the quantized
filter, to that (Hr) of the reference filter.

plot(F,20*log10(abs([H Hr])));
ylabel('Magnitude (dB)')
xlabel('Frequency (Hz)')
legend('Quantized','Reference',3)

−0.92 −0.9 −0.88 −0.86 −0.84 −0.82 −0.8 −0.78 −0.76

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Real part

Im
ag

in
ar

y
pa

rt

Sections 1 − 2

Quantized zeros
Quantized poles
Reference zeros
Reference poles

10 Quantized Filtering Analysis Examples

10-14

The two responses are almost identical.

Filtering with Quantized Filters
Now that you’ve designed a quantized filter you are happy with, use the filter
command to apply it to the noisy speech signal and see how well it does.

y = filter(Hq2,u/5);

This scaling of the input is to avoid overflows.

You can listen to the filtered speech signal by typing

sound(y)

0 500 1000 1500 2000 2500 3000 3500 4000
−30

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Quantized and Unquantized Notched Filter

Example — Quantized Filtering of Noisy Speech

10-15

Sounds pretty good. The power spectral density also looks like the original.

pwelch(y,[],[],nfft,Fs)

Analyzing the filter Function Logged Results
You can use an alternate syntax for the filter command to monitor the
maximum and minimum values as well as the overflows and underflows that
occur during filtering. Suppose you didn’t realize there would be input
overflows and hadn’t scaled the input.

warning on
y = filter(Hq2,u);
Warning: 1557 overflows in QFILT/FILTER.
 Max Min NOverflows
NUnderflows NOperations
 Coefficient 0.8612 0.49 0
0 6
 0.8699 0.4901 0
0 6

0 500 1000 1500 2000 2500 3000 3500
−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

−40

Frequency (Hz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
/H

z)

Welch PSD Estimate

10 Quantized Filtering Analysis Examples

10-16

 Input 4.127 -3.665 1557
0 4001
 Output 1 -1 0
0 4001
Multiplicand 1.81 -1.759 2637
0 32008
 2 -2 1964
0 28007
 Product 1.81 -1.759 0
0 32008
 2 -2 0
0 28007
 Sum 1.095 -1.248 0
0 20005
 1.688 -1.604 0
0 20005

A report of all underflows and overflows is displayed when you filter the data.

qreport(Hq2) provides the logged function output as well.

Example — A Quantized Filter Bank

10-17

Example — A Quantized Filter Bank
You can use filter banks to create a set of filters that partition input signals
into separate frequency bands or channels. Discrete Fourier Transform (DFT)
polyphase FIR filter banks [3] provide a computationally efficient way to
implement a filter bank that supports a large number of channels. Some cell
phone base stations use DFT polyphase FIR fixed-point filter banks.

The polyphase DFT FIR filter bank is equivalent to a bank of long FIR filters
operating at a relatively high sample rate.

A model for a polyphase DFT FIR filter bank is shown below. The impulse
response coefficients of the original FIR filter are sampled and partitioned
among the 16 FIR filters Hi(z), i=1, ... , 16. The incoming signal is successively
delayed and downsampled, before it enters any of the FIR filters. The outputs
of the FIR filters are then scaled and sent through an FFT. The 16 outputs of
the FFT represent the 16 channel signals.

Figure 10-1: Model for a Polyphase DFT FIR Filter Bank

You can follow the example in this section to create a bank of DFT polyphase
FIR fixed-point filters using quantized filters and quantized FFTs.

H16(z)

H2(z)

H1(z) 16

16

16

FFT

X (z) X1 (z)

X2 (z)

X16 (z)

z-1

z-1

z-1

10 Quantized Filtering Analysis Examples

10-18

Filtering Data with the Filter Bank
To implement the filter bank shown in Figure 10-1, Model for a Polyphase DFT
FIR Filter Bank, on page 10-17:

1 Create a quantized filter bank of 16 FIR filters followed by a quantized FFT.
For linear analysis, adjust the ScaleValues property of the quantized FFT
so that no overflows occur.

2 Successively delay and downsample an incoming data stream so that every
ith signal sample enters the ith FIR filter.

3 Filter the data through the bank of FIR filters using filter on each
quantized filter in the bank.

4 Put the output of the bank of filters through a 16-point FFT using fft on the
quantized FFT.

5 Rescale the output of the FFT to account for the scaling introduced by its
ScaleValues property.

Creating a DFT Polyphase FIR Quantized Filter Bank
This example follows the five steps listed in “Filtering Data with the Filter
Bank” using a set of unit sinusoids at different frequencies for the incoming
data.

This demo takes some time to run and produces the two frequency response
plots shown after the example code. You only see eight channels of filters in the
magnitude response of the filter bank because FFTs produce conjugate signals
for real-valued inputs. The second figure shows all 16 channels, presenting the
channel amplitude for each channel.

% Create a DFT Polyphase FIR Quantized Filter Bank.
% Initialize two variables to define the filters and the filter
% bank.
M = 16; % Number of channels in the filter bank.
N = 8; % Number of taps in each FIR filter.

% Calculate the coefficients b for the prototype lowpass filter,
% and zero-pad so that it has length M*N.
b = fir1(M*N-2,1/M);

Example — A Quantized Filter Bank

10-19

b = [b,zeros(1,M*N-length(b))];

% Reshape the filter coefficients into a matrix whos rows
% represent the individual polyphase filters to be distributed
% among the filter bank.
B = flipud(reshape(b,M,N));

Hq = cell(M,1);
for k=1:M
 Hq{k} = qfilt('fir',{B(k,:)});
end

% Create a quantized FFT F of length M.
% Set the ScaleValues property value according to the
% NumberOfSections property value. Scale each section by 1/2.

F = qfft('length',M,'scale',0.5*ones(1,log2(M)));

% Retain the FFT scaling to weight the FFT correctly.
g = 1/prod(F.ScaleValues);

% Construct a bank of M quantized filters and an M-point quantized
% FFT. Filter a sinusoid that is stepped in frequency from 0 to
% pi radians, store the power of the filtered signal, and plot the
% results for each channel in the filter bank.

Nfreq = 200; % Number of frequencies to sweep.
w = linspace(0,pi,Nfreq); % Frequency vector from 0 to pi.
P = 100; % Number of output points from each channel.
t = 1:M*N*P; % Time vector.
HH = zeros(M,length(w)); % Stores output power for each channel.
for j=1:length(w)
 disp([num2str(j),' out of ',num2str(length(w))])
 x = sin(w(j)*t); % Signal to filter

 % EXECUTE THE FILTER BANK:
 % Reshape the input so that it represents parallel channels of

% data going into the filter bank.
 X = [x(:);zeros(M*ceil(length(x)/M)-length(x), 1)];
 X = reshape(X,M,length(X)/M);

10 Quantized Filtering Analysis Examples

10-20

 % Make the output the same size as the input.
 Y = zeros(size(X));

 % FIR filter bank.
 for k=1:M
 Y(k,:) = filter(Hq{k},X(k,:));
 end

 % FFT
 Y = fft(F,Y);

 HH(:,j) = var(Y.')'; % Store the output power.
end

% Compensate for FFT scaling.
s = 1/prod(scalevalues(F));
HH = HH*s^2;

% Plot the results.
figure(1)
plot(w,10*log10(HH))
title('Filter Bank Frequency Response')
xlabel('Frequency (normalized to channel center)')
ylabel('Magnitude Response (dB)')
set(gca,'xtick',(1:M/2)*w(end)/M*2)
set(gca,'xticklabel',(1:M/2))
figure(2)
strips(HH')
set(gca,'yticklabel',1:M)
set(gca,'xtick',(1:M/2)*Nfreq/M*2)
set(gca,'xticklabels',(1:M/2))
grid off
title('Filter Bank Frequency Response')
xlabel('Frequency (normalized to channel center)')
ylabel('Channel, Amplitude in Each Channel')

Look at the next two figures to see the results of the example code.

Example — A Quantized Filter Bank

10-21

0 0.5 1 1.5 2 2.5 3 3.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Filter Bank Frequency Response

Frequency (normalized to channel center)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

10 Quantized Filtering Analysis Examples

10-22

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Filter Bank Frequency Response

Frequency (normalized to channel center)

C
ha

nn
el

, A
m

pl
itu

de
 in

 E
ac

h
C

ha
nn

el

Example — Effects of Quantized Arithmetic

10-23

Example — Effects of Quantized Arithmetic
When you filter data with a fixed-point quantized filter, your results may vary
from those obtained by filtering with a double-precision reference filter. This is
due to a number of factors, including:

• Quantization of the input to the filter

• Quantization of the output from the filter

• Quantization of the filter coefficients

• Quantization occurring during the various arithmetic operations performed
by the filter

You can isolate the effects of fixed-point quantization that result solely from
arithmetic operations by:

1 Creating quantizer q for data.

2 Creating a fixed-point filter Hq from a reference using quantizer q data
formats.

3 Creating a double-precision quantized filter Hd from Hq, with the same
(quantized) coefficients.

4 Quantizing a data set x according to the quantizer specifications.

5 Filtering the quantized data set x with both filters.

6 Comparing the results.

Creating a Quantizer for Data
Create a 16-bit default quantizer.

q = quantizer;

Creating a Fixed-Point Filter from a Quantized
Reference

1 Create an example double-precision reference filter and quantize and scale
the filter coefficients.

10 Quantized Filtering Analysis Examples

10-24

[b,a] = ellip(7,.1,40,.4);
c = quantize(q,{b/8, a/8}); % Coefficients are in a cell array.

2 Create a fixed-point quantized filter from the coefficients c, with data
formats specified by the quantizer q.

Hq = qfilt('df2t',c,'quantizer',q);

Creating a Double-Precision Quantized Filter
You can create a quantized double-precision filter Hd from Hq by changing the
value of the Mode property for each of the quantizers that specify the data
formats of Hq.

Hd = Hq;
Hd.quantizer = 'double';

Quantizing a Data Set
Create a random data set and quantize it.

rand('state',0);
n = 1000;
x = quantize(q,0.5*(2*rand(n,1) - 1));

This data set is scaled to prevent overflows. If you do not prevent overflows, you
cannot isolate the quantization effects of arithmetic.

Filtering the Quantized Data with Both Filters
Filter the quantized data with the double-precision filter and the fixed-point
filter.

yq = filter(Hq,x);
yd = filter(Hd,x);

Example — Effects of Quantized Arithmetic

10-25

Comparing the Results
Analyze the error signal and its histogram.

e = yd - yq;
hist(e,20)

The error is approximately normally distributed. The nonzero mean is caused
by choosing 'floor' for the rounding method.

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
0

20

40

60

80

100

120

140

10 Quantized Filtering Analysis Examples

10-26

11
Using FDATool with the
Filter Design Toolbox

Switching FDATool to Quantization
Mode (p. 11-4)

After you open FDATool, this section explain how to
access the quantization features in the tool.

Quantizing Filters in the Filter Design
and Analysis Tool (p. 11-7)

Explains how you quantize a filter in FDATool.

Analyzing Filters with the Noise
Loading Method (p. 11-12)

FDATool provides a variety of analysis methods for
quantized filters; this section explains how to use them.

Optimizing the Quantization Process
For Your Filter (p. 11-19)

You can adjust the way FDATool quantizes filters. To
learn how, read this section.

Importing and Exporting Quantized
Filters (p. 11-29)

Shows you how to import and export filters to and from
your MATLAB workspace, as well as to other
destinations.

Transforming Filters (p. 11-34) Describes how you use the filter transformation
capability in FDATool to change the magnitude response
of your FIR or IIR filters in the tool.

Realizing Filters as Simulink
Subsystem Blocks (p. 11-45)

Using the Realize Model feature to create a Simulink
model of your quantized filter as a subsystem block.

Getting Help for FDATool (p. 11-49) Shows you how to get help about the features in FDATool,
such as using Help or using the What’s This option.

11 Using FDATool with the Filter Design Toolbox

11-2

The Filter Design Toolbox adds a new dialog and operating mode, and a new
menu selection, to the Filter Design and Analysis Tool (FDATool) provided by
the Signal Processing Toolbox. From the new dialog, titled Set Quantization
Parameters, you can:

• View Simulink models of the filter structures available in the toolbox.

• Quantize double-precision filters you design in this GUI using the design
mode.

• Quantize double-precision filters you import into this GUI using the import
mode.

• Perform analysis of quantized filters.

• Scale the transfer function coefficients for a filter to be less than or equal to 1.

• Select the quantization settings for the properties of the quantized filter
displayed by the tool:

- Coefficient

- Input

- Output

- Multiplicand

- Product

- Sum

• Change the input and output scale values for a filter.

After you import a filter in to FDATool, the options on the quantization dialog
let you quantize the filter and investigate the effects of various quantization
settings.

From the new selection on the FDATool menu bar — Transformations — you
can transform lowpass FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:

• Lowpass to lowpass.

• Lowpass to highpass.

For IIR filters, you can convert from:

• Lowpass to lowpass.

• Lowpass to highpass.

11-3

• Lowpass to bandpass.

• Lowpass to bandstop.

This section presents the following information and procedures for using
FDATool:

• “Switching FDATool to Quantization Mode” on page 11-4

• “Quantizing Filters in the Filter Design and Analysis Tool” on page 11-7

• “Choosing Your Quantized Filter Structure” on page 11-16

• “Scaling Transfer Function Coefficients” on page 11-24

• “Scaling Inputs and Outputs of Quantized Filters” on page 11-26

11 Using FDATool with the Filter Design Toolbox

11-4

Switching FDATool to Quantization Mode
You use the quantization mode in FDATool to quantize filters. Quantization
represents the fourth operating mode for FDATool, along with the filter design,
filter transformation, and import modes. To switch to quantization mode, open
FDATool from the MATLAB command prompt by entering

fdatool

When FDATool opens, click Set Quantization Parameters. FDATool switches
to quantization mode and you see the following panel at the bottom of FDATool,
with the default values shown. Controls within the dialog let you quantize
filters and investigate the effects of changing quantization settings. To enable
the quantization options, perform these steps:

1 Click on the FDATool menu bar.

If you have designed or imported a filter into FDATool, you now see two filter
magnitude plots in the analysis area. One is your original filter, the other is
your filter after quantization.

2 Click in the side bar.

The quantization options appear in the lower panel of FDATool. You see the
settings for each quantizer in the filter.

Switching FDATool to Quantization Mode

11-5

You use the following controls in the dialog to perform tasks related to
quantizing filters in FDATool:

• Turn quantization on button —quantizes the filter displayed in
Current Filter Information.

• Set quantization parameters —changes Filter Design and Analysis
Tool to quantization mode to configure and quantize filters that you design
or import.

• Optimization—lets you set a variety of options for quantizing your filter,
such as scaling the filter transfer function coefficients to be less than or equal
to one.

• Apply—applies changes you make to the quantization parameters for your
filter.

11 Using FDATool with the Filter Design Toolbox

11-6

• Quantizer property lists, such as Convert coefficient to and Convert
multiplicand to— these lists let you set values for the properties of the
quantizers that constitute your quantized filter. Under Format, the entries
contain [wordlength fractionlength] for each quantizer property.

Quantizing Filters in the Filter Design and Analysis Tool

11-7

Quantizing Filters in the Filter Design and Analysis Tool
Quantized filters have properties that define how they quantize data you filter.
Use the Set Quantization Parameters dialog in FDATool to set the properties.
Using options in the Set Quantization Parameters dialog, FDATool lets you
perform a number of tasks:

• Create a quantized filter from a reference filter after either importing the
reference filter from your workspace, or using FDATool to design the
reference filter.

• Create a quantized filter that has the default structure (Direct form II
transposed) and other property values you select.

• Change the quantization property values for a quantized filter after you
design the filter or import it from your workspace.

When you click Set Quantization Parameters, the quantized filter panel
opens in FDATool, with all options set to default values.

To let you set the properties for the six quantizers that make up a quantized
filter, FDATool lists each quantizer. Table 11-1 lists each component

11 Using FDATool with the Filter Design Toolbox

11-8

quantizer, its full property name, and includes a short description of what the
quantizer does in the filter.

Every quantizer has four properties. For each quantizer, such as Convert
Coefficient and Convert Output, you select values for its properties to
determine how the filter performs quantization. The properties that make up
each quantizer in a quantized filter are listed in Table 9-2.

Table 11-1: These Quantizers Define the Behavior of a Quantized Filter

Quantizer Filter Property Name Description

Convert coefficient to CoefficientFormat Determines how the coefficient quantizer
handles filter coefficients. When you
quantize a filter, the properties of this
quantizer govern the quantization.

Convert input to InputFormat Specifies how data input to the filter is
quantized.

Convert output to OutputFormat Specifies how date output by the filter is
quantized.

Convert multiplicand to MultiplicandFormat Specifies how filter multiplicands are
quantized. Multiplicands are the inputs to
multiply operations.

Convert product to ProductFormat Determines how to quantize the results of
multiply operations.

Convert sum to SumFormat Determines how to quantize the results of
arithmetic sums in the filter.

Quantizing Filters in the Filter Design and Analysis Tool

11-9

Table 11-2: Four Properties Specify Each Quantizer

Quantizer Property Description

Mode Selects one of four arithmetic modes for the
quantizer:

• fixed—to specify fixed-point arithmetic. fixed is
the default setting.

• float—to specify floating-point arithmetic

• double—to specify double-precision arithmetic

• single—to specify single-precision arithmetic

Round mode Sets the way in which the quantizer handles values
after it quantizes them. You have five options to
choose from:

• ceil—round values to the nearest integer
towards plus infinity.

• convergent—round values to the nearest integer,
except in a tie, then round down if the next-to-last
bit is even, up if odd.

• fix—round values to the nearest integer towards
zero.

• floor—round values to the nearest integer
towards minus infinity. The default setting for all
quantizers except the Coefficient quantizer.

• round—round values to the nearest integer.
Negative numbers that lie halfway between two
values are rounded towards negative infinity.
Positive numbers that lie halfway between two
values are rounded towards positive infinity. Ties
round toward positive infinity. The default setting
for the Coefficient quantizer.

11 Using FDATool with the Filter Design Toolbox

11-10

To Quantize Reference Filters
When you are quantizing a reference filter, follow these steps to set the
Coefficient property values that control the quantization process. Before you
begin, verify that Turn quantization on is not selected:

1 Click Set Quantization Parameters to open the Set Quantization
Parameters dialog.

2 Select Turn quantization on.

When you turn quantization on, FDATool quantizes the current filter
according to the Coefficient properties, and changes the information
displayed in the analysis area to show quantized filter data.

Overflow mode When the result of a quantization operation exceeds
the range that the format can represent, this value
tells the quantizer how to handle the overflow.
Choices are

• saturate—set values that fall outside the
representable range to the minimum or maximum
values in the range. Values greater than the
maximum value are set to the maximum range
value. Values less than the minimum value are
set to the minimum range value. This is the
default setting.

• wrap—map values that fall outside the
representable range of the format back into the
range using modular arithmetic.

Format Specifies the word length and fraction length for the
Mode value you specified. [16 15] is the default
setting for word length and fraction length. Notice
that the Product and Sum quantizers default to
[2*word length 2*fraction length], or [32 30].

Table 11-2: Four Properties Specify Each Quantizer (Continued)

Quantizer Property Description

Quantizing Filters in the Filter Design and Analysis Tool

11-11

3 Review the settings for the Convert coefficient to properties: Mode,
Round mode, Overflow mode, and Format.

4 Change the Convert coefficient to properties as required to quantize your
filter correctly.

5 Click Apply.

FDATool quantizes your filter using the new settings.

6 Use the analysis features in FDATool to determine whether the new
quantized filter meets your requirements.

To Change the Quantization Properties of
Quantized Filters
When you are changing the property values for a quantized filter, or after you
import a quantized filter from your MATLAB workspace, follow these steps to
set the property values for the quantized filter:

1 Verify that the current filter is quantized.

2 Click Set Quantization Parameters to display the Set Quantization
Parameters panel.

3 Review and select property settings for the filter quantizers: Convert
coefficient to, Convert input to, Convert output to, Convert
multiplicand to, Convert product to, and Convert sum to. Settings for
these properties determine how your filter quantizes data during filtering
operations.

4 Click Apply to update your current quantized filter to use the new
quantization property settings from Step 2.

5 Use the analysis features in FDATool to determine whether your new
quantized filter meets your requirements.

11 Using FDATool with the Filter Design Toolbox

11-12

Analyzing Filters with the Noise Loading Method
One technique for estimating the frequency response for quantized filters is the
noise loading method (NLM) provided by function nlm in this toolbox. FDATool
offers the noise loading method as a filter analysis tool accessible from the
toolbar.

Using the Noise Loading Method
After you design and quantize your filter, the noise loading method on the
Analysis menu lets you apply the noise loading method to your filter. When
you select Analysis -> Noise Loading Method from the menubar, FDATool
immediately starts the Monte Carlo trials that form the basis for the method
and runs the analysis, ending by displaying the results in the analysis area in
FDATool.

With the NLM, you estimate the complex frequency response for your filter as
determined by applying a noise- like signal to the filter input. NLM uses the
Monte Carlo trials to generate a noise signal that contains complete frequency
content across the range 0 to Fs. The first time you run the analysis, NLM uses
default settings for the various conditions that define the process, such as the
number of test points and the number of trials.

Analysis Parameter Default Setting Description

Number of points 512 Number of equally spaced points
around the upper half of the
unit circle.

Number of Monte
Carlo trials

10 Number of times to repeat the
Monte Carlo test to get an
average frequency response.

Range 0 to Fs/2 Frequency range of the plot
x-axis.

Frequency units Hz Units for specifying the
frequency range.

Sampling
frequency

48000 Inverse of the sampling period.

Analyzing Filters with the Noise Loading Method

11-13

After your first analysis run ends, open the Analysis Parameters dialog and
adjust your settings appropriately, such as changing the numer of trials or
number of points.

To open the Analysis Parameters dialog, use either of the next procedures
when you have a quantized filter in FDATool:

• Select Analysis -> Analysis Parameters… from the menu bar

• Right-click in the analysis area and select Analysis Parameters… from the
context menu

Whichever option you choose opens the dialog as shown in the figure. Notice
that the settings for the options reflect the defaults.

Example—Noise Loading Method Applied to a Filter
To demonstrate the NLM in use, start by creating a quantized filter. For this
example, use FDATool to design a sixth-order Butterworth IIR filter.

To Use NLM Analysis in FDATool

1 Type fdatool at the MATLAB prompt to launch FDATool.

2 In Design Method, select IIR and Butterworth from the list.

11 Using FDATool with the Filter Design Toolbox

11-14

3 Under Filter Type, select Highpass.

4 To set the filter order to 6, select Specify order under Filter Order. Type
6 in the text box.

5 Click Design Filter.

In FDATool, the analysis area changes to display the magnitude response
for your filter.

6 To generate the quantized version of your filter, using default quantizer
settings, click on the toolbar.

Now the analysis areas shows the magnitude response for both filters—your
original filter and the quantized version.

7 Finally, to use NLM on your quantized filter, select
Analysis -> Noise Loading Method from the menubar.

FDATool runs the NLM Monte Carlo trials, calculates the average
magnitude response for the filter, and displays the result in the analysis
area as shown in this figure.

In the figure you see both the magnitude response and the noise power
spectrum used to determine the response.

Analyzing Filters with the Noise Loading Method

11-15

To Change Your NLM Analysis Parameters
In “Example—Noise Loading Method Applied to a Filter”, you used NLM to
estimate the magnitude response for a quantized highpass Butterworth filter.
Since you ran NLM only once FDATool, your noise loading analysis used the
default NLM settings shown in “Using the Noise Loading Method”.

To change the settings, follow these steps after the first time you use NLM on
your quantized filter.

1 With the results from running the noise loading method displayed in the
FDATool analysis area, right-click in the area and select Analysis
Parameters….

To give you access to the analysis parameters, the Analysis Parameters
dialog opens as shown here (with default settings).

11 Using FDATool with the Filter Design Toolbox

11-16

2 To use more trials to estimate the magnitude response, change Monte Carlo
trials to 20 and click OK to run the analysis.

FDATool closes the Analysis Parameters… dialog and reruns NLM,
returning the results in the analysis area.

To rerun NLM without closing the dialog, press Enter after you type your
new value into a setting, then click Apply. Now FDATool runs NLM without
closing the dailog. When you want to try many different settings for the
noise loading analysis, this is a useful shortcut.

Comparing the NLM and Theoretical Magnitude
Responses
An important measure of the effectiveness of the noise loading method for
estimating the magnitude response of a quantized filter is to compare the NLM
response to the theoretical response. To see a comparison of the two diverse
methods, refer to the online reference page for nlm.

Choosing Your Quantized Filter Structure
FDATool lets you change the structure of any quantized filter. Use the Convert
structure option to change the structure of your filter to one that meets your
needs.

To learn about changing the structure of a quantized filter in FDATool, refer to
“Converting to a New Structure” in your Signal Processing Toolbox
documentation.

Converting the Structure of a Quantized Filter
You use the Convert structure option to change the structure of filter. When
the Source is Designed(Quantized) or Imported(Quantized), Convert
structure lets you recast the filter to one of the following structures:

• “Direct Form II Transposed Filter Structure” on page 12-24

• “Direct Form I Transposed Filter Structure” on page 12-20

• “Direct Form II Filter Structure” on page 12-22

• “Direct Form I Filter Structure” on page 12-18

• “Direct Form Finite Impulse Response (FIR) Filter Structure” on page 12-26

Analyzing Filters with the Noise Loading Method

11-17

• “Direct Form FIR Transposed Filter Structure” on page 12-27

• “Lattice Autoregressive Moving Average (ARMA) Filter Structure” on
page 12-34

• “Lattice Coupled-Allpass Filter Structure” on page 12-30

• “Lattice Coupled-Allpass Power Complementary Filter Structure” on
page 12-31

• “State-Space Filter Structure” on page 12-35

Starting from any quantized filter, you can convert to one of the following
representation:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• State space

• Lattice ARMA

Additionally, FDATool lets you do the following conversions:

• Minimum phase FIR filter to Lattice MA minimum phase

• Maximum phase FIR filter to Lattice MA maximum phase

• Allpass filters to Lattice allpass

Refer to “FilterStructure” on page 12-12 for details about each of these
structures.

To Convert Your Filter to Second-Order Sections
Form
To learn about using FDATool to convert your quantized filter to use
second-order sections, refer to “Converting to Second-Order Sections” in your
Signal Processing Toolbox documentation.

To View Schematics of Filter Structures in the Toolbox
Often it helps to see the structure of a filter. From the Set Quantization
Parameters dialog in FDATool, the Show filter structures option opens

11 Using FDATool with the Filter Design Toolbox

11-18

a demonstration program that provides Simulink models of each filter
structure included in the toolbox.

To View Filter Structures in FDATool
To open the demonstration, click Help -> Show filter structures. After the
Help browser opens, select the filter structure to view from the table of filter
structures.

Optimizing the Quantization Process For Your Filter

11-19

Optimizing the Quantization Process For Your Filter
By clicking Optimization… on the Quantized Filter panel, you launch the
Quantized Optimizations dialog. Using the controls provided on the dialog,
you direct FDATool about specific features of the quantization process.

As shown here, the Quantized Optimizations dialog lets you determine how
quantization affects your filter coefficients and what happens when you scale
your filter.

11 Using FDATool with the Filter Design Toolbox

11-20

Control Coefficient Quantization
With the Quantized Optimizations dialog open, you can use the Do not
quantize coefficients that are exactly equal to 1 option to prevent FDATool
from quantizing coefficients, both numerator and denominator (also called
b and a) whose value is 1.0

Directing FDATool not to quantize 1.0 coefficients has two advantages for your
filter:

1 Eliminates one multiply operation for each such coefficient during filter
quantization. When your coefficient is equal to 1.0, the quantization process
skips the multiply associated with the coefficient, making the process more
efficient.

2 Reduces the possible error that can result when a coefficient whose value is
1.0 gets quantized to a value that is not exactly 1.0. Changing the value
might alter your filter performance.

To stop FDATool from quantizing coefficients equal to 1.0, follow these steps:

1 Open the Quantized Optimizations dialog.

2 Select Do not quantize coefficients that are exaactly equal to 1.

3 Click Apply to quantize your filter with the new setting, or click OK to
quantize your filter and close the dialog.

Limit Coefficient Overflow By Fraction Length
Changes
One way to reduce the possibility that the coefficients of you filter overflow
during quantization is to let the fraction length of the coefficient format change
during quantization. FDATool provides an option that automatically adjusts
the fraction length for a quantizer to prevent the coefficients from exceeding
the range of the format.

The Set Quantization Parameters panel in FDATool shows the format in
place for the Convert coefficient to quantizer in the Format column. Given as
a vector, such as [16 15] (the default value), you can check the word length and
fraction length for representing your filter coefficients here.

Optimizing the Quantization Process For Your Filter

11-21

When you select Adjust coefficient fraction length such that coefficients do
not overflow on the Set Quantization Parameters panel, FDATool varies the
fraction length from the format you set on the Quantized Filter panel in
FDATool.

To elect to let FDATool adjust the fraction length for your filter coefficients to
prevent overflows, perform the following steps:

1 Open the Quantized Optimizations dialog.

2 Select Adjust coefficient fraction length such that coefficients do not
overflow.

3 Click Apply to quantize your filter with the new setting, or click OK to
quantize your filter and close the dialog.

Normalizing Transfer Function Coefficients
One way to prevent your filter coefficients from overflowing and to maintain
well-behaved filters after quantization is to normalize the coefficients so the
absolute value of every coefficient is 0.5< = coefficient value < 1.

To provide you with the flexibility to decide how and which coefficients to
normalize, the Quantized Optimizations dialog provides several options for
specifying the treatment of filter function coefficients. In this table, you see a
summary of the options and what they do. Following the table are detailed

11 Using FDATool with the Filter Design Toolbox

11-22

descriptions of the options and how you use them. Note that some of the options
depend on one another.

Control Name Description

“Normalize numerator
coefficients such that maximum
absolute value is < = 1 and scale
values are powers of 2”

Performs a two step process of
normalizing and scaling the
transfer function coefficients (b) to
produce well-behaved filters after
quantization.

“Normalize denominator
coefficients such that”

Specify whether to normalize the
denominator coefficients (a) of the
filter transfer function. Selecting
this option enables two other
options that determine how to
quantize the denominator
coefficients.

“maximum absolute value is < = 1
and scale values are powers of 2”

In combination with the Normalize
denominator… option preceding,
specifies that the coefficients after
normalization are between -1 and 1
and that the scale values used for
normalizing are powers of 2.
Compare to the Normalize
numerator… option.

“leading denominator coefficient
is 1”

Combined with the Normalize
denominator… option, directs
FDATool to normalize the leading
denominator coefficient a(1) to be
exactly 1.0

“Preserve filter gain when
normalizing coefficients”

Directs FDATool to adjust the gain
of the filter so the response after
normalizing the coefficients is the
same as before. This is the default
setting.

Optimizing the Quantization Process For Your Filter

11-23

Normalize numerator coefficients such that maximum absolute value is
< = 1 and scale values are powers of 2
Since in some cases your filter coefficient vector can contain values that are
greater than 1, you can choose to normalize and scale the coefficients before
quantization. Normalizing the coefficients reduces the sensitivity of your filter
to the effects of quantization. Adjusting the normalization so the resulting
scale factors are powers of two makes the quantization process be more
efficient. When your scale factors are powers of 2, the multiply operations
required to apply the scale factors can be replaced by a simple shift—much
more efficient.

Normalize denominator coefficients such that
To reduce the effects of quantization on your filter, normalizing the
denominator coefficients adjust the values in the coefficient vector so that all
values in the vector are > = 0.5 and < 1. When you select this option, you enable
two more options that let you tailor the quantization to your needs:

• maximum absolute value is < = 1 and scale values are powers of 2

• leading denominator coefficient is 1

These controls produce the same results for denominator coefficients that the
normalization options produce for numerator coefficients.

maximum absolute value is < = 1 and scale values are powers of 2
Since in some cases your filter coefficient vector can contain values that are
greater than 1, you can choose to normalize and scale the coefficients before
quantization. Normalizing the coefficients reduces the sensitivity of your filter
to the effects of quantization. Adjusting the normalization so the resulting
scale factors are powers of two makes the quantization process be more
efficient. When your scale factors are powers of 2, the multiply operations
required to apply the scale factors can be replaced by a simple shift—much
more efficient.

leading denominator coefficient is 1
With this option selected, FDATool divides the members of the denominator
coefficient vector by the value of the leading coefficient, forcing the leading
coefficient to be 1. Note that this occurs after normalization and scaling

11 Using FDATool with the Filter Design Toolbox

11-24

Preserve filter gain when normalizing coefficients
Filters in FDATool are in transfer function form. To mitigate the effects of
quantization on the performance of your filter, you can normalizethe transfer
function coefficients. After you import or design a filter in FDATool (to create
your reference filter), you can opt to normalize the filter transfer function
coefficients not to exceed ±1. Normalizing the coefficients prevents overflow
and underflow conditions from occurring during quantization.

A few things to note about using normalizing:

• When you choose to normalize your transfer function coefficients, in either
the numerator or denominator, FDATool does two things:

- It normalizes the coefficients as directed by your choice of options on the
Quantized Optimizations dialog.

- It changes the filter gain to keep the filter magnitude response the same
after normalizing the coefficients. If FDATool did not change the gain, the
response of the filter to a given input would change when you chose to
normalize the coefficients.

• FDATool cannot restore the transfer function coefficients back to their
values before normalization. Clearing and applying the options on the dialog
does not restore your filter to the state before normalization. So the resulting
filter may demonstrate changed magnitude response after you remove the
normalization. To get back to your original filter, either redesign or reimport
the filter.

Scaling Transfer Function Coefficients
All filters in FDATool are in transfer function form. To mitigate the effects of
quantization on the performance of your filter, you can scale the transfer
function coefficients. After you import or design a filter in FDATool (to create
your reference filter), you can scale the filter transfer function coefficients not
to exceed ±1. Scaling the coefficients prevents overflow and underflow
conditions from occurring during quantization.

A few things to note about using scaling:

• When you choose to scale your transfer function coefficients, FDATool does
two things:

- It scales the coefficients as directed.

Optimizing the Quantization Process For Your Filter

11-25

- It changes the filter gain to keep the filter magnitude response the same
after scaling. If FDATool did not change the gain, the response of the filter
to a given input would change when you scaled the coefficients.

• If you remove the scaling factors, FDATool restores the transfer function
coefficients to their values before scaling. FDATool does not remove the filter
gain it added when you scaled the coefficients. So the resulting filter may
demonstrate changed magnitude response after you remove the scale factors.

To Scale Transfer Function Coefficients
To scale the transfer function coefficients of a filter in FDATool, follow these
steps:

1 Design a filter, or import a filter into FDATool. This is your reference filter.

Under Current Filter Information, the characteristics of your filter are
structure, source, order, and whether the filter is stable.

2 Click Set Quantization Parameters.

The bottom half of the FDATool window (the quantization region) shows the
options for quantizing a filter, including options for scaling filter transfer
function coefficients and setting the property values for the quantization
properties of the filter.

3 Select Turn quantization on to quantize the filter in Current Filter
Information.

You can review the transfer function coefficients for your filter. Select View
Filter Coefficients from the Analysis menu. The analysis area changes to
list the coefficients for the reference and quantized filters. Scroll through the
list to review the coefficients and to check for coefficient overflow or
underflow that can occur during quantization.

Notice that the left column in the analysis area contains symbols. They
indicate whether the quantized coefficient over- or underflowed during
quantization. A minus sign signals that the coefficient on that line
overflowed toward positive infinity. A plus sign indicates an overflow toward
negative infinity. Coefficients marked with zero had reference values that
underflowed to zero.

11 Using FDATool with the Filter Design Toolbox

11-26

4 Click Scale transfer-fnc coeffs <=1.

5 Review the scaled coefficients to see that no overflow warning appears at the
end of the list of coefficients

Warning: 1 overflow in coefficients.

and no plus, zero, or minus symbols appear in the left column.

Once you have scaled a filter, you cannot remove the scale factors. You must
recreate the filter from the beginning by redesigning or reimporting the filter.

Scaling Inputs and Outputs of Quantized Filters
For any filter structure, each filter section has two scale values associated with
it—an input and an output. When you select Help -> Show filter structures...
to look at the filter structures provided by FDATool, you do not see that each
structure includes at least two scale values, s(1) and s(2). If the filter has
multiple sections, the number of scale values is (number of sections +1). For
example, a filter with three sections has four scale values because the output
scale value for each section is the input value to the next section:

• s(1)—input scale value for the first section

• s(2)—output scale value from the first section and the input scale value to
the second section

• s(3)—output scale value from the second section and input scale to the third
section

• s(4)—output scale value from the third section

So the number of scale values you need for your filter depends on the filter
structure.

Enter input and output scale values in four ways in Filter input values and
Filter output value:

1 Select Specify scale values.

2 Do one of the following to enter your input scale values:

• Enter a scalar. FDATool uses the scalar in Filter input values for every
scale value in your structure.

Optimizing the Quantization Process For Your Filter

11-27

• Enter a vector of scale values in Filter input values. The vector can be up to
length (number of sections +1), where each scale value entry is a real
number. FDATool assigns the scale values in the order s(1), s(2), s(3),…s
(number of sections + 1). When your vector contains fewer values than the
number of scale values required for your filter structure, FDATool assigns
the values in order until it uses all the values in the vector. Remaining scale
values are set to one and are omitted during scaling or filtering.

• Enter a variable name that represents a vector in your MATLAB workspace.
The length of the vector can be up to (number of sections +1).

3 (Optional) Enter a scale value for the output scaling by doing one of the
following steps:

• Enter a scalar. FDATool uses the scalar in Filter output value for the
output scale value in your structure.

• Enter a variable name that represents a vector in your MATLAB workspace.

4 Click Apply.

Scale values that are exactly equal to one are omitted during filtering and
scaling, avoiding the associated multiplication operation.

To Enter Scale Values for Quantized Filters
Scale values apply to quantized filters. To specify the scale values for the
current quantized filter in FDATool, follow these steps:

1 Click on the side bar.

2 Check or determine the number of sections in your filter.

The number of scale values you need for your filter depends on the number
of sections used in the filter design. For example, a filter with four sections
requires you to enter either one scale value or up to 5 (the
number of sections +1).

11 Using FDATool with the Filter Design Toolbox

11-28

3 Enter one of the following into Filter input scale values:

a A scalar. FDATool uses the scalar for the input scale value in the filter.

b A vector of scale values. The vector can be up to (number of sections +1)
elements, where each entry is a real number.

c A variable name that represents a vector in your MATLAB workspace.
The length of the vector in the workspace can be up to
(number of sections +1) elements.

4 (Optional) Enter one of the following into Filter output scale value:

a A scalar. FDATool uses the scalar for the output scale value in the filter.

b A variable name that represents a scalar in your MATLAB workspace.
FDATool uses the scalar for the output scale value in the filter.

5 Click Apply.

Importing and Exporting Quantized Filters

11-29

Importing and Exporting Quantized Filters
When you import a quantized filter into FDATool, or export a quantized filter
from FDATool to your workspace, the import and export functions use objects
and you specify the filter as a variable. This contrasts with importing and
exporting nonquantized filters, where you select the filter structure and enter
the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB workspace,
exporting them to text files, or exporting them to MAT-files.

This section includes:

• “To Import Quantized Filters”

• “To Export Quantized Filters”

For general information about importing and exporting filters in FDATool,
refer to “Filter Design and Analysis Tool” section in your Signal Processing
Toolbox User’s Guide.

FDATool imports quantized filters having the following structures:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Direct form symmetric FIR

• Direct form antisymmetric FIR

• Lattice allpass

• Lattice AR

• Lattice MA minimum phase

• Lattice MA maximum phase

• Lattice ARMA

• Lattice coupled-allpass

• Lattice coupled-allpass power complementary

• State-space

11 Using FDATool with the Filter Design Toolbox

11-30

To Import Quantized Filters
After you design or open a quantized filter in your MATLAB workspace,
FDATool lets you import the filter for analysis. Follow these steps to import
your filter in to FDATool:

1 Open FDATool.

2 Select Filter->Import Filter from the menu bar.

In the lower region of FDATool, the Design Filter tab becomes Import
Filter, and options appear for importing quantized filters, as shown.

3 From the Filter Structure list, select Quantized filter (Qfilt object).

The options for importing filters change to include:

- Quantized filter—Enter the variable name for the quantized filter in your
workspace. You can also enter qfilt to direct FDATool to construct a
quantized filter. When you enter qfilt, FDATool creates a quantized filter
according to the qfilt syntax you use.

- Frequency units—Select the frequency units from the Units list, and
specify the sampling frequency value in Fs. Your sampling frequency must
correspond to the units you select. For example, when you select
Normalized (0 to 1), Fs should be one.

Importing and Exporting Quantized Filters

11-31

4 Click Import to import or construct the filter.

FDATool checks your workspace for the specified filter. It imports the filter
if it finds it, displaying the magnitude response for the filter in the analysis
area. If you entered the quantized filter constructor in Quantized filter,
FDATool creates the filter and displays the filter magnitude response.

To Export Quantized Filters
To save your filter design, FDATool lets you export the quantized filter to your
MATLAB workspace (or you can save the current session in FDATool). When
you choose to save the quantized filter by exporting it, you select one of these
options:

• Export to your MATLAB workspace

• Export to a text file

• Export to a MAT-file

Exporting Coefficients or Objects to the Workspace
You can save the filter as filter coefficients variables or as a dfilt or qfilt
filter object variable. To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog appears.

2 Select Workspace from the Export To list.

3 Select Coefficients from the Export As list to save the filter coefficients or
select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator and
Denominator options under Variable Names. For objects, assign the
variable name in the Discrete or Quantized filter option. If you have
variables with the same names in your workspace and you want to overwrite
them, select the Overwrite Variables box.

5 Click the OK button

If you try to export the filter to a variable name that exists in your
workspace, and you did not select Overwrite existing variables, FDATool
stops the export operation and returns a warning that the variable you

11 Using FDATool with the Filter Design Toolbox

11-32

specified as the quantized filter name already exists in the workspace. To
continue to export the filter to the existing variable, click OK to dismiss the
warning dialog, select the Overwrite existing variables check box and click
OK or Apply.

Getting Filter Coefficients after Exporting
To extract the filter coefficients from your quantized filter after you export the
filter to MATLAB, use the celldisp function in MATLAB. For example, create
a quantized filter in FDATool and export the filter as Hq. To extract the filter
coefficients for Hq, use

celldisp(Hq.referencecoefficients)

which returns the cell array containing the filter reference coefficients, or

celldisp(Hq.quantizedcoefficients)

to return the quantized coefficients.

Exporting as a Text File
To save your quantized filter as a text file, follow these steps:

1 Select Export from the File menu.

2 Select Text-file under Export to.

3 Click OK to export the filter and close the dialog. Click Apply to export the
filter without closing the Export dialog. Clicking Apply lets you export your
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to Text-file dialog appears. This is the
standard Microsoft Windows save file dialog.

4 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a text file with the name you
provided, and the MATLAB editor opens, displaying the file for editing.

Exporting as a MAT-File
To save your quantized filter as a MAT-file, follow these steps:

Importing and Exporting Quantized Filters

11-33

1 Select Export from the File menu.

2 Select MAT-file under Export to.

3 Assign a variable name for the filter.

4 Click OK to export the filter and close the dialog. Click Apply to export the
filter without closing the Export dialog. Clicking Apply lets you export your
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to MAT-file dialog appears. This is the
standard Microsoft Windows save file dialog.

5 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a MAT-file with the specified
name.

11 Using FDATool with the Filter Design Toolbox

11-34

Transforming Filters
The toolbox provides functions for transforming filters between various forms.
When you use FDATool with the Toolbox installed, a new side bar button
enables you to use the Transform Filter panel to transform filters as well as
using the command line functions.

When you click the Transform Filter button on the side bar, the Transform
Filter panel opens in FDATool, as shown here.

Your options for Original filter type refer to the type of your current filter to
transform. If you select lowpass, you can transform your lowpass filter to
another lowpass filter or to a highpass filter, or to numerous other filter
formats, real and complex.

Note When your original filter is an FIR filter, both the FIR and IIR
transformed filter type options appear on the Transformed filter type list.
Both options remain active because you can apply the IIR transforms to an
FIR filter. If your source is as IIR filter, only the IIR transformed filter options
show on the list.

Transforming Filters

11-35

Original Filter Type
Select the magnitude response of the filter you are transforming from the list.
Your selection changes the types of filters you can transform to. For example:

• When you select Lowpass with an IIR filter, your transformed filter type can
be

- Lowpass

- Highpass

- Bandpass

- Bandstop

- Multiband

- Bandpass (complex)

- Bandstop (complex)

- Multiband (complex)

• When you select Lowpass with an FIR filter, your transformed filter type
can be

- Lowpass

- Lowpass (FIR)

- Highpass

- Highpass (FIR) narrowband

- Highpass (FIR) wideband

- Bandpass

- Bandstop

- Multiband

- Bandpass (complex)

- Bandstop (complex)

- Multiband (complex)

11 Using FDATool with the Filter Design Toolbox

11-36

In the following table you see each available original filter type and all the
types of filter to which you can transform your original.

Original Filter Available Transformed Filter Types

Lowpass FIR • Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Lowpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Transforming Filters

11-37

Highpass FIR • Lowpass

• Lowpass (FIR) narrowband

• Lowpass (FIR) wideband

• Highpass (FIR)

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Highpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Bandpass FIR • Bandpass

• Bandpass (FIR)

Bandpass IIR Bandpass

Original Filter Available Transformed Filter Types

11 Using FDATool with the Filter Design Toolbox

11-38

Note also that the options change depending on whether you original filter is
FIR or IIR. Starting from an IIR filter, you can transform to IIR or FIR forms.
With an FIR original filter, you are limited to FIR target filters.

After selecting your response type, use Frequency point to transform to
specify the magnitude response point in your original filter to transfer to your
target filter. Your target filter inherits the performance features of your
original filter, such as passband ripple, while changing to the new response
form.

For more information about transforming filters, refer to “Frequency
Transformations for Real Filters” on page 4-11 and “Frequency
Transformations for Complex Filters” on page 4-26.

Frequency Point To Transform
The frequency point you enter in this field identifies a magnitude response
value (in dB) on the magnitude response curve.

When you enter frequency values in the Specify desired frequency location
option, the frequency transformation tries to set the magnitude response of the
transformed filter to the value indentified by the frequency point you enter in
this field.

While you can enter any location, generally you should specify a filter passband
or stopband edge, or a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the values
you enter in Specify desired frequency location. Specify a value that lies at
either the edge of the stopband or the edge of the passband. If, for example, you
are creating a bandpass filter from a highpass filter, the transformation
algorithm sets the magnitude response of the transformed filter at the Specify
desired frequency location to be the same as the response at the Frequency
point to transform value. Thus you get a bandpass filter whose response at
the low and high frequency locations is the same. Notice that the passband

Bandstop FIR • Bandstop

• Bandstop (FIR)

Bandstop IIR Bandstop

Original Filter Available Transformed Filter Types

Transforming Filters

11-39

between them is undefined. In the next two figures you see the original
highpass filter and the transformed bandpass filter.

For more information about transforming filters, refer to “Digital Frequency
Transformations” on page 4-1.

Transformed Filter Type
Select the magnitude response for the target filter from the list. The complete
list of transformed filter types is:

• Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Not all types of transformed filters are available for all filter types on the
Original filter types list. You can transform bandpass filters only to bandpass
filters. Or bandstop filters to bandstop filters. Or IIR filters to IIR filters.

For more information about transforming filters, refer to “Frequency
Transformations for Real Filters” on page 4-11 and “Frequency
Transformations for Complex Filters” on page 4-26.

Specify Desired Frequency Location
The frequency point you enter in Frequency point to transform matched
a magnitude response value. At each frequency you enter here, the
transformation tries to make the magnitude response the same as the response
identified by your Frequency point to transform value.

11 Using FDATool with the Filter Design Toolbox

11-40

While you can enter any location, generally you should specify a filter passband
or stopband edge, or a value in the passband or stopband.

For more information about transforming filters, refer to “Digital Frequency
Transformations” on page 4-1.

To Transform Filters
To transform the magnitude response of your filter, use the Transform Filter
option on the side bar.

1 Design or import your filter into FDATool.

2 Click Transform Filter, , on the side bar.

FDATool opens the Transform Filter panel in FDATool.

3 From the Original filter type list, select the response form of the filter you
are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or
bandstop, FDATool recognizes whether your filter form is FIR or IIR. Using
both your filter type selection and the filter form, FDATool adjusts the
entries on the Transformed filter type list to show only those that apply to
your original filter.

Transforming Filters

11-41

4 Enter the frequency point to transform value in Frequency point to
transform. Notice that the value you enter must be in KHz; for example,
enter 0.1 for 100 Hz or 1.5 for 1500 Hz.

5 From the Transformed filter type list, select the type of filter you want to
transform to.

Your filter type selection changes the options here.

- When you pick a lowpass or highpass filter type, you enter one value in
Specify desired frequency location.

- When you pick a bandpass or bandstop filter type, you enter two values—
one in Specify desired low frequency location and one in
Specify desired high frequency location. Your values define the edges
of the passband or stopband.

- When you pick a multiband filter type, you enter values as elements in a
vector in Specify a vector or desired frequency locations— one element for
each desired location. Your values define the edges of the passbands and
stopbands.

After you click Transform Filter, FDATool transforms your filter,
displays the magnitude response of your new filter, and updates the
Current Filter Information to show you that your filter has been
transformed. In the filter information, the Source is Transformed.

For example, the figure shown here includes the magnitude response
curves for two filter. The original filter is a lowpass filter with rolloff
between 0.2 and 0.25. The transformed filter is a lowpass filter with rolloff
region between 0.8 and 0.85.

11 Using FDATool with the Filter Design Toolbox

11-42

- To transform your lowpass filter to a highpass filter, select Lowpass to
Highpass.

When you select Lowpass to Highpass, FDATool returns the dialog shown
here. More information about the Select Transform... dialog follows the
figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

Filter #1: Original Lowpass filter response
Filter #2: Transformed Lowpass Filter Response

Transforming Filters

11-43

To demonstrate the effects of selecting Narrowband Highpass or Wideband
Highpass, the next figure presents the magnitude response curves for a source
lowpass filter after it is transformed to both narrow- and wideband highpass
filters. For comparison, the response of the original filter appears as well.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

Filter #1:Original Lowpass Filter Response
Filter #2:Narrowband Highpass Filter Response
Filter #3: Wideband Highpass Filter Response

11 Using FDATool with the Filter Design Toolbox

11-44

For the narrowband case, the transformation algorithm essentially reverses
the magnitude response, like reflecting the curve around the y-axis, then
translating the curve to the right until the origin lies at 1 on the x-axis. After
reflecting and translating, the passband at high frequencies is the reverse of
the passband of the original filter at low frequencies with the same rolloff and
ripple characteristics.

Realizing Filters as Simulink Subsystem Blocks

11-45

Realizing Filters as Simulink Subsystem Blocks
After you design or import a filter in FDATool, the realize model feature lets
you create a Simulink subsystem block that implements your filter. The
generated filter subsystem block uses the delay, gain, and sum fixed-point
blocks from the Fixed-Point Blockset. If you do not own the Fixed-Point
Blockset, FDATool still realizes your model using fixed-point blocks from
Simulink, but you cannot run any model that includes your filter subsystem
block in Simulink.

About the Realize Model Panel in FDATool

Switching FDATool to realize model mode, by clicking on the sidebar,
gives you access to the Realize Model panel and the options for realizing your
quantized filter as a Simulink subsystem block.

On the panel, as shown here, are the options provided for configuring how
FDATool realizes your model.

Model Options
Under Model, you set options that direct FDATool where to put your new
subsystem block and what to name the block.

Destination. Tells FDATool whether to put the new block in your current
Simulink model or open a new Simulink model and add the block to that
window. Select Current model to add the block to your current model, or select
New model to create a new model for the block.

11 Using FDATool with the Filter Design Toolbox

11-46

Block name. Provides FDATool with a name to assign to your block. When you
realize your filter as a subsystem, the resulting block shows the name you enter
here as the block name, positioned just below the block.

Overwrite block. Directs FDATool whether to overwrite an existing block with
this block in the destination model. The result is that the new filter realization
subsystem block replaces the existing filter subsystem block. Selecting this
option replaces your existing filter realization subsystem block with the one
you create when you click Realize Model. Clearing Overwrite block causes
FDATool to create a new block in the destination model, rather than replacing
the existing block.

Block Type Option
To realize your quantized filter as a subsystem block, the most appropriate
choice is to select Fixed-point blocks from the list. When you are licensed to
use the fixed-point blocks in DSP Blockset, you have the option of realizing
your model as either fixed- or floating-point blocks. Since your filter is designed
to use quantized coefficients, the fixed-point blocks option usually matches
your needs most closely.

You can elect to realize your filter using floating-point blocks, with the
understanding that while the coefficients and gains of your filter retain their
fixed-point values (the filter uses the fixed-point values for both gain and
coefficients, in floating-point format), the math performed during filtering uses
floating-point arithmetic and does not truly match the output of your filter
running in fixed-point mode. Although realizing your quantized filter with
floating-point blocks is not recommended, selecting Floating-point blocks
from the list creates your filter from blocks in Simulink and the DSP Blockset.

If you do not own a license for the fixed-point blockset, realizing your quantized
filter as a subsystem generates a subsystem block that uses fixed-point blocks,
but you cannot run or edit the block. If you use the filter subsystem in a
Simulink model, you cannot run the model.

Optimization Options
Four options enable you to tailor the way the realized model optimizes various
filter features such as delays and gains. When you open the Realize Model
panel, these options are selected by default.

Realizing Filters as Simulink Subsystem Blocks

11-47

Optimize for zero gains. Specify whether to remove zero-gain blocks from the
realized filter.

Optimize for unity gains. Specify whether to replace unity-gain blocks with direct
connections in the filter subsystem.

Optimize for -1 gains. Specify whether to replace negative unity-gain blocks with
a sign change at the nearest sum block in the filter.

Optimize delay chains. Specify whether to replace cascaded chains of delay blocks
with a single integer delay block to provide an equivalent delay.

Each of these options can optimize the way your filter performs in simulation
and in code you might generate from your model.

To Realize a Filter Using FDATool
After your quantized filter in FDATool is performing the way you want, with
your desired phase and magnitude response, and with the right coefficients
and form, follow these steps to realize your filter as a subsystem that you can
use in a Simulink model.

1 Click Realize Model on the sidebar to change FDATool to realize model
mode.

2 From the Destination list under Model, select either:

- Current model—to add the realized filter subsystem to your current model

- New model—to open a new Simulink model window and add your filter
subsystem to the new window

3 Provide a name for your new filter subsystem in the Name field.

4 Decide whether to overwrite an existing block with this new one, and select
or clear Overwrite block to direct FDATool which way to go—overwrite or
not.

5 Select Fixed-point blocks from the list in Block Type.

6 Select or clear the optimizations to apply.

- Optimize for zero gains—removes zero gain blocks from the model
realization

11 Using FDATool with the Filter Design Toolbox

11-48

- Optimize for unity gains—replaces unity gain blocks with direct
connetions to adjacent blocks

- Optimize for -1 gains—replaces negative gain blocks by a change of sign
at the nearest sum block

- Optimize delay chains—replaces cascaded delay blocks with a single
delay block that produces the equivalent gain

7 Click Realize Model to realize your quantized filter as a subsystem block
according to the settings you selected.

If you double-click the filter block subsystem created by FDATool, you see the
filter implementation in Simulink model form. Depending on the options you
chose when you realized your filter, and the filter you started with, you might
see one or more sections, or different architectures based on the form of your
quantized filter. From this point on, the subsystem filter block acts like any
other block that you use in Simulink models.

Getting Help for FDATool

11-49

Getting Help for FDATool
To find out more about the buttons or options in the FDATool dialogs, use the
What’s This? button to access context-sensitive help.

Context-Sensitive Help—The What’s This? Option
To find information on a particular option or region of the dialog:

1 Click the What’s This? button .

Your cursor changes to .

2 Click on the region or option of interest.

For example, click Turn quantization on to find out what this option does.

You can also select What’s this? from the Help menu to launch
context-sensitive help.

Additional Help for FDATool
For help about importing filters into FDATool, or for details about using
FDATool to create and analyze double-precision filters, refer to the “Filter
Design and Analysis Tool Overview” in your Signal Processing Toolbox
documentation.

11 Using FDATool with the Filter Design Toolbox

11-50

12

Property Reference

A Quick Guide to Quantizer Properties
(p. 12-2)

Provides an overview of the properties of quantizers

Quantizer Properties Reference
(p. 12-3)

Gives the details about the quantizer properties

A Quick Guide to Quantized Filter
Properties (p. 12-10)

Provides an overview of the properties of quantized filters

Quantized Filter Properties Reference
(p. 12-11)

Explains the details about the quantized filter properties

A Quick Guide to Quantized FFT
Properties (p. 12-51)

Provides an overview of the properties of quantized FFTs

Quantized FFT Properties Reference
(p. 12-52)

Offers details about the quantized FFT properties

12 Property Reference

12-2

A Quick Guide to Quantizer Properties
The following table summarizes the quantizer properties and provides a brief
description of each. A table providing a full description of each property follows
in the next section.

Table 12-1: Quick Guide to Quantizer Properties

Property Brief Description of What the Property Specifies

Format Quantization format

Max Maximum value encountered when the quantizer quantizes data

Min Minimum value encountered when the quantizer quantizes data

Mode Type of quantized arithmetic

NOperations Number of quantization operations performed by a quantizer

NOverflows Number of overflows encountered when the quantizer quantizes
data

NUnderflows Number of underflows encountered when the quantizer quantizes
data

OverflowMode Handling of arithmetic overflows

RoundMode Rounding method used in quantization

Quantizer Properties Reference

12-3

Quantizer Properties Reference
To quantize data using quantize, you need to specify quantization parameters
in a quantizer. When you create a quantizer, you are creating a MATLAB
object. You specify the quantization parameters as values assigned to the
quantizer properties. With these property values, you specify the quantizer:

• Data format

• Arithmetic method

• Rounding method

• Overflow method

For a quick reference to properties, see Table 12-1, Quick Guide to Quantizer
Properties, on page 12-2. Details of all of the properties associated with
quantizers are described in the following sections in alphabetical order.

Format
You can set the data format of a quantizer according to its Format property
value. The interpretation of this property value depends on the value of the
Mode property.

For example, whether you specify the Mode property with fixed- or
floating-point arithmetic affects the interpretation of the data format property.
For some Mode property values, the data format property is read-only.

The following table shows you how to interpret the values for the Format
property value when you specify it, or how it is specified in read-only cases.

12 Property Reference

12-4

Default value: 'fixed'

The Format property for quantizers affects the following quantized filter and
quantized FFT data format properties:

• The CoefficientFormat property

• The InputFormat property

Table 12-2: Interpreting Format Property for Different Arithmetic Types (Mode Property Values)

Filter Arithmetic Mode Property
Value

Interpreting the Format Property Values

Fixed-point 'fixed' or
'ufixed'

You specify the Format property value as a vector. The
number of bits for the quantizer word length is the first
entry of this vector, and the number of bits for the
quantizer fraction length is the second entry.

The word length can range from 2 to the limits of memory
on your PC. The fraction length can range from 0 to one
less than the word length.

Floating-point 'float' You specify the Format property value as a vector. The
number of bits you want for the quantizer word length is
the first entry of this vector, and the number of bits you
want for the quantizer exponent length is the second
entry.

The word length can range from 2 to the limits of memory
on your PC. The exponent length can range from 0 to 11.

Floating-point 'double' The Format property value is specified automatically (is
read-only) when you set the Mode property to 'double'.
The value is [64 11], specifying the word length and
exponent length, respectively.

Floating-point 'single' The Format property value is specified automatically (is
read-only) when you set the Mode property to 'single'.
The value is [32 8], specifying the word length and
exponent length, respectively.

Quantizer Properties Reference

12-5

• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Set each of these data format properties using a quantizer.

Max
The Max property is read-only. The value of the Max property is the maximum
value data has before a quantizer is applied to it, that is, before quantization
using quantize. This value accumulates if you use the same quantizer to
quantize several data sets. You can reset the value using reset.

Default value: reset

Min
The Min property is read-only. The value of the Min property is the minimum
value data has before a quantizer is applied to it, that is, before quantization
using quantize. This value accumulates if you use the same quantizer to
quantize several data sets. You can reset the value using reset.

Default value: reset

Mode
You specify Mode property values as one of the following strings to indicate the
type of arithmetic used in filtering and quantization.

Mode Property Setting Description

'fixed' Signed fixed-point calculations

'float' User-specified floating-point calculations

'double' Floating-point calculations using
double-precision

12 Property Reference

12-6

Default value: 'fixed'

Remarks: When you set the Mode property value to 'double' or 'single' the
Format property value becomes read-only.

The Mode property for quantizers affects the following quantized filter and
quantized FFT data format properties:

• The CoefficientFormat property

• The InputFormat property

• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Set each of these data format properties using a quantizer.

NOperations
The NOperations property is read-only. The value of the NOperations property
is the number of quantization operations that occurred during quantization
when you use a quantizer, quantized filter, or quantized FFT. This value
accumulates when you use the same quantizer, quantized filter, or quantized
FFT to process several data sets. You reset the value using reset.

Default value: 0

NOverflows
The NOverflows property is read-only. The value of the NOverflows property is
the number of overflows that occur during quantization using quantize. This
value accumulates if you use the same quantizer to quantize several data sets.
You can reset the value using reset.

'single' Floating-point calculations using
single-precision

'ufixed' Unsigned fixed-point calculations

Mode Property Setting Description

Quantizer Properties Reference

12-7

Default value: 0

NUnderflows
The NUnderflows property is read-only. The value of the NUnderflows property
is the number of underflows that occur during quantization using quantize.
This value accumulates when you use the same quantizer to quantize several
data sets. You can reset the value using reset.

Default value: 0

OverflowMode
The OverflowMode property values are specified as one of the following two
strings indicating how overflows in fixed-point arithmetic are handled:

• 'saturate' — saturate overflows.

When the values of data to be quantized lie outside of the range of the largest
and smallest representable numbers (as specified by the data format
properties), these values are quantized to the value of either the largest or
smallest representable value, depending on which is closest.

• 'wrap' — wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest
and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number.

Default value: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic
range overflow to ±inf.

The OverflowMode property value is set to 'saturate' and becomes a read-only
property when you set the value of the Mode property to either 'float',
'double', or 'single'.

The OverflowMode property for quantizers affects the following quantized filter
and quantized FFT data format properties:

12 Property Reference

12-8

• The CoefficientFormat property

• The InputFormat property

• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Set each of these data format properties using a quantizer.

RoundMode
The RoundMode property values specify the rounding method used for
quantizing numerical values. Specify the RoundMode property values as one of
the following five strings.

Default value: 'floor'

RoundMode String Description of Rounding Algorithm

'ceil' Round up to the next allowable quantized value.

'convergent' Round to the nearest allowable quantized value.
Numbers that are exactly halfway between the
two nearest allowable quantized values are
rounded up only if the least significant bit (after
rounding) would be set to 1.

'fix' Round negative numbers up and positive
numbers down to the next allowable quantized
value.

'floor' Round down to the next allowable quantized
value.

'round' Round to the nearest allowable quantized value.
Numbers that are halfway between the two
nearest allowable quantized values are rounded
up.

Quantizer Properties Reference

12-9

Remarks: The RoundMode property for quantizers affects the following
quantized filter and quantized FFT data format properties:

• The CoefficientFormat property

• The InputFormat property

• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Use a quantizer to set each of these data format properties.

12 Property Reference

12-10

A Quick Guide to Quantized Filter Properties
The following table summarizes the quantized filter properties and provides a
brief description of each. A table providing a full description of each property
follows in the next section.

Table 12-3: Quick Guide to Quantized Filter Properties

Property Brief Description of What the Property Specifies

CoefficientFormat Quantization format for filter coefficients

FilterStructure Filter structure

InputFormat Quantization format applied to inputs during filtering

NumberOfSections Number of cascaded sections in the filter

MultiplicandFormat Quantization format for inputs that are multiplied by
coefficients in filtering operations

OutputFormat Quantization format applied to outputs during filtering

ProductFormat Quantization format for results of multiplication in filtering

QuantizedCoefficients Filter coefficients after quantization

ReferenceCoefficients Filter coefficients before quantization

ScaleValues Scaling for the quantized filter

StatesPerSection Number of states (delays) in each section of the filter

SumFormat Quantization format for results of addition in filtering

Quantized Filter Properties Reference

12-11

Quantized Filter Properties Reference
When you create a quantized filter, you are creating a MATLAB object. The
quantized filter object you create has many properties to which you assign
values. You use these property values to assign the characteristics of the
quantized filters you create, including:

• The filter structure

• The double-precision coefficients that specify the original reference filter
(before quantization)

• The data formats used in quantization and filtering operations

You specify the ReferenceCoefficients property value as a cell array. For
more information, see “Using Cell Arrays” on page 4-13.

For a quick reference to properties, see Table 12-1, Quick Guide to Quantizer
Properties. Details of all of the properties associated with quantized filters are
described in the following sections in alphabetical order.

CoefficientFormat
The CoefficientFormat property values specify how filter coefficients are
quantized. You specify these values with a quantizer. You set them according
to the quantizer property values:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

The value you set for this property is used to calculate the
QuantizedCoefficients property values.

Default value: quantizer('fixed','round','saturate',[16,15])

Note Coefficient overflows that occur due to quantization are not corrected
automatically. You can use normalize with several filter structures to account
for coefficient overflows.

12 Property Reference

12-12

FilterStructure
The FilterStructure property values are specified as one of the following
strings indicating the quantized filter architecture:

'Default value: 'df2t'

Remarks: The syntax for entering values for the ReferenceCoefficients
property is constrained by the FilterStructure property value. See Table

FilterStructure
Property Name

Filter Description

'antisymmetricfir' Antisymmetric finite impulse response (FIR).
Even and odd forms.

'df1' Direct form I.

'df1t' Direct form I transposed.

'df2' Direct form II.

'df2t' Direct form II transposed. Default filter structure.

'fir' Direct form FIR.

'firt' Direct form FIR transposed.

'latcallpass' Lattice allpass.

'latticeca' Lattice coupled-allpass.

'latticecapc' Lattice coupled-allpass power-complementary.

'latticear' Lattice autoregressive (AR).

'latticema' Lattice moving average (MA) minimum phase.

'latcmax' Lattice moving average (MA) maximum phase.

'latticearma' Lattice ARMA.

'statespace' Single-input/single-output state-space.

'symmetricfir' Symmetric FIR. Even and odd forms.

Quantized Filter Properties Reference

12-13

12-4: Syntax for Assigning Reference Filter Coefficients (Single Section) on
page 12-41, for information on how to enter these coefficients for each filter
architecture.

Filter Structure with Quantizers in Place
To help you understand how the quantizers work in filter structures like those
provided in the Toolbox, Figure 12-1 presents the structure for a Direct Form 2
filter, including the quantizers that compose the quantized filter. You see that
one or more quantizers accompany each filter element, such as a delay,
coefficient, or a summation element. The input to or output from each element
reflects the result of the associated quantizer. Wherever a particular filter
element appears in a structure, recall the quantizers that accompany it as they
appear in this figure. For example, a multiplicand quantizer precedes every
coefficient element and a product quantizer follows every coefficient element.
Or a sum quantizer follows each sum element.

Notice that in this diagram, the first denominator coefficient in your filter,
1/a(1), appears because a(1) is not equal to 1.

Figure 12-1: df2 Filter Structure Including the Quantizers, with a(1) ≠ 1

Output
Quantizer

Y+

+

+

C
oef

C
oef

C
oef

Input
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Sum
Quantizer

Sum
Quantizer

z-1

z-1

+

+

+

C
oe

f
C

oe
f

C
oef

Multiplicand
Quantizer

Product
Quantizer

Sum
Quantizer

Sum
Quantizer

Multiplicand
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Product
Quantizer

X Sum
Quantizer

1/a(1)

a(2)

a(3)

b(1)

b(2)

b(3)

-

+

-

+

12 Property Reference

12-14

When your filter sets a(1) = 1, the df2 structure changes as shown in the next
diagram, where the multiplicand and product quantizers for a(1) are not
included and are not used when you quantize your filter. Skipping these
quantizers removes potential errors that arise when a(1) ends up not quite
equal to 1 after quantization, although it should be exactly 1.

Figure 12-2: df2 Filter Structure Without Input Quantizers, where a(1) = 1

When the leading denominator coefficient a(1) is not 1, choose it to be a power
of two so that a shift replaces the multiply that would otherwise be used.

Note The quantized filter structures in the toolbox include the first
denominator coefficient a(1) in the feedback loop of direct-form IIR filters (df1,
df1t, df2, df2t), although customarily a(1) = 0.

However, when a(1) ≠ 1, the coefficient is needed to ensure accurate
quantization analysis. For examples of instances where the leading
denominator coefficient is not 1, check references [7] and [10] in the
Bibliography.

Output
Quantizer

Y+

+

+

C
oef

C
oef

C
oef

Input
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Sum
Quantizer

Sum
Quantizer

z-1

z-1

+

+

+

C
oe

f
C

oe
f

Sum
Quantizer

Sum
Quantizer

Multiplicand
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Product
Quantizer

X Sum
Quantizer

a(2)

a(3)

b(1)

b(2)

b(3)

a(1)=1

-

+

-

+

Quantized Filter Properties Reference

12-15

Quantized Filter Structures
You can choose among several different filter structures when you create a
quantized filter. You can also specify filters with single or multiple cascaded
sections of the same type. Because quantization is a nonlinear process,
different filter structures produce different results.

You specify the filter structure by assigning a specific string to the
FilterStructure property. Refer to the function reference listings for qfilt
and set for information on setting property values.

The FilterStructure property value constrains the syntax you can use for
specifying the filter reference coefficients. For details on the syntax to use for
specifying a filter with either a single section, or multiple (L) cascaded sections,
see Table 12-4, Syntax for Assigning Reference Filter Coefficients (Single
Section), and Table 12-5, Syntax for Assigning Reference Filter Coefficients (L
Sections).

The figures in the following subsections of this section serve as visual aids to
help you determine how to enter the reference filter coefficients for each filter
structure. Each subsection contains a simple example for constructing a filter
of a given structure.

Scale factors for the inputs and output for the filters do not appear in the block
diagrams. The default filter structures do not include, nor assume, the scale
factors.

12 Property Reference

12-16

Direct Form Antisymmetric FIR Filter Structure (Odd Order)
The following figure depicts a direct form antisymmetric FIR filter structure
that directly realizes a fifth-order antisymmetric FIR filter. The filter
coefficients are labeled b(i), i = 1, ..., 6, and the initial and final state values in
filtering are labeled z(i).

Use the string 'antisymmetricfir' for the value of the FilterStructure
property to design a quantized filter with this structure.

antisymmetricfir
(Antisymmetric FIR)

Even number of coefficients, length(b) = 6.
b(i) == − b(end − i + 1)

1
y

z

1
z(5)

z

1
z(4)

z

1

z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

1

x

Quantized Filter Properties Reference

12-17

Example — Specifying an Odd-Order Direct Form Antisymmetric FIR Filter Structure.
Specify a fifth-order direct form antisymmetric FIR filter structure for a
quantized filter Hq with the following code.

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
Hq = qfilt('antisymmetricfir',{b});

Antisymmetric FIR Filter Structure (Even Order)
The following figure depicts a direct form antisymmetric FIR filter structure
that directly realizes a fourth-order antisymmetric FIR filter. The filter
coefficients are labeled b(i), i = 1, ..., 5, and the states (used for initial and final
state values in filtering) are labeled z(i).

antisymmetricfir
(Antisymmetric FIR)

Odd number of coefficients, length(b) = 5.
Note that antisymmetry is defined as

b(i) == −b(end − i + 1)
so that the middle coefficient is zero for odd length

b((end+1)/2) = 0

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(2)

b(1)

1

x

12 Property Reference

12-18

Use the string 'antisymmetricfir' to specify the value of the
FilterStructure property for a quantized filter with this structure.

Example — Specifying an Even-Order Direct Form Antisymmetric FIR Filter Structure. You
can specify a fourth-order direct form antisymmetric FIR filter structure for a
quantized filter Hq with the following code.

b = [-0.01 0.1 0.0 -0.1 0.01];
Hq = qfilt('antisymmetricfir',{b});

Direct Form I Filter Structure
The following figures depict direct form I filter structures that directly realize
a transfer function with a second-order numerator and denominator. The
numerator coefficients are labeled b(i), the denominator coefficients are labeled
a(i), i = 1, 2, 3, and the states (used for initial and final state values in filtering)
are labeled z(i). In the first figure, a(1) is not equal to one and appears in the
structure. When a(1) is equal to one, the realized structure does not include the
coefficient, as you see in the second figure.

df1
(Direct Form I)

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1/a(1)

1
x

Quantized Filter Properties Reference

12-19

Use the string 'df1' to specify the value of the FilterStructure property for
a quantized filter with this structure.

Example — Specifying a Direct Form I Filter Structure. You can specify a second-order
direct form I structure for a quantized filter Hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df1',{b,a});

df1
(Direct Form I)

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1
x

12 Property Reference

12-20

Direct Form I Transposed Filter Structure
The following figures depict direct form I transposed filter structures that
directly realize a transfer function with a second-order numerator and
denominator. The numerator coefficients are labeled b(i), the denominator
coefficients are labeled a(i), i = 1, 2, 3, and the states (used for initial and final
state values in filtering) are labeled z(i). In the first figure, a(1) is not equal to
one and appears in the structure. When a(1) is equal to one, the realized
structure does not include the coefficient, as you see in the second figure.

df1t
(Transposed Direct Form I)

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1/a(1)

1
x

df1t
(Transposed Direct Form I)

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

Quantized Filter Properties Reference

12-21

Use the string 'df1t' to specify the value of the FilterStructure property for
a quantized filter with this structure.

Example — Specifying a Direct Form I Transposed Filter Structure. You can specify a
second-order direct form I transposed filter structure for a quantized filter Hq
with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df1t',{b,a});

12 Property Reference

12-22

Direct Form II Filter Structure
The following figures depict direct form II filter structures that directly realize
a transfer function with a second-order numerator and denominator. The
numerator coefficients are labeled b(i), the denominator coefficients are labeled
a(i), i = 1, 2, 3, and the states (used for initial and final state values in filtering)
are labeled z(i). In the first figure, a(1) is not equal to one and appears in the
structure. When a(1) is equal to one, the realized structure does not include the
coefficient, as you see in the second figure.

df2
(Direct Form II)

1
y

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1/a(1)

1
x

Quantized Filter Properties Reference

12-23

Use the string 'df2' to specify the value of the FilterStructure property for
a quantized filter with this structure.

Example — Specifying a Direct Form II Filter Structure. You can specify a second-order
direct form II filter structure for a quantized filter Hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df2',{b,a});

df2
(Direct Form II)

1
y

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1
x

12 Property Reference

12-24

Direct Form II Transposed Filter Structure
The following figures depict direct form II transposed filter structures that
directly realize a transfer function with a second-order numerator and
denominator. The numerator coefficients are labeled b(i), the denominator
coefficients are labeled a(i), i = 1, 2, 3, and the states (used for initial and final
state values in filtering) are labeled z(i). In the first figure, a(1) is not equal to
one and appears in the structure. When a(1) is equal to one, the realized
structure does not include the coefficient, as you see in the second figure.

df2t
(Transposed Direct Form II)

1
y

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1/a(1)

1
x

Quantized Filter Properties Reference

12-25

Use the string 'df2t' to specify the value of the FilterStructure property for
a quantized filter with this structure.

Example — Specifying a Direct Form II Transposed Filter Structure. You can specify a
second-order direct form II transposed filter structure for a quantized filter Hq
with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df2t',{b,a});

df2t
(Transposed Direct Form II)

1
y

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1
x

12 Property Reference

12-26

Direct Form Finite Impulse Response (FIR) Filter Structure
The following figure depicts a direct form finite impulse response (FIR) filter
structure that directly realizes a second-order FIR filter. The filter coefficients
are labeled b(i), i = 1, 2, 3, and the states (used for initial and final state values
in filtering) are labeled z(i).

Use the string 'fir' to specify the value of the FilterStructure property for
a quantized filter with this structure.

Example — Specifying a Direct Form FIR Filter Structure. You can specify a
second-order direct form FIR filter structure for a quantized filter Hq with the
following code.

b = [0.05 0.9 0.05];
Hq = qfilt('fir',{b});

fir
(Direct Form FIR = Tapped delay line)

1
y

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

1
x

Quantized Filter Properties Reference

12-27

Direct Form FIR Transposed Filter Structure
The following figure depicts a direct form finite impulse response (FIR)
transposed filter structure that directly realizes a second-order FIR filter. The
filter coefficients are labeled b(i), i = 1, 2, 3, and the states (used for initial and
final state values in filtering) are labeled z(i).

Use the string 'firt' to specify the value of the FilterStructure property for
a quantized filter with this structure.

Example — Specifying a Direct Forn FIR Transposed Filter Structure. You can specify a
second-order direct form FIR transposed filter structure for a quantized filter
Hq with the following code.

b = [0.05 0.9 0.05];
Hq = qfilt('firt',{b});

firt
(Transposed Direct Form FIR)

1
y

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

1
x

12 Property Reference

12-28

Lattice Allpass Filter Structure
The following figure depicts a lattice allpass filter structure. The pictured
structure directly realizes third-order lattice allpass filters. The filter reflection
coefficients are labeled k1(i), i = 1, 2, 3. The states (used for initial and final
state values in filtering) are labeled z(i).

Use the string 'latcallpass' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying a Lattice Allpass Filter Structure. You can specify a third-order
lattice allpass filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44];
Hq = qfilt('latcallpass',{k});

latcallpass
(Lattice AR All−Pass)

1
y z

1

z(3)
z

1

z(2)
z

1

z(1)

k(3) k(2) k(1)

conj(k(3)) conj(k(2)) conj(k(1))

1
x

Quantized Filter Properties Reference

12-29

Lattice Moving Average Maximum Phase Filter Structure
The following figure depicts a lattice moving average maximum phase filter
structure that directly realizes a third-order lattice moving average (MA) filter
with the following phase form depending on the initial transfer function:

• When you start with a minimum phase transfer function, the upper branch
of the resulting lattice structure returns a minimum phase filter. The lower
branch returns a maximum phase filter.

• When your transfer function is neither minimum phase nor maximum
phase, the lattice moving average maximum phase structure will not be
maximum phase.

• When you start with a maximum phase filter, the resulting lattice filter is
maximum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for
initial and final state values in filtering) are labeled z(i).

Use the string 'latcmax' to specify the value of the FilterStructure property
for a quantized filter with this structure.

Example—Specifying a Lattice Moving Average Maximum Phase Filter Structure. You can
specify a fourth-order lattice MA maximum phase filter structure for a
quantized filter Hq with the following code.

k = [.66 .7 .44 .33];

latcmax
(Lattice MA Max phase)

1
yz

1

z(3)
z

1

z(2)
z

1

z(1)

k(3)k(2)k(1)

conj(k(3))conj(k(2))conj(k(1))

1
x

12 Property Reference

12-30

Hq = qfilt('latcmax',{k});

Lattice Coupled-Allpass Filter Structure
The following figure depicts a lattice coupled-allpass filter structure. The filter
is composed of two third-order allpass lattice filters. The filter reflection
coefficients for the first filter are labeled k1(i), i = 1, 2, 3. The filter reflection
coefficients for the second filter are labeled k2(i), i = 1, 2, 3. The unity gain
complex coupling coefficient is beta. The states (used for initial and final state
values in filtering) are labeled z(i).

Use the string 'latticeca' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying a Lattice Coupled-Allpass Filter Structure. You can specify a
third-order lattice coupled allpass filter structure for a quantized filter Hq with
the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hq = qfilt('latticeca',{k1,k2,beta});

latticeca
(Coupled Allpass Lattice)

1
y

~3

~2

~1

z

1

z(6)
z

1

z(5)
z

1

z(4)

z

1

z(3)
z

1

z(2)
z

1

z(1)

k2(3) k2(2) k2(1)

k1(3) k1(2) k1(1)

conj(k2(3)) conj(k2(2)) conj(k2(1))

conj(k1(3)) conj(k1(2)) conj(k1(1))

conj(beta)

beta

H2(z)

H1(z)

0.5

1
x

Quantized Filter Properties Reference

12-31

Lattice Coupled-Allpass Power Complementary Filter Structure
The following figure depicts a lattice coupled-allpass power complementary
filter structure. The filter is composed of two third-order allpass lattice filters.
The filter reflection coefficients for the first filter are labeled k1(i), i = 1, 2, 3.
The filter reflection coefficients for the second filter are labeled k2(i), i = 1, 2, 3.
The unity gain complex coupling coefficient is beta. The states used for initial
and final state values in filtering are labeled z(i). The resulting filter transfer
function is the power-complementary transfer function of the coupled allpass
lattice filter (formed from the same coefficients).

Use the string 'latticecapc' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying a Lattice Coupled-Allpass Power Complementary Filter Structure.
Specify a third-order lattice coupled-allpass power complementary filter
structure for a quantized filter Hq with the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hq = qfilt('latticecapc',{k1,k2,beta});

latticecapc
(Coupled Allpass Lattice, Power Complementary output)

1
y

~3

~2

~1

z

1

z(6)
z

1

z(5)
z

1

z(4)

z

1

z(3)
z

1

z(2)
z

1

z(1)

k2(3) k2(2) k2(1)

k1(3) k1(2) k1(1)

j/2

conj(k2(3)) conj(k2(2)) conj(k2(1))

conj(k1(3)) conj(k1(2)) conj(k1(1))

conj(beta)

beta

H2(z)

H1(z)

−1

1
x

12 Property Reference

12-32

Lattice Autoregressive (AR) Filter Structure
The following figure depicts a lattice autoregressive (AR) filter structure that
directly realizes a third-order lattice AR filter. The filter reflection coefficients
are labeled k(i), i = 1, 2, 3, and the states (used for initial and final state values
in filtering) are labeled z(i).

Use the string 'latticear' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying an Lattice AR Filter Structure. You can specify a third-order
lattice AR filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44];
Hq = qfilt('latticear',{k});

latticear
(Autoregressive Lattice)

1
y

z

1

z(3)
z

1

z(2)
z

1

z(1)

k(3) k(2) k(1)

conj(k(3)) conj(k(2)) conj(k(1))

1
x

Quantized Filter Properties Reference

12-33

Lattice Moving Average (MA) Filter Structure
The following figure depicts a lattice moving average (MA) filter structure that
directly realizes a third-order lattice MA filter. The filter reflection coefficients
are labeled k(i), i = 1, 2, 3, and the states (used for initial and final state values
in filtering) are labeled z(i).

Use the string 'latticema' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying an Lattice MA Filter Structure. You can specify a third-order
lattice MA filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44];
Hq = qfilt('latticema',{k});

latticema
(Moving Average Lattice)

1
y

z

1

z(3)
z

1

z(2)
z

1

z(1)

k(3)k(2)k(1)

conj(k(3))conj(k(2))conj(k(1))

1
x

12 Property Reference

12-34

Lattice Autoregressive Moving Average (ARMA) Filter Structure
The following figure depicts a lattice autoregressive moving average (ARMA)
filter structure that directly realizes a fourth-order lattice ARMA filter. The
filter reflection coefficients are labeled k(i), i = 1, ..., 4, the ladder coefficients
are labeled v(i), i = 1, 2, 3, and the states (used for initial and final state values
in filtering) are labeled z(i).

Use the string 'latticearma' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying an Lattice ARMA Filter Structure. You can specify a fourth-order
lattice ARMA filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44 .66];
v = [1 0 0];
Hq = qfilt('latticearma',{k,v});

latticearma
(ARMA Lattice)

1
y

z

1

z(3)
z

1

z(2)
z

1

z(1)

v(4) v(3) v(2) v(1)

k(3) k(2) k(1)

conj(k(3)) conj(k(2)) conj(k(1))

1
x

Quantized Filter Properties Reference

12-35

State-Space Filter Structure
State-space models with input sequence xk and output sequence yk have the
following form.

If the states zk are vectors of length n, then the matrices A, B, C, and D are
n-by-n, n-by-1, 1-by-n, and 1-by-1 respectively.

Use the string 'statespace' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying a State-Space Filter Structure. You can specify a second-order
state-space filter structure for a quantized filter Hq with the following code.

[A,B,C,D] = butter(2,0.5);
Hq = qfilt('statespace',{A,B,C,D});

zk 1+ Azk Bxk+=

yk Czk Dxk+=

Statespace
x(k+1) = Ax(k) + Bu(k)
 y(k) = Cx(k) + Du(k)

1
Output

z

1

D

C

B

A

1
Input

AX(k)AX(k)AX(k)

U(k)

U(k)
BU(k)BU(k)BU(k) AX(k)+BU(k)AX(k)+BU(k)AX(k)+BU(k)

Y(k) = CX(k)+DU(k)Y(k) = CX(k)+DU(k)Y(k) = CX(k)+DU(k)

CX(k)CX(k)CX(k)

DU(k)DU(k)DU(k)

X(k)

12 Property Reference

12-36

Direct Form Symmetric FIR Filter Structure (Odd Order)
The following figure depicts a direct form symmetric FIR filter structure that
directly realizes a fifth-order direct form symmetric FIR filter. The filter
coefficients are labeled b(i), i = 1, ..., 6, and the states (used for initial and final
state values in filtering) are labeled z(i).

Use the string 'symmetricfir' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying an Odd-Order Direct Form Symmetric FIR Filter Structure. You can
specify a fifth-order direct form symmetric FIR filter structure for a quantized
filter Hq with the following code.

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
Hq = qfilt('symmetricfir',{b});

symmetricfir
(Symmetric FIR)

Even number of coefficients, length(b) = 6.
b(i) == b(end − i + 1)

1
y

z

1
z(5)

z

1
z(4)

z

1

z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

1

x

Quantized Filter Properties Reference

12-37

Direct Form Symmetric FIR Filter Structure (Even Order)
The following figure depicts a direct form symmetric FIR filter structure that
directly realizes a fourth-order direct form symmetric FIR filter. The filter
coefficients are labeled b(i), i = 1, ..., 5, and the states (used for initial and final
state values in filtering) are labeled z(i).

Use the string 'symmetricfir' to specify the value of the FilterStructure
property for a quantized filter with this structure.

Example — Specifying an Even-Order Direct Form Symmetric FIR Filter Structure. You can
specify a fourth-order direct form symmetric FIR filter structure for
a quantized filter Hq with the following code.

b = [-0.01 0.1 0.8 0.1 -0.01];
Hq = qfilt('symmetricfir',{b});

symmetricfir
(Symmetric FIR)

Odd number of coefficients, length(b) = 5.
b(i) == b(end − i + 1)

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

1

x

12 Property Reference

12-38

InputFormat
The InputFormat property values specify how inputs are quantized during the
filtering operation. You specify these values with a quantizer. You set them
according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15])

NumberOfSections
The value of this read-only property is a scalar that specifies the number of
cascaded sections in your quantized filter. You specify the number of sections
for your filter by the way you specify the ReferenceCoefficients property
value.

Default value: 1

MultiplicandFormat
Products in quantized filters always involve two types of multiplicands:

• Inputs (data)

• Coefficients

MultiplicandFormat property values specify how inputs that are multiplied by
coefficients are quantized during the filtering operation.

multiplicandFormat property values specify how to quantize the filter
multiplicands. Multiplicands are the inputs to multiply operations.

Not all inputs to multiplications are directly from the input to the filter.
Sometimes, as in the direct form I filter, the input to one multiplication may be
the output of another multiplication or addition. The output of a multiplication
(a product) and the output of an addition (a sum) is usually double the
wordlength of their inputs. For example, multiplying a 16-bit multiplicand by
a 16-bit multiplier (here a coefficient in a filter) yields a 32-bit product. Also,
sums are usually kept in double-wordlength accumulators. If any one of these

Quantized Filter Properties Reference

12-39

double-wordlength numbers is fed back into another multiplication as a
multiplicand, they need to be quantized back into a single-wordlength (16-bit)
number before using them in another calculation. Not quantizing the result
back to single word length causes (16-bit * 16-bit) = 32-bit result, then
(32-bit result * 16-bit) = 48-bit result, and so on. Hence the multiplicand
quantizer prevents the result from growing beyond 32 bits.

When multiplicand quantizers are not necessary, as in direct-form FIR filters,
multiplicandFormat should be set to be the same as the inputFormat because
the inputs to the multiplications are exactly the input to the filter.

Although multiplicand quantizers are not always necessary for a given filter
structure, filter structures in FD Toolbox have them available to provide full
generality in the specification of the arithmetic of any filter.

You specify these values with a quantizer. You set them according to the
property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15])

OutputFormat
The OutputFormat property values specify how outputs are quantized during
the filtering operation. You specify these values with a quantizer. You set them
according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15])

12 Property Reference

12-40

ProductFormat
The ProductFormat property values specify how the results of multiplication
are quantized during the filtering operation. You specify these values with a
quantizer. You set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30])

QuantizedCoefficients
The values for this read-only property are stored in a cell array containing the
quantized filter coefficients calculated from the value of the
ReferenceCoefficients property. The quantization is specified by the value of
the CoefficientFormat property.

Default value: {1 1}

Remarks: If any filter coefficient overflows occur as a result of quantization, a
warning is displayed.

The cell array for the QuantizedCoefficients property value has the same
form as that of the corresponding ReferenceCoefficients property value,
described in “Assigning Reference Filter Coefficients” on page 12-40.

ReferenceCoefficients
The ReferenceCoefficients property values are specified as a cell array that
specifies the original (unquantized) reference filter coefficients. You specify
these in double-precision, using a syntax specific to the value of the
FilterStructure property.

Default value: {1 1}

Assigning Reference Filter Coefficients
To assign the coefficients that specify the filter that serves as the reference for
your quantized filter, specify the value of the ReferenceCoefficients
property. The syntax you use to assign reference filter coefficients for your

Quantized Filter Properties Reference

12-41

quantized filter depends on the value you assign to the FilterStructure
property. These syntaxes are described in the following two tables. The first
table explains the syntax for the ReferenceCoefficients property value when
you want to specify one section for your filter. The next table explains how to
specify the coefficients for filters with L cascaded sections.

Table 12-4: Syntax for Assigning Reference Filter
Coefficients (Single Section)

FilterStructure Property
Value

Syntax for ReferenceCoefficients Property
Value

'antisymmetricfir' {b}:

• This is a cell array containing one vector.

• b(i) = -b(n-i+1); i = 1, ..., n

• n-1 is the order of the polynomial represented
by b.

• When n is odd, the center coefficient,
b((n+1)/2) should be 0.

If you don’t supply an antisymmetric vector b, it
is converted to be antisymmetric automatically.

'df1' {b,a}:

• This is a cell array of vectors.

• b is the vector representing the coefficients of
the transfer function numerator polynomial.

• a is the vector representing the coefficients of
the transfer function denominator polynomial.

'df1t' {b,a}: This is a cell array of vectors.

'df2' {b,a}: This is a cell array of vectors.

'df2t' {b,a}: This is a cell array of vectors.

'fir' {b}: This is a cell array containing one vector.

12 Property Reference

12-42

'firt' {b}: This is a cell array containing one vector.

'latticeca' {k1,k2,beta}:

• This is a cell array of vectors.

• k1 and k2 are the vectors of reflection
coefficients for the two lattice allpass filters in
the coupled allpass structure.

• beta is the unity gain complex scalar coupling
coefficient.

'latticecapc' {k1,k2,beta}:

• This is a cell array of vectors.

• k1 and k2 are the vectors of reflection
coefficients for the two lattice allpass filters in
the coupled allpass structure.

• beta is the unity gain complex scalar coupling
coefficient.

'latticear' {k}:

• This is a cell array containing one vector.

• k is the vector of reflection coefficients for an
all-pole (AR) lattice filter.

'latticema' {k}:

• This is a cell array containing one vector.

• k is the vector of reflection coefficients for an
FIR (MA) lattice filter.

Table 12-4: Syntax for Assigning Reference Filter
Coefficients (Single Section) (Continued)

FilterStructure Property
Value

Syntax for ReferenceCoefficients Property
Value

Quantized Filter Properties Reference

12-43

You can specify quantized filters with multiple sections for all of the filter
structures.

'latticearma' {k,v}:

• This is a cell array of vectors.

• k is the vector of reflection coefficients for an
IIR (ARMA) lattice filter.

• v is the vector of ladder coefficients for an IIR
lattice filter.

'statespace' {A,B,C,D}:

• This is a cell array of matrices.

• A is the n-by-n state transition matrix (n
states).

• B is the n-by-1 input to state transmission
vector.

• C is the 1-by-n state to output transmission
vector.

• D is the input to output transmission scalar.

'symmetricfir' {b}:

• This is a cell array containing one vector.

• b(i) = b(n-i+1); i = 1, ..., n

• n-1 is the order of the polynomial represented
by b.

• If you don’t supply a symmetric vector b, it is
converted to be symmetric automatically.

Table 12-4: Syntax for Assigning Reference Filter
Coefficients (Single Section) (Continued)

FilterStructure Property
Value

Syntax for ReferenceCoefficients Property
Value

12 Property Reference

12-44

The following table describes the syntax for entering reference coefficients to
specify a quantized filter with L second-order or arbitrary-order sections.

Table 12-5: Syntax for Assigning Reference Filter
Coefficients (L Sections)

Section
Structure

Syntax for ReferenceCoefficients Property Value

L second-order
sections

{ {b1 a1} {b2 a2} ... {bL aL} }

• This is a 1-by-L cell array of 1-by-2 cell arrays.

• bi is a 1-by-3 row vector for the numerator of the ith
section, i=1, ... , L.

• ai is a 1-by-3 row vector for the denominator of the ith
section, i=1, ... , L.

You can use tf2sos and sos2cell to covert a transfer
function directly into this format (a cell array of cells).
You can also use sos to convert quantized filters with
other topologies directly to a second-order sections form.

L sections,
each of
arbitrary order
(except FIR
filters)

{ {b1 a1} {b2 a2} ... {bL aL} }

• This is a 1-by-L cell array of 1-by-2 cell arrays.

• bi is a 1-by-nbi row vector for the numerator of the ith
section, i=1, ... , L.

• ai is a 1-by-nai row vector for the denominator of the
ith section, i=1, ... , L.

• nbi is the order of the numerator of the ith section.

• nai is the order of the denominator of the ith section.

L sections,
each of
arbitrary order
(only FIR)

{ {b1} {b2} ... {bL} }

• This is a 1-by-L cell array of one-dimensional cell
arrays.

• bi is a 1-by-nbi row vector for the numerator of the ith
FIR section, i=1, ... , L.

• nbi is the order of the ith FIR section.

Quantized Filter Properties Reference

12-45

L sections of
coupled allpass
lattice filters

{{k11,k21,beta1},...,{k1L,k2L,betaL)}:

• This is a 1-by-L cell array of 1-by-3 cell arrays.

• k1i and k2i are the vectors of reflection coefficients for
the two lattice allpass filters in the ith coupled allpass
structure, i=1, ... , L.

• betai is the unity gain complex scalar coupling
coefficient in the ith coupled allpass structure, i=1, ... ,
L.

L sections of
lattice ARMA
filters

{{k1,v1},...,{kL,vL}}:

• This is a 1-by-L cell array of 1-by-2 cell arrays.

• ki is the vector of reflection coefficients for the ith IIR
lattice (ARMA) filter in the cascade, i=1, ... , L.

• vi is the vector of ladder coefficients for ith IIR lattice
(ARMA) filter in the cascade, i=1, ... , L.

Table 12-5: Syntax for Assigning Reference Filter
Coefficients (L Sections) (Continued)

Section
Structure

Syntax for ReferenceCoefficients Property Value

12 Property Reference

12-46

Conversion functions in this toolbox and in Signal Processing Toolbox let you
convert transfer functions to other filter forms and from filter forms to transfer
functions. Relevant conversion functions include the following functions.

L sections of
lattice AR or
MA filters

{{k1},...,{kL}}:

• This is a 1-by-L cell array of one-dimensional cell
arrays.

• ki is the vector of reflection coefficients for the ith
lattice AR or MA filter in the cascade, i=1, ... , L.

L sections of
state-space
filters

{{A1,B1,C1,D1},...,{AL,BL,CL,DL}}:

• This is a cell array of 1-by4 cell arrays.

• Ai is the ni-by-ni state transition matrix (ni states) of
the ith state-space filter in the cascade, i=1, ... , L.

• Bi is the ni-by-1 input to state transmission vector of
the ith state-space filter in the cascade, i=1, ... , L.

• Ci is the 1-by-ni state to output transmission vector of
the ith state-space filter in the cascade, i=1, ... , L.

• Di is the input to output transmission scalar of the ith
state-space filter in the cascade, i=1, ... , L.

Conversion Function Description

ca2tf Converts from a coupled allpass filter to a
transfer function.

cl2tf Converts from a lattice coupled allpass filter to
a transfer function.

Table 12-5: Syntax for Assigning Reference Filter
Coefficients (L Sections) (Continued)

Section
Structure

Syntax for ReferenceCoefficients Property Value

Quantized Filter Properties Reference

12-47

You can specify a filter with L sections of arbitrary order by:

1 Factoring your entire transfer function with tf2zp.

2 Using zp2tf to compose the transfer function for each section from the
selected first-order factors obtained in step 1.

sos Converts quantized filters to create
second-order sections. This is the
recommended method for converting quantized
filters to second-order sections.

tf2ca Converts from a transfer function to a coupled
allpass filter.

tf2cl Converts from a transfer function to a lattice
coupled allpass filter.

tf2latc Converts from a transfer function to a lattice
filter.

tf2sos Converts from a transfer function to a
second-order section form.

tf2ss Converts from a transfer function to
state-space form.

tf2zp Converts from a rational transfer function to
its factored (single section) form
(zero-pole-gain form).

zp2sos Converts a zero-pole-gain form to a
second-order section form.

zp2ss Conversion of zero-pole-gain form to a
state-space form.

zp2tf Conversion of zero-pole-gain form to transfer
functions of multiple order sections.

Conversion Function
 (Continued)

Description

12 Property Reference

12-48

Note You are not required to normalize the leading coefficients of each
section’s denominator polynomial when specifying second-order sections,
though tf2sos does.

ScaleValues
The ScaleValues property values are specified as a scalar (or vector) that
introduces scaling for inputs (and the outputs from cascaded sections in the
vector case) during filtering:

• When you only have a single section in your filter:

- Specify the ScaleValues property value as a scalar if you only want to
scale the input to your filter.

- Specify the ScaleValues property as a vector of length 2 if you want to
specify scaling to the input (scaled with the first entry in the vector) and
the output (scaled with the last entry in the vector).

• When you have L cascaded sections in your filter:

- Specify the ScaleValues property value as a scalar if you only want to
scale the input to your filter.

- Specify the value for the ScaleValues property as a vector of length L+1 if
you want to scale the inputs to every stage in your filter, along with the
output:

-The first entry of your vector specifies the input scaling

- Each successive entry specifies the scaling at the output of the next section

- The final entry specifies the scaling for the filter output.

The interpretation of this property is described below with diagrams in
“Interpreting the ScaleValues Property”.

Default value: 1

Remarks: The value of the ScaleValues property is not quantized. Data
affected by the presence of a scaling factor in the filter is quantized according
to the appropriate data format.

Quantized Filter Properties Reference

12-49

When you apply normalize to a quantized filter, the value for the ScaleValues
property is changed accordingly.

It is good practice to choose values for this property that are either positive or
negative powers of two.

Interpreting the ScaleValues Property
When you specify the values of the ScaleValues property of a quantized filter,
the values are entered as a vector, the length of which is determined by the
number of cascaded sections in your filter:

• When you have only one section, the value of the Scalevalues property can
be a a scalar or a two-element vector.

• When you have L cascaded sections in your filter, the value of the
Scalevalues property can be a scalar or an L+1-element vector.

The following diagram shows how the ScaleValues property values are applied
to a quantized filter with only one section.

Application of ScaleValues
to a Single Section

1
Output

−K−

ScaleValues(2)

−K−

ScaleValues(1)

Input Output

Filter

1
Input

12 Property Reference

12-50

The following diagram shows how the ScaleValues property values are applied
to a quantized filter with two sections.

StatesPerSection
This read-only property value is an 1-by-L vector that specifies the number of
states (delays) in each section of a quantized filter with L cascaded sections.

Default value: 0

SumFormat
The SumFormat property values specify how the results of addition are
quantized during the filtering operation. You specify these values with a
quantizer. You set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30])

Application of ScaleValues
to Multiple Sections

1
Output

−K−

ScaleValues(3)

−K−

ScaleValues(2)

−K−

ScaleValues(1)

Input Output

Filter2

Input Output

Filter1

1
Input

A Quick Guide to Quantized FFT Properties

12-51

A Quick Guide to Quantized FFT Properties
The following table summarizes the quantized FFT properties and provides a
brief description of each. These properties are implemented when you use a
quantized FFT in conjunction with an FFT or inverse FFT (IFFT)) algorithm
(fft or ifft). A table providing a full description of each property follows in the
next section.

Table 12-6: Quick Guide to Quantized FFT Properties

Property Brief Description of What the Property Specifies

CoefficientFormat Quantization format for FFT or IFFT coefficients (twiddle factors)

InputFormat Quantization format applied to inputs to the FFT or IFFT algorithm

Length Length of the quantized FFT or IFFT

NumberOfSections Number of sections used in the quantized FFT algorithm

MultiplicandFormat Quantization format for inputs that are multiplied by coefficients in
the FFT or IFFT algorithm

OutputFormat Quantization format applied to outputs of the FFT or IFFT algorithm

ProductFormat Quantization format for results of multiplication within the FFT or
IFFT algorithm

Radix Radix value for the FFT algorithm

ScaleValues Scaling for the inputs and stages of the FFT or IFFT algorithm

SumFormat Quantization format for results of addition within the FFT or IFFT
algorithm

12 Property Reference

12-52

Quantized FFT Properties Reference
To implement an FFT or inverse FFT (IFFT) algorithm, you specify a quantized
FFT, along with its property values. When you create a quantized FFT, you are
creating a MATLAB object. You specify the FFT quantization parameters as
values assigned to the quantized FFT properties. With these property values,
you specify the quantized FFT:

• Data formats

• Length

• Radix number (2 or 4)

• Scaling values for each stage

For a quick reference to properties, see “A Quick Guide to Quantized FFT
Properties” on page 12-51. Details of all of the properties associated with
quantized FFTs are described in the following sections in alphabetical order.

CoefficientFormat
The CoefficientFormat property values specify how FFT coefficients (twiddle
factors) are quantized in the FFT algorithm. You specify these values with a
quantizer. You set them according to the quantizer property values:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','round','saturate',[16,15])

InputFormat
The InputFormat property values specify how inputs are quantized in the FFT
algorithm. You specify these values with a quantizer. You set them according
to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

Quantized FFT Properties Reference

12-53

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15])

Length
The Length property value is a scalar integer indicating the length of the FFT.
Specify the length as a power of the radix number.

Default value: 16

NumberOfSections
The value of this read-only property is a scalar that specifies the number of
sections (stages) in your FFT algorithm. This number is computed from the
Length and the Radix property values as

log2(Length)/log2(Radix)

Default value: 4

MultiplicandFormat
Products in quantized FFTs always involve two types of multiplicands:

• Inputs (data)

• Coefficients

The MultiplicandFormat property values specify how inputs that are
multiplied by coefficients are quantized in the FFT algorithm. You specify
these values with a quantizer. You set them according to the property values
of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15])

12 Property Reference

12-54

OutputFormat
The OutputFormat property values specify how outputs are quantized in the
FFT algorithm. You specify these values with a quantizer. You set them
according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15])

ProductFormat
The ProductFormat property values specify how the results of multiplication
are quantized in the FFT algorithm. You specify these values with a quantizer.
You set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30])

Radix
The Radix property indicates the form of the FFT algorithm you want to apply.
The Radix property value can be either:

• 2 (default)

• 4

ScaleValues
The ScaleValues property values are specified as a scalar (or vector) that
introduces scaling for inputs (and the outputs from each FFT section in the
vector case) to the FFT algorithm:

Quantized FFT Properties Reference

12-55

• Specify the ScaleValues property value as a scalar if you only want to scale
the input to the FFT algorithm.

• Specify the ScaleValues property as a vector of length L if you have L
sections in your FFT, and you want to scale:

- The input to the first section (with the first entry in the vector you supply)

- The input to each subsequent section (with each corresponding entry in
the vector you supply)

Default value: 1

Remarks: The value of the ScaleValues property is not quantized. Data
affected by the presence of a scaling factor within the FFT algorithm is
quantized according to the appropriate data format.

It is good practice to choose values for this property that are positive or
negative powers of two.

SumFormat
The SumFormat property values specify how the results of addition are
quantized in the FFT algorithm. You specify these values with a quantizer. You
set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30])

12 Property Reference

12-56

13

Function Reference

Functions—By Category (p. 13-2) Lists the functions in the toolbox, by category, such as
object constructors or analysis functions

Functions Operating on Quantized
Filters (p. 13-10)

Lists the functions used on quantized filters

Functions Operating on Quantizers
(p. 13-12)

Lists the functions used on quantizers

Functions Operating on Quantized
FFTs (p. 13-14)

Lists the functions used on quantized FFTs

Functions for Designing Digital Filters
(p. 13-16)

List the filter design functions

Functions—Alphabetical List (p. 13-19) Introduces the alphabetical listing of reference pages for
every function in the toolbox

13 Function Reference

13-2

Functions—By Category
With the Filter Design (FD) Toolbox, you can create, apply, and analyze
quantized filters, quantizers, and quantized fast Fourier transforms (FFTs).
This chapter contains brief descriptions of all FD Toolbox functions grouped by
subject area, and continues with the detailed reference entries listed
alphabetically. The following tables list the functions in the FD Toolbox,
separated by quantization application—quantized filter, quantizer, or
quantized FFT. In many instances, you can apply a function to more than one
application; those functions are called overloaded functions and they appear in
more than one table.

Quantized Filter Construction and Property
Functions

Function Description

get Get properties of a quantized filter

isreal Test if filter coefficients are real

num2bin Convert a number to two’s-complement binary string

num2hex Convert a number to hexadecimal string

qfilt Construct a quantized filter (Qfilt object)

qreport Returns the listing of a quantize filter and its properties

reset Reset the properties of a quantized filter to their initial
values

set Set properties of a quantized filter

setbits Set the data format property values for a quantized filter

Functions—By Category

13-3

Quantized Filter Analysis Functions
Function Description

freqz Compute the frequency response for a quantized filter

impz Compute the impulse response for a quantized filter

isallpass Test quantized filters to determine if they are allpass
structures

isfir Test quantized filters to see if they are FIR filters

islinphase Test quantized filters to see if they are linear phase

ismaxphase Test quantized filters to see if they are maximum phase
filters

isminphase Test quantized filters to see if they are minimum phase
filters

isreal Test qauntized filters for purely real coefficients

issos Test whether quantized filters are composed of
second-order sections

isstable Test for stability of quantized filters

limitcycle Detect limit cycles in a quantized filter

nlm Use the Noise Loading Method to estimate the frequency
response of a quantized filter

zplane Compute a pole-zero plot for a quantized filter

Table 13-1: Quantized Filtering Functions

Function Description

filter Filter data with a quantized filter

normalize Normalize quantized filter coefficients

13 Function Reference

13-4

Second-Order Sections Conversion Functions
Function Description

cell2sos Convert a cell array to a second-order sections matrix

sos Convert a quantized filter to second-order sections form,
order, and scale

sos2cell Convert a second-order sections matrix to a cell array

Quantizer Construction and Property Functions
Function Description

bin2num Convert binary string to number

get Return the property values for a quantizer

num2bin Convert a number to two’s-complement binary string

num2hex Convert a number to hexadecimal string

qreport Returns the listing of a quantizer and its properties

quantize Apply a quantizer to a data set

quantizer Construct a quantizer object

reset Reset the properties of a quantizer to their initial
values

set Set and display the property values of a quantizer

unitquantize Set numbers between eps(q) and 1 equal to 1

wordlength Return the wordlength of a quantizer

Functions—By Category

13-5

Quantizer Analysis Functions
Function Description

denormalmax Return the largest denormalized quantized number

denormalmin Return the smallest denormalized quantized number

eps Return the quantized relative accuracy of a quantizer

errmean Return the mean of the quantization error resulting
from quantizing a signal

errpdf Calculate the probability density function (pdf) of the
quantization error

errvar Return the variance of the quantization error resulting
from quantizing a signal

exponentbias Return the exponent bias for a quantizer

exponentlength Return the exponent length for a quantizer

exponentmax Return the maximum exponent for a quantizer

exponentmin Return the minimum exponent for a quantizer

fractionlength Return the fraction length for a quantizer

isfixed Test whether quantizers are fixed point

isfloat Test whether quantizers are floating point

isnone Test whether a quantizer has quantization mode equal
to none

noverflows Return the number of overflows encountered while
using a quantizer on one or more data sets

range Return the numerical range of a quantizer

realmax Return the largest positive quantized number

13 Function Reference

13-6

realmin Return the smallest positive quantized number

nunderflows Return the number of underflows encountered while
using a quantizer on one or more data sets

Quantized FFT Construction and Property Functions
Function Description

fft Apply a quantized FFT to a data set

get Return the property values for a quantized FFT

ifft Apply an inverse quantized FFT to a data set

qfft Construct a quantized FFT

qreport Returns the listing of a quantized FFT and its
properties

quantizer Return all the quantizers associated with a quantized
FFT

reset Reset the properties of a quantized FFT to their initial
values

set Set and display the property values of a quantized FFT

setbits Set and one or more property values of a quantized FFT

Quantized FFT Analysis Functions
Function Description

noverflows Return the number of overflows resulting from the
most recent application of a quantized FFT

Quantizer Analysis Functions
Function Description

Functions—By Category

13-7

range Return the numerical range of a quantized FFT

twiddles Return the twiddle factors for a quantized FFT

Filter Design Functions
Function Description

cicdecimate Use a cascaded integrator-comb (CIC) decimation filter
to decrease the sampling rate for a signal

cicinterpolate Use a cascaded integrator-comb (CIC) interpolation
filter to increase the sampling rate for a signal

firceqrip Design constrained, equiripple, finite impulse response
(FIR) filters

firlpnorm Design least-pth norm optimal FIR filters

firhalfband Design half-band FIR filters

firminphase Compute the minimum phase FIR spectral factor of
linear phase FIR filters

firnyquist Design lowpass Nyquist (L-th band) FIR filters

gremez Design optimal equiripple FIR (finite impulse
response) digital filters based on the Parks-McClellan
algorithm

ifir Design interpolated FIR filters

iircomb Design comb IIR filters with periodic frequency
response

iirgrpdelay Design least-pth norm IIR filters with given group
delay

iirlpnorm Design least-pth norm IIR filters

Quantized FFT Analysis Functions
Function Description

13 Function Reference

13-8

iirlpnormc Design constrained least-pth norm IIR filters

iirnotch Design notch IIR filters to attenuate a fixed frequency

iirpeak Design peaking IIR filters for boosting or cutting
specific frequencies

Filter Conversion Functions
Function Description

ca2tf Convert coupled allpass filters to transfer function form

cl2tf Convert lattice coupled allpass filters to transfer
function form

firlp2lp Transform lowpass FIR filters to lowpass filters with
different passband specifications

firlp2hp Transform lowpass FIR filters to highpass FIR filters

iirlp2bp Transform lowpass IIR filters to bandpass filters

iirlp2bs Transform lowpass IIR filters to bandstop filters

iirlp2hp Transform lowpass IIR filters to highpass filters

iirlp2lp Transform lowpass IIR filters to lowpass filters

iirpowcomp Compute the power complementary IIR filter

tf2ca Convert transfer function form to coupled allpass form

tf2cl Convert transfer function form to lattice coupled
allpass form

Filter Design Functions
Function Description

Functions—By Category

13-9

Adaptive Filter Design Functions and Their
Initialization Functions

Function Initializing
Function

Description

adaptkalman initkalman Use a Kalman filter in an adaptive
filtering application

adaptlms initlms Use a least mean squares (LMS)
algorithm filter in an adaptive filtering
application

adaptnlms initnlms Use a normalized LMS algorithm filter
in an adaptive filtering application

adaptrls initrls Use a recursive least squares algorithm
filter in an adaptive filtering
application

adaptsd initsd Use a sign-data variant of the LMS
algorithm filter in an adaptive filtering
application

adaptse initse Use a sign-error variant of the LMS
algorithm filter in an adaptive filtering
application

adaptss initss Use a sign-sign variant of the LMS
algorithm filter in an adaptive filtering
application

13 Function Reference

13-10

Functions Operating on Quantized Filters
The following table lists functions that operate directly on quantized filters.
Some are overloaded and operate on other quantized objects, such as quantized
FFTs as well. Overloaded functions are marked in the table.

Functions Functions That Operate
Directly on Quantized Filters

Overloaded
Functions

convert ÷

copyobj ÷ ÷

disp ÷ ÷

eps ÷ ÷

filter ÷ ÷

freqz ÷ ÷

get ÷ ÷

impz ÷ ÷

isallpass ÷

isfir ÷

islinphase ÷

ismaxphase ÷

isminphase ÷

isreal ÷ ÷

issos ÷

isstable ÷

limitcycle ÷

nlm ÷

Functions Operating on Quantized Filters

13-11

To get command line help on an overloaded function FunctionName for
quantized filters, type

help qfilt/FunctionName

noperations ÷ ÷

normalize ÷

noverflows ÷ ÷

num2bin ÷

num2hex ÷

optimizeunitygains ÷

order ÷

qfilt ÷

qfilt2tf ÷

range ÷ ÷

reset ÷ ÷

set ÷ ÷

setbits ÷ ÷

sos ÷

zplane ÷ ÷

Functions Functions That Operate
Directly on Quantized Filters

Overloaded
Functions

13 Function Reference

13-12

Functions Operating on Quantizers
The following table lists functions that operate directly on quantizers. Some
are overloaded and operate on other quantized objects, such as quantized FFTs
as well. Overloaded functions are marked in the table

Functions Functions That Operate
Directly on Quantizers

Overloaded Functions

bin2num ÷ ÷

copyobj ÷ ÷

denormalmax ÷

denormalmin ÷

disp ÷ ÷

eps ÷ ÷

exponentbias ÷

exponentlength ÷

exponentmax ÷

exponentmin ÷

fractionlength ÷

get ÷ ÷

hex2num ÷

max ÷

min ÷

noperations ÷ ÷

noverflows ÷ ÷

num2bin ÷ ÷

Functions Operating on Quantizers

13-13

To get command line help for an overloaded function FunctionName for
quantizers, type

help quantizer/FunctionName

num2hex ÷ ÷

nunderflows ÷

qreport ÷ ÷

quantize ÷

quantizer ÷

randquant ÷

range ÷ ÷

realmax ÷

realmin ÷

reset ÷ ÷

set ÷ ÷

tostring ÷ ÷

unitquantize ÷

unitquantizer ÷

wordlength ÷

Functions Functions That Operate
Directly on Quantizers

Overloaded Functions

13 Function Reference

13-14

Functions Operating on Quantized FFTs
The following table lists functions that operate directly on quantized FFTs.
Some are overloaded and operate on other quantized objects, such as quantized
filters as well. Overloaded functions are marked in the table

Functions Functions That Operate
Directly on Quantized FFTs

Overloaded
Functions

copyobj ÷ ÷

disp ÷ ÷

eps ÷ ÷

fft ÷

get ÷ ÷

ifft ÷

noperations ÷ ÷

noverflows ÷ ÷

optimizeunitygains ÷ ÷

qfft ÷

qreport ÷ ÷

quantizer ÷ ÷

range ÷ ÷

reset ÷ ÷

set ÷ ÷

setbits ÷ ÷

tostring ÷ ÷

twiddles ÷÷

Functions Operating on Quantized FFTs

13-15

To get command line help on an overloaded function FunctionName for
quantized FFTs, type

help qfft/FunctionName

13 Function Reference

13-16

Functions for Designing Digital Filters
The following functions design digital FIR filters:

• firceqrip

• firlpnorm

• firhalfband

• firminphase

• firnyquist

• gremez

• ifir

The following functions design digital IIR filters:

• cicdecimate

• cicinterpolate

• iircomb

• iirgrpdelay

• iirlpnorm

• iirlpnormc

• iirnotch

• iirpeak

The following functions design adaptive filters:

• adaptkalman

• adaptlms

• adaptrls

• adaptsd

• adaptse

• adaptss

The following functions transform the frequency response of digital filters from
one type to another, such as lowpass to highpass:

Functions for Designing Digital Filters

13-17

IIR transforms

• firlp2lp

• firlp2hp

• iirlp2bp

• iirlp2bs

• iirlp2hp

• iirlp2lp

• iirlp2mb

• iirlp2xn

• iirlp2bpc

• iirlp2bsc

• iirshiftc

• iirlp2mbc

• iirlp2xc

• iirbpc2bpc

• iirrateup

• iirftransf

ZPK transforms

• zpklp2lp

• zpklp2hp

• zpklp2bp

• zpklp2bs

• zpkshift

• zpklp2mb

• zpklp2xn

• zpklp2bpc

• zpklp2bsc

• zpkshiftc

• zpklp2mbc

• zpklp2xc

13 Function Reference

13-18

• zpkbpc2bpc

• zpkrateup

• zpkftransf

The following functions convert the structures of digital filters:

• ca2tf

• cl2tf

• iirpowcomp

• qfilt2tf

• tf2ca

• tf2cl

To get command line help on a design or conversion function such as gremez or
quantizer, type either

• help gremez

• help objecttype/quantizer where objecttype is one of the following
strings that specify the version of help to see:

- qfilt

- qfft

- quant

Functions—Alphabetical List

13-19

Functions—Alphabetical List
The following reference pages list the functions included in the Filter Design
Toolbox. Each function listing provides a purpose, syntax, description,
algorithm (optional), and examples for the function.

adaptkalman

13-20

13adaptkalmanPurpose Use a discrete-time Kalman filter in an adaptive filtering application

Syntax y = adaptkalman(x,d,s)
[y,e] = adaptkalman(x,d,s)
[y,e,s] = adaptkalman(x,d,s)

Description y = adaptkalman(x,d,s) applies a Kalman adaptive filter to the data vector
x and the desired signal d. The filtered data is returned in y. To return the filter
states after adaptation, specify the output argument s.

s is a structure containing the initialization settings that define the Kalman
filter you are using and some output results, as shown in the table that follows.
In the third column of the table, you see a list showing how the input
arguments to initkalman correspond to elements in s.

Structure
Element

Element Description initkalman
argument

s.coeffs Kalman adaptive filter coefficients. Should be
initialized with the initial values for the FIR
filter coefficients. Updated coefficients are
returned when you use s as an output
argument. Contains filter order plus one
elements in a vector.

w0

s.errcov The state error covariance matrix. Initialize
this element with the initial error state
covariance matrix. An updated matrix is
returned when you use s as an output
argument. This is a square matrix of
dimension filter order plus one. For example,
for a 32nd-order filter, s.errcov is a 33-by-33
matrix.

k0

adaptkalman

13-21

Use initkalman to configure the elements of input argument structure s.

[y,e] = adaptkalman(...) also returns the prediction error e.

[y,e,s] = adaptkalman(...) returns the updated structure s.

In applications where you need to know the intermediate filter states as the
filter adapts to the unknown system, call adaptkalman inside a conditional
program statement such as the following for-loop example.

for n = 1:length(x)
[y(n),e(n),s] = adaptkalman(x(n),d(n),s);
% States (The fields of s) here may be modified here.

s.measvar Contains the measurement noise variance
matrix. Use the same value for all the
elements in the matrix and adaptkalman
returns a matrix of noise variance values — a
square matrix of dimension filter order plus
one. For example, for a 32nd-order filter,
s.measvar is a 33-by-33 matrix.

qm

s.procov Contains the process noise covariance matrix.
This is a square matrix of dimension filter
order plus one. For example, for a 32nd-order
filter, s.procov is a 33-by-33 matrix.

qp

s.states Returns the states of the FIR filter when use
s as an output argument. This is an optional
input element. If omitted on input, it defaults
to a zero vector of length equal to the filter
order.

zi

s.gain Kalman gain vector. Computed and returned
after every iteration. This is a read-only value.

s.iter Total number of iterations in adaptive filter
run. This is a read-only value.

Structure
Element

Element Description initkalman
argument

adaptkalman

13-22

end

In lieu of assigning the structure fields for s manually, use initkalman to
populate structure s.

Examples Use an adaptive Kalman filter to identify an unknown 32nd-order FIR filter
(500 iterations). From Signal Processing Toolbox we use fir1 to create our
unknown windowed lowpass FIR filter.

x = 0.1*randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
d = filter(b,1,x); % Desired signal
w0 = zeros(1,32); % Intial filter coefficients
k0 = 0.5*eye(32); % Initial state error correlation matrix
qm = 2; % Measurement noise covariance
qp = 0.1*eye(32); % Process noise covariance
s = initkalman(w0,k0,qm,qp);
[y,e,s] = adaptkalman(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR filter via Kalman Filter');
grid on;

In the stem plot, you see that the original filter and the Kalman
approximation/identification filter have identical response characteristics.

adaptkalman

13-23

See Also initkalman, adaptlms, adaptnlms, adaptrls, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification of an FIR filter via Kalman Filter

Actual
Estimated

adaptlms

13-24

13adaptlmsPurpose Use a least mean squared (LMS) FIR adaptive filter in an adaptive filtering
application

Syntax y = adaptlms(x,d,s)
[y,e] = adaptlms(x,d,s)
[y,e,s] = adaptlms(x,d,s)

Description Y = adaptlms(x,d,s) applies an FIR LMS adaptive filter to the data vector x
and the desired signal d. The filtered data is returned in y. s is a structure that
contains initialization settings that define the LMS adaptive algorithm you
plan to use, as well as some output from the filter adaptation process. The
following table details the contents of s, both input and output.The column
headed initlms Element shows you which element in s corresponds to each
input argument to initlms.

Structure
Element

Element Contents initlms
Element

s.coeffs LMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

wo

s.step Sets the LMS algorithm step size. Determines
both how quickly and how closely the adative
filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use adaptlms
in a loop structure, use this element to specify
the initial filter states for the adapting FIR
filter.

zi

adaptlms

13-25

[y,e] = adaptlms(...) also returns the prediction error e. Ultimately this
shows you how well the filter adapted to the desired signal and input data. Or
how well y approximates d.

[y,e,s] = adaptlms(...) returns the updated structure s.

adaptlms can be called for a block of data, when x and d are vectors, or in
“sample by sample mode” using programming constructs such as the following
for-loop code.

for n = 1:length(x)
[y(n),e(n),s] = adaptlms(x(n),d(n),s);
 % The fields of s may be modified here.
end

In lieu of assigning the structure fields manually, call initlms to populate the
structure s more easily.

Examples System Identification of a 31st-order FIR filter (500 iterations). Identifying the
characteristics of an unknown filter is a classic problem for adaptive filtering.
This example uses an FIR filter as the unknown, and uses the LMS algorithm
to calculate weights for the adapting filter. The stem plot that follows the

 s.leakage Specifies the LMS leakage parameter. Allows
you to implement a leaky LMS algorithm.
Including a leakage factor can improve the
results of the algorithm by forcing the LMS
algorithm to continue to adapt even after it
reaches a minimum value. Ranges between 0
and 1. This is an optional field. Defaults to one
if omitted (specifying no leakage) or set to
empty, [].

lf

s.iter Total number of iterations in the adaptive filter
run. Although you can set this in s, you should
not. Consider it a read-only value.

Structure
Element

Element Contents initlms
Element

adaptlms

13-26

example code demonstrates that the adapted filter matches the unknown quite
closely.

x = 0.1*randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
d = filter(b,1,x); % Desired signal
w0 = zeros(1,32); % Intial filter coefficients
mu = 0.8; % LMS step size.
s = initlms(w0,mu);
[y,e,s] = adaptlms(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR filter');grid on;

adaptlms

13-27

Algorithm In vector form, the LMS algorithm is

with vector w containing the weights applied to the filter coefficients (s.coeffs)
and vector x containing the input data. e(k) (equal to desired signal - filtered
signal) is the error at time k and is the quantity the LMS algorithm seeks to
minimize. µ (mu, and s.step)) is the step size. As you specify mu smaller, the
correction to the filter weights gets smaller for each sample and the LMS error
falls more slowly. Larger mu changes the weights more for each step so the error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification of an FIR filter

Actual
Estimated

w k 1+() w k() µe k()x k()+=

adaptlms

13-28

falls more rapidly, but the resulting error does not approach the ideal solution
as closely. To ensure good convergence rate and stability, select mu within the
following practical bounds:

where N is the number of samples in the signal.

When you add a leakage factor lf, the algorithm changes to

with c representing lf.

See Also initlms, adaptkalman, adaptnlms, adaptrls, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

0 µ
2
--- 1

N InputSignalPower{ }
---< <

w k 1+() cw k() µe k()x k()+=

adaptnlms

13-29

13adaptnlmsPurpose Use a normalized least mean squared (NLMS) FIR adaptive filter in an
adaptive filtering application

Syntax y = adaptnlms(x,d,s)
[y,e] = adaptnlms(x,d,s)
[y,e,s] = adaptnlms(x,d,s)

Description y = adaptlms(x,d,s) applies an FIR normalized LMS adaptive filter to the
data vector x and the desired signal d. The filtered data is returned in y.
Structure s contains initialization settings that define the NLMS adaptive
algorithm you plan to use, as well as some output from the filter adaptation
process. The following table details the contents of s, both input and output.
The column headed initnlms Element shows you which element in s
corresponds to each input argument to initlms.

Structure
Element

Element Contents initnlms
Element

s.coeffs NLMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

wo

s.offset Specifies an optional offset for the
normalization term. Use this to avoid divide by
zero (or by very small numbers) when the
square of input data norm becomes very small.
When omitted, it defaults to zero.

offset

s.step Sets the NLMS algorithm step size. Determines
both how quickly and how closely the adative
filter adapts to the filter solution.

mu

adaptnlms

13-30

[y,e] = adaptnlms(...) also returns the prediction error e. Ultimately this
shows you how well the filter adapted to the desired signal and input data —
how well y approximates d.

[y,e,s] = adaptnlms(...) returns the updated structure s.

adaptlms can be called for a block of data, when x and d are vectors, or
in“sample by sample mode” using conditional program statements such as the
following For-loop code.

for n = 1:length(x)
[y(n),e(n),s] = adaptnlms(x(n),d(n),s);
 % The fields of s may be modified here.
end

In lieu of assigning the structure fields manually, call initlms to populate the
structure s more easily.

s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use adaptlms
in a loop structure, use this element to specify
the initial filter states for the adapting FIR
filter.

zi

 s.leakage Specifies the NLMS leakage parameter. Allows
you to implement a leaky NLMS algorithm.
Including a leakage factor can improve the
results of the algorithm by forcing the NLMS
algorithm to continue to adapt even after it
reaches a minimum value. This is an optional
field. Defaults to one if omitted (specifying no
leakage) or set to empty, [].

lf

s.iter Returns the total number of iterations in the
adaptive filter run. Although you can set this in
s, you should not. Consider it a read-only value.

Structure
Element

Element Contents initnlms
Element

adaptnlms

13-31

Examples System Identification of a 31st-order FIR filter (500 iterations). Identifying the
characteristics of an unknown filter is a classic problem for adaptive filtering.
This example uses an FIR filter as the unknown, and uses the normalized LMS
algorithm to calculate weights for the adapting filter. The stem plot that
follows the example code demonstrates that the adapted filter matches the
unknown quite closely.

x = 0.1*randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
d = filter(b,1,x); % Desired signal
w0 = zeros(1,32); % Intial filter coefficients
mu = 0.8; % NLMS step size.
s = initnlms(w0,mu);
[y,e,s] = adaptnlms(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR filter');grid on;

adaptnlms

13-32

Algorithm In vector form, the NLMS algorithm is

where

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification of an FIR filter

Actual
Estimated

w k 1+() w k() µne k()x k()+=

µn
1

ε x k() 2
+

----------------------------=

adaptnlms

13-33

and ε is the offset that prevents divide by zero situations and is the
2-norm of vector x(k).

Vector w contains the weights applied to the filter coefficients (s.coeffs) and
vector x contains the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the NLMS algorithm seeks to
minimize. µ (mu) is the normalized step size (s.step). As you specify mu smaller,
the correction to the filter weights gets smaller for each sample and the NLMS
error falls more slowly. Larger mu changes the weights more for each step so the
error falls more rapidly, but the resulting error does not approach the ideal
solution as closely. To ensure good convergence rate and stability, select mu
within the following practical bounds:

where N is the number of samples in the signal.

When you add a leakage factor, the NLMS algorithm changes to

with c representing the leakage factor.

See Also initnlms, adaptkalman, adaptlms, adaptrls, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

x k()

0 µ 1
N InputSignalPower{ }
---< <

w k 1+() cw k() µne k()x k()+=

adaptrls

13-34

13adaptrlsPurpose Use a recursive least-squares (RLS) FIR adaptive filter in an adaptive filtering
application

Syntax y = adaptrls(x,d,s)
[y,e] = adaptrls(x,d,s)
[y,e,s] = adaptrls(x,d,s)

Description y = adaptrls(x,d,s) applies an FIR RLS adaptive filter to the data vector x
and the desired signal d. The filtered data is returned in y. Structure
s contains the RLS adaptive filter information that defines the algorithm being
used. In addition, the final states of the adapted filter appear in s.states when
you use s as an output argument.

Structure
Element

initrls
Element

Element Contents

s.coeffs w0 RLS adaptive filter coefficients. Initialize
s.coeffs with the initial values for the FIR
filter coefficients. Updated filter coefficients
after adapting are returned when s is an
output argument.

s.invcov p0 The inverse of the input covariance matrix.
Initialize with the initial input covariance
matrix inverse. The updated covariance matrix
is returned when s is an output argument and
you specify the 'direct' RLS algorithm.

s.lambda lambda The forgetting factor. Determines how the RLS
algorithm handles past input data — whether
all data weighs equally in the algorithm or
earlier data loses weight as it falls farther into
the past.

adaptrls

13-35

[y,e] = adaptrls(x,d,s) also returns the prediction error e. Ultimately this
shows you how well the filter adapted to the desired signal and input data —
how well y approximates d.

[y,e,s] = adaptrls(x,d,s) returns the updated structure s.

In an application where the intermediate states are important, call this
function in a “sample by sample mode” using a For-loop.

for n = 1:length(x)
[y(n),e(n),s] = adaptrls(x(n),d(n),s);
% States (The fields of S) here may be modified here.
end

In lieu of assigning the strucure fields manually, the initrls function can be
called to populate the structure S.

s.states zi Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use
adaptrls in a loop structure, use this element
to specify the initial filter states for the
adapting FIR filter.

s.gain RLS algorithm gain value. Computed and
returned after every iteration. This is a
read-only value.

s.iter Returns the total number of iterations in the
adaptive filter run. Although you can set this in
s, you should not. Consider it a read-only value.

s.alg alg Algorithm to use. Optional field. Can be one of
'direct' for the conventional RLS algorithm or
'sqrt' for the more stable square root (QR)
method.

Structure
Element

initrls
Element

Element Contents

adaptrls

13-36

Examples System Identification of a 32nd-order FIR filter (500 iterations). Identifying
the characteristics of an unknown filter is a classic problem for adaptive
filtering. This example uses an FIR filter as the unknown, and uses the RLS
algorithm to calculate weights for the adapting filter. The stem plot that
follows the example code demonstrates that the adapted filter matches the
unknown quite closely.

x = 0.1*randn(1,500); % Desired signal.
b = fir1(32,0.55); % FIR system to be identified.
d = filter(b,1,x); % Input to the adapting filter.
w0 = zeros(1,33); % Intial filter coefficients.
p0 = 5*eye(33); % Initial input correlation matrix inverse.
lambda = 1.0; % Exponential memory weighting factor.
s = initrls(w0,p0,lambda);
[y,e,s] = adaptrls(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification via RLS'); grid on;

adaptrls

13-37

Notice that the estimated filter misses on the actual coefficients between 15
and 20. By changing lambda from 1.0 to 0.9, we can make the actual and
estimated match more closely, as shown in the next figure.

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification of an FIR filter via RLS

Actual
Estimated

adaptrls

13-38

Algorithm In vector form, the RLS algorithm, using exponential weighting, is]

where mk and Pk are defined as

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System ID of an FIR filter via RLS with Lambda=0.9

Actual
Estimated

wk 1+ wk mke k()+=

mk
Pk 1– xk–

λ xT
k Pk 1– xk+

--=

adaptrls

13-39

Compared to the LMS algorithm used by adaptlms, adaptnlms, and others, the
RLS algorithm can provide smaller error and faster convergence.

See Also initrls, adaptkalman, adaptlms, adaptnlms, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

A.H. Sayed and Kailath, T., “A State-space Approach to RLS Adaptive
Filtering,” IEEE Signal Processing Magazine, July 1994, pp. 18-60.

Pk

Pk 1– mkxT
kPk 1––

λ
--=

adaptsd

13-40

13adaptsdPurpose Use a sign-data FIR adaptive filter in an adaptive filter application

Syntax y = adaptsd(x,d,s)
[y,e] = adaptsd(x,d,s)
[y,e,s] = adaptsd(x,d,s)

Description y = adaptsd(x,d,s) applies an FIR LMS adaptive filter to the data vector
x and the desired signal d. In this variation of the LMS algorithm, called
sign-data LMS, the filtered data is returned in y. Structure s contains
initialization settings that define the SDLMS adaptive algorithm you plan to
use, as well as some output from the filter adaptation process. The following
table details the contents of s, both input and output. The column initlms
Element shows you which element in s corresponds to each input argument to
initsd.

Structure
Element

Element Contents initlms
Element

s.coeffs SDLMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

wo

s.step Sets the SDLMS algorithm step size.
Determines both how quickly and how closely
the adaptive filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use adaptsd
in a loop structure, use this element to specify
the initial filter states for the adapting FIR
filter.

zi

adaptsd

13-41

[y,e] = adaptsd(...) also returns the prediction error e. Ultimately this
shows you how well the filter adapted to the desired signal and input data. Or
how well y approximates d.

[y,e,s] = adaptsd(...) returns the updated structure s.

adaptsd can be called for a block of data, when x and d are vectors, or in a
“sample by sample mode” using conditional program statements such as the
following for-loop code.

for n = 1:length(x)
[y(n),e(n),s] = adaptsd(x(n),d(n),s);
 % The fields of s may be modified here.
end

In lieu of assigning the structure fields manually, call initsd to populate the
structure s more easily.

Examples To demonstrate the effects of using different step sizes, we use adaptive linear
prediction with two different step sizes to identify an FIR filter whose
coefficients change with time. This example generates two sets of filter
coefficients to compare to the ideal coefficients.

u = randn(1,2000); % Input
y1 = filter(1,[1,-.5],u(1:1000));

 s.leakage Specifies the SDLMS leakage parameter. Allows
you to implement a leaky LMS algorithm.
Including a leakage factor can improve the
results of the algorithm by forcing the LMS
algorithm to continue to adapt even after it
reaches a minimum value. This is an optional
field. Defaults to one if omitted (specifying no
leakage) or set to empty, [].

lf

s.iter Total number of iterations in the adaptive filter
run. Although you can set this in s, you should
not. Consider it a read-only value.

Structure
Element

Element Contents initlms
Element

adaptsd

13-42

y2 = filter(1,[1,-.7],u(1001:2000));
y = [y1,y2]; % Construct a filter with non-stationary
coefficients
mu1 = 0.005; mu2 = 0.015; w0 = zeros(1,2);
s1 = initsd(w0,mu1); s2 = initsd(w0,mu2);
for n = 1:length(y),

[z1(n),e1(n),s1] = adaptsd(u(n),y(n),s1);
[z2(n),e2(n),s2] = adaptsd(u(n),y(n),s2);
coeffs1(n,:) = s1.coeffs; coeffs2(n,:) = s2.coeffs;

end
plot([coeffs1(:,2),coeffs2(:,2),[.5*ones(1000,1);...
0.7*ones(1000,1)]])
legend('Actual coefficient value, mu = 0.005',...
'Actual coefficient value, mu = 0.015','Optimal value',4);
xlabel('Sample index n'),ylabel('Coefficient value');

In the figure, the coefficients generated using mu=0.005 converge more closely
to the ideal; the mu=0.015 case coefficients converge more quickly but less
closely. In the end, the resulting coefficients for both cases are quite similar if
not the same. When the FIR filter coefficients change at sample index = 1000,
the adapting SDLMS algorithm changes to match the new filter.

adaptsd

13-43

Algorithm In vector form, the SDLMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SDLMS algorithm seeks to
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the SDLMS error falls more
slowly. Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample index n

C
oe

ffi
ci

en
t v

al
ue

Actual coefficient value, mu = 0.005
Actual coefficient value, mu = 0.015
Optimal value

w k 1+() w k() µe k()sgn x k()[]+= sgn x k()[]
 1 x k(), 0>

 0 x k(), 0=

1– x k(), 0<





=

adaptsd

13-44

To ensure good convergence rate and stability, select mu within the following
practical bounds:

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computing.

See Also initsd, adaptse, adaptss, adaptkalman, adaptlms, adaptnlms, adaptrls

References Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley
and Sons, 1996

Diniz, P, “Adaptive Filtering. Algorithms and Practical Implementation,”
Kluwer Academic Publishers, Bostom, 1997.

0 µ 1
N InputSignalPower{ }
---< <

adaptse

13-45

13adaptsePurpose Apply a sign-error FIR adaptive filter in an adaptive filter application

Syntax y = adaptse(x,d,s)
[y,e] = adaptse(x,d,s)
[y,e,s] = adaptse(x,d,s)

Description y = adaptse(x,d,s) applies a sign-error LMS (SELMS) FIR adaptive filter to
the data vector x and the desired signal d. Note that for this algorithm both x
and d must be real. The filtered data is returned in y. Structure s contains the
adaptive filter algorithm information.

Structure
Element

Element Contents Description initse
Element

s.coeffs SELMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

w0

s.step Sets the SELMS algorithm step size.
Determines both how quickly and how closely
the adaptive filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use adaptse
in a loop structure, use this element to specify
the initial filter states for the adapting FIR
filter.

zi

adaptse

13-46

[y,e] = adaptse(x,d,s) also returns the prediction error e. Ultimately this
shows you how well the filter adapted to the desired signal and input data. Or
how well y approximates d.

[y,e,s] = adaptse(x,d,s) returns the updated structure S.

adaptse can be called for a block of data, when x and d are vectors, or in
a 'sample by sample mode' using a for loop:

for n = 1:length(x)
[y(n),e(n),s] = adaptse(x(n),d(n),s);
% The fields of S may be modified here.
end

In lieu of assigning the structure fields manually, function initse can be called
to populate the structure s.

Examples To demonstrate the effects of using different step sizes, we use adaptive linear
prediction with two different step sizes to identify an FIR filter whose
coefficients change with time. This example generates two sets of filter
coefficients to compare to the ideal coefficients.

u = randn(1,2000); % Input
y1 = filter(1,[1,-.5],u(1:1000));
y2 = filter(1,[1,-.7],u(1001:2000));

 s.leakage Specifies the SELMS leakage parameter.
Allows you to implement a leaky SELMS
algorithm. Including a leakage factor can
improve the results of the algorithm by forcing
the SELMS algorithm to continue to adapt
even after it reaches a minimum value. This is
an optional field. Defaults to one specifying no
leakage if omitted or set to empty, [].

lf

s.iter Total number of iterations in the adaptive filter
run. Although you can set this in s, you should
not. Consider it a read-only value.

Structure
Element

Element Contents Description initse
Element

adaptse

13-47

y = [y1,y2]; % Construct a filter with non-stationary
coefficients
mu1 = 0.005; mu2 = 0.015; w0 = zeros(1,2);
s1 = initse(w0,mu1); s2 = initse(w0,mu2);
for n = 1:length(y),

[z1(n),e1(n),s1] = adaptse(u(n),y(n),s1);
[z2(n),e2(n),s2] = adaptse(u(n),y(n),s2);
coeffs1(n,:) = s1.coeffs; coeffs2(n,:) = s2.coeffs;

end
plot([coeffs1(:,2),coeffs2(:,2),[.5*ones(1000,1);...
0.7*ones(1000,1)]])
legend('Actual coefficient value, mu = 0.005',...
'Actual coefficient value, mu = 0.015','Optimal value',4);
xlabel('Sample index n'),ylabel('Coefficient value');

In the figure, the coefficients generated using mu=0.005 converge more closely
to the ideal; the mu=0.015 case coefficients converge more quickly but less
closely. In the end, the resulting coefficients for both cases are quite similar if
not the same. When the FIR filter coefficients change at sample index = 1000,
the adapting SELMS algorithm changes to match the new filter.

adaptse

13-48

Algorithm In vector form, the SELMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SELMS algorithm seeks to

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sample index n

C
oe

ffi
ci

en
t v

al
ue

Actual coefficient value, mu = 0.005
Actual coefficient value, mu = 0.015
Optimal value

w k 1+() w k() µ e k()[]sgn x k()[]+= sgn e k()[]
 1 e k(), 0>

 0 e k(), 0=

1– e k(), 0<





=

adaptse

13-49

minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the SELMS error falls more
slowly. Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
practical bounds:

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

See Also initse, adaptsd, adaptss, adaptkalman, adaptlms, adaptnlms, adaptrls

References Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley
and Sons, 1996

Diniz, P, “Adaptive Filtering. Algorithms and Practical Implementation,”
Kluwer Academic Publishers, Bostom, 1997.

0 µ 1
N InputSignalPower{ }
---< <

adaptss

13-50

13adaptssPurpose Sign-sign FIR adaptive filter.

Syntax y = adaptss(x,d,s)
[y,e] = adaptss(x,d,s)
[y,e,s] = adaptss(x,d,s)

Description y = adaptss(x,d,s) applies a sign-sign FIR adaptive filter to the data vector
x and the desired signal d. Note that for this algorithm both x and d must be
real. The filtered data is returned in y. s is a structure that contains the
adaptive filter information.

Structure
Element

Element Contents Description initss
Element

s.coeffs SSLMS FIR filter coefficients. Initialize with
the initial coefficients for the FIR filter prior to
adapting. You need [adapting filter order + 1]
entries in s.coeffs. Updated filter coefficients
are returned in s.coeffs when you use s as an
output argument.

w0

s.step Sets the SSLMS algorithm step size.
Determines both how quickly and how closely
the adaptive filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use adaptss
in a loop structure, use this element to specify
the initial filter states for the adapting FIR
filter.

zi

adaptss

13-51

[y,e] = adaptss(x,d,s) also returns the prediction error e. Ultimately this
shows you how well the filter adapted to the desired signal and input data. Or
how well y approximates d.

[y,e,s] = adaptss(x,d,s) returns the updated structure s.

adaptss can be called for a block of data, when x and d are vectors, or in
“sample by sample mode” using a For-loop:

for n = 1:length(x)
[y(n),e(n),s] = adaptss(x(n),d(n),s);
% The fields of S may be modified here.
end

In lieu of assigning the structure fields manually, function initss can be called
to populate the structure s.

Examples To demonstrate the effects of using different step sizes, we use adaptive linear
prediction with two different step sizes to identify an FIR filter whose
coefficients change with time. This example generates two sets of filter
coefficients to compare to the ideal coefficients.

u = randn(1,2000); % Input
y1 = filter(1,[1,-.5],u(1:1000));
y2 = filter(1,[1,-.7],u(1001:2000));

s.leakage Specifies the SSLMS leakage parameter.
Allows you to implement a leaky SSLMS
algorithm. Including a leakage factor can
improve the results of the algorithm by forcing
the SSLMS algorithm to continue to adapt even
after it reaches a minimum value. This is an
optional field. Defaults to one if omitted
(specifying no leakage) or set to empty, [].

lf

s.iter Total number of iterations in the adaptive filter
run. Although you can set this in s, you should
not. Consider it a read-only value.

Structure
Element

Element Contents Description initss
Element

adaptss

13-52

y = [y1,y2]; % Construct a filter with non-stationary
coefficients
mu1 = 0.005; mu2 = 0.015; w0 = zeros(1,2);
s1 = initss(w0,mu1); s2 = initss(w0,mu2);
for n = 1:length(y),

[z1(n),e1(n),s1] = adaptss(u(n),y(n),s1);
[z2(n),e2(n),s2] = adaptss(u(n),y(n),s2);
coeffs1(n,:) = s1.coeffs; coeffs2(n,:) = s2.coeffs;

end
plot([coeffs1(:,2),coeffs2(:,2),[.5*ones(1000,1);...
0.7*ones(1000,1)]])
legend('Actual coefficient value, mu = 0.005',...
'Actual coefficient value, mu = 0.015','Optimal value',4);
xlabel('Sample index n'),ylabel('Coefficient value');

adaptss

13-53

In the figure, the coefficients generated using mu=0.005 converge more closely
to the ideal; the mu=0.015 case coefficients converge more quickly but less
closely. In the end, the resulting coefficients for both cases are quite similar if
not the same. When the FIR filter coefficients change at sample index = 1000,
the adapting SSLMS algorithm changes to match the new filter.

Algorithm In vector form, the SSLMS algorithm is

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sample index n

C
oe

ffi
ci

en
t v

al
ue

Actual coefficient value, mu = 0.005
Actual coefficient value, mu = 0.015
Optimal value

adaptss

13-54

,

where, for convenience,

Vector w contains the weights applied to the filter coefficients and vector
x contains the input data. e(k) (= desired signal - filtered signal) is the error at
time k and is the quantity the SSLMS algorithm seeks to minimize. µ (mu) is
the step size. As you specify mu smaller, the correction to the filter weights gets
smaller for each sample and the SSLMS error falls more slowly. Larger mu
changes the weights more for each step so the error falls more rapidly, but the
resulting error does not approach the ideal solution as closely. To ensure good
convergence rate and stability, select mu within the following practical bounds:

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

See Also initss, adaptsd, adaptse, adaptkalman, adaptlms, adaptnlms, adaptrls

References Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley
and Sons, 1996

Diniz, P, “Adaptive Filtering. Algorithms and Practical Implementation,”
Kluwer Academic Publishers, Bostom, 1997.

w k 1+() w k() µ e k()[]sgn x k()[]sgn+= sgn z k()[]
 1 z k(), 0>

 0 z k(), 0=

1– z k(), 0<





=

z k() e k()[] x k()[]sgn=

0 µ 1
N InputSignalPower{ }
---< <

allpassbpc2bpc

13-55

13allpassbpc2bpcPurpose Return an allpass filter for complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the first-order
allpass mapping filter for performing a complex bandpass to complex bandpass
frequency transformation. This transformation effectively places two features
of an original filter, located at frequencies Wo1 and Wo2, at the required target
frequency locations Wt1 and Wt2. It is assumed that Wt2 is greater than Wt1. In
most of the cases the features selected for the transformation are the band
edges of the filter passbands. In general it is possible to select any feature; e.g.,
the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., complex notch filters or resonators can be repositioned at two distinct
desired frequencies at any place around the unit circle. This is very attractive
for adaptive systems.

Examples Design the allpass filter changing the complex bandpass filter with the band
edges originally at Wo1=0.2 and Wo2=0.4 to the new band edges of Wt1=0.3 and
Wt2=0.6 precisely defined:

Wo = [0.2, 0.4];
Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');

allpassbpc2bpc

13-56

title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirbpc2bpc, zpkbpc2bpc

allpasslp2bp

13-57

13allpasslp2bpPurpose Return an allpass filter for lowpass to bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the second-order allpass
mapping filter for performing a real lowpass to real bandpass frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1. This transformation implements the
“DC mobility,” which means that the Nyquist feature stays at Nyquist, but the
DC feature moves to a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
repositioned at two distinct desired frequencies.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at
Wo=0.5 to the real bandpass filter with cutoff frequencies at Wt1=0.25 and
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2bp

13-58

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2bp, zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

allpasslp2bpc

13-59

13allpasslp2bpcPurpose Return an allpass filter for lowpass to complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to complex bandpass frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandpass filters for radio receivers from the high-quality
prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex bandpass filter with band edges of Wt1=0.2
and Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2bpc

13-60

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[-1,1], 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bpc, zpklp2bpc

allpasslp2bs

13-61

13allpasslp2bsPurpose Return an allpass filter for lowpass to bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the second-order allpass
mapping filter for performing a real lowpass to real bandstop frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1. This transformation implements the
“Nyquist Mobility,” which means that the DC feature stays at DC, but the
Nyquist feature moves to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at
Wo=0.5 to the real bandstop filter with cutoff frequencies at Wt1=0.25 and
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

allpasslp2bs

13-62

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

allpasslp2bsc

13-63

13allpasslp2bscPurpose Return an allpass filter for lowpass to complex bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to complex bandstop frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1. Additionally the transformation
swaps passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandstop filters for band attenuation or frequency
equalizers, from the high-quality prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex bandstop filter with band edges of Wt1=0.2
and Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

allpasslp2bsc

13-64

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[1,-1], 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bsc, zpklp2bsc

allpasslp2hp

13-65

13allpasslp2hpPurpose Return an allpass filter for lowpass to highpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to real highpass frequency
transformation. This transformation effectively places one feature of an
original filter, located originally at frequency, Wo, at the required target
frequency location, Wt, at the same time rotating the whole frequency response
by half of the sampling frequency. Result is that the DC and Nyquist features
swap places.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way by using the lowpass to highpass transformation.

Examples Design the allpass filter changing the lowpass filter to the highpass filter with
its cutoff frequency moved from Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2hp

13-66

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2hp, zpklp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

allpasslp2lp

13-67

13allpasslp2lpPurpose Return an allpass filter for lowpass to lowpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to real lowpass frequency
transformation. This transformation effectively places one feature of an
original filter, located originally at frequency Wo, at the required target
frequency location, Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband and so on.

Lowpass to lowpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way by applying the lowpass to lowpass transformation.

Examples Design the allpass filter changing the lowpass filter cutoff frequency originally
at Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');

allpasslp2lp

13-68

title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2lp, zpklp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

allpasslp2mb

13-69

13allpasslp2mbPurpose Return an allpass filter for lowpass to M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass
mapping filter for performing a real lowpass to real multipassband frequency
transformation. Parameter M is the number of times an original feature is
replicated in the target filter. This transformation effectively places one
feature of an original filter, located at frequency Wo, at the required target
frequency locations, Wt1,...,WtM. By default the DC feature is kept at its original
location.

[AllpassNum,AllpassDen]=allpasslp2mb(Wo,Wt,Pass) allows you to specify
an additional parameter, Pass, which chooses between using the “DC Mobility”
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its
original location and the DC feature is free to move. In the second case the DC
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations without redesigning them. A good application would be an
adaptive tone cancellation circuit reacting to the changing number and location
of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a real multiband filter with band edges of
Wt=[1:2:9]/10 precisely defined:

allpasslp2mb

13-70

Wo = 0.5;
Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering,
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and
frequency transformation problem,” Proceedings 20th Asilomar Conference on

allpasslp2mb

13-71

Signals, Systems and Computers, Pacific Grove, California, pp. 164-168,
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7,
Reading, Massachussetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm
for frequency transformations, Linear Circuits, Systems and Signal Processing:
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

allpasslp2mbc

13-72

13allpasslp2mbcPurpose Return an allpass filter for lowpass to complex M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass
mapping filter for performing a real lowpass to complex multipassband
frequency transformation. Parameter M is the number of times an original
feature is replicated in the target filter. This transformation effectively places
one feature of an original filter, located at frequency Wo, at the required target
frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations without the need to design them again. A good application
would be an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex multiband filter with band edges of
Wt=[-3+1:2:9]/10 precisely defined:

Wo = 0.5;
Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2mbc

13-73

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2mbc, zpklp2mbc

allpasslp2xc

13-74

13allpasslp2xcPurpose Return an allpass filter for lowpass to complex N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass
mapping filter, where N is the allpass filter order, for performing a real lowpass
to complex multipoint frequency transformation. Parameter N also specifies the
number of replicas of the prototype filter created around the unit circle after
the transformation. This transformation effectively places N features of the,
original filter located at frequencies Wo1,...,WoN, at the required target frequency
locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design the allpass filter moving four features of an original complex filter given
in Wo to the new independent frequency locations Wt. Please note that the
transformation creates N replicas of an original filter around the unit circle,
where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7, 0.4];
Wt = [0.3, 0.5, 0.7, 0.9];

allpasslp2xc

13-75

[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);

Calculate the frequency responsefrequency response of the mapping filter in
the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2xc, zpklp2xc

allpasslp2xn

13-76

13allpasslp2xnPurpose Return an allpass filter for lowpass to N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass
mapping filter, where N is the allpass filter order, for performing a real lowpass
to real multipoint frequency transformation. Parameter N also specifies the
number of replicas of the prototype filter created around the unit circle after
the transformation. This transformation effectively places N features of an
original filter, located at frequencies Wo1,...,WoN, at the required target frequency
locations, Wt1,...,WtM. By default the DC feature is kept at its original location.

[AllpassNum,AllpassDen]=allpasslp2xn(Wo,Wt,Pass) allows you to specify
an additional parameter, Pass, which chooses between using the “DC Mobility”
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its
original location and the DC feature is free to move. In the second case the DC
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations without the need of designing them again. A good
application would be an adaptive tone cancellation circuit reacting to the
changing number and location of tones.

allpasslp2xn

13-77

Examples Design the allpass filter moving three features of an original filter given in Wo
to the new independent frequency locations Wt. Please note that the
transformation creates N replicas of an original filter around the unit circle,
where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7];
Wt = [0.3, 0.5, 0.8];
[AllpassNum, AllpassDen] = allpasslp2xn(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2xn, zpklp2xn

References [1] Cain, G.D. , A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference

allpasslp2xn

13-78

(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

allpassrateup

13-79

13allpassrateupPurpose Return an allpass filter for integer upsample transformation

Syntax [AllpassNum,AllpassDen] = allpassrateup(N)

Description [AllpassNum,AllpassDen] = allpassrateup(N) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass
mapping filter for performing the rateup frequency transformation, which
creates N equal replicas of the prototype filter frequency response.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Examples Design the allpass filter creating the effect of upsampling the digital filter four
times:

N = 4;

Choose any feature from an original filter, say at Wo=0.2:

Wo = 0.2;
Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments N
Frequency replication ratio (upsampling ratio)

allpassrateup

13-80

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirrateup, zpkrateup

allpassshift

13-81

13allpassshiftPurpose Return an allpass filter for real shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshift(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshift(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the second-order allpass
mapping filter for performing a real frequency shift transformation. This
transformation places one selected feature of an original filter, located at
frequency Wo, at the required target frequency location, Wt. This transformation
implements the “DC mobility,” which means that the Nyquist feature stays at
Nyquist, but the DC feature moves to a location dependent on the selection of
Wo and Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible to
select any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be moved to a different frequency by
applying a shift transformation. In such a way you can avoid designing the
filter from the beginning.

Examples Design the allpass filter precisely shifting one feature of the lowpass filter
originally at Wo=0.5 to the new frequencies of Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpassshift

13-82

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirshift, zpkshift

allpassshiftc

13-83

13allpassshiftcPurpose Return an allpass filter for complex shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt) returns the numerator,
AllpassNum, and denominator, AllpassDen, vectors of the allpass mapping
filter for performing a complex frequency shift of the frequency response of the
digital filter by an arbitrary amount.

[AllpassNum,AllpassDen]=allpassshiftc(0,0.5) calculates the allpass
filter for doing the Hilbert transformation, i.e. a 90 degree counterclockwise
rotation of an original filter in the frequency domain.

[AllpassNum,AllpassDen]=allpassshiftc(0,-0.5) calculates the allpass
filter for doing an inverse Hilbert transformation, i.e. a 90 degree clockwise
rotation of an original filter in the frequency domain.

Examples Design the allpass filter precisely rotating the whole filter by the amount
defined by the location of the selected feature from an original filter, Wo=0.5,
and its required position in the target filter, Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

allpassshiftc

13-84

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirshiftc, zpkshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert
transformers, and half-band low-pass filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

bin2num

13-85

13bin2numPurpose Convert a two’s complement binary string to a number

Syntax y = bin2num(q,b)

Description y = bin2num(q,b) uses the properties of quantizer q to convert binary string
b to numeric array y. When b is a cell array containing binary strings, y will be
a cell array of the same dimension containing numeric arrays. The fixed-point
binary representation is two’s complement. The floating-point binary
representation is in IEEE Standard 754 style.

bin2num and num2bin are inverses of one another. Note that num2bin always
returns columnwise.

Examples Create a quantizer and an array of numeric strings. Convert the numeric
strings to binary strings, then use bin2num to convert them back to numeric
strings.

q=quantizer([4 3]);
[a,b]=range(q);
x=(b:-eps(q):a)';
b = num2bin(q,x)

b =

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000

bin2num

13-86

bin2num performs the inverse operation of num2bin.

y=bin2num(q,b)

y =

 0.8750
 0.7500
 0.6250
 0.5000
 0.3750
 0.2500
 0.1250
 0
 -0.1250
 -0.2500
 -0.3750
 -0.5000
 -0.6250
 -0.7500
 -0.8750
 -1.0000

See Also num2bin

ca2tf

13-87

13ca2tfPurpose Convert coupled allpass filter form to transfer function forms

Syntax [b,a] = ca2tf(d1,d2)
[b,a] = ca2tf(d1,d2,beta)
[b,a,bp] = ca2tf(d1,d2)
[b,a,bp] = ca2tf(d1,d2,beta)

Description [b,a]=ca2tf(d1,d2) returns the vector of coefficients b and the vector of
coefficients a corresponding to the numerator and the denominator of the
transfer function

d1 and d2 are real vectors corresponding to the denominators of the allpass
filters H1(z) and H2(z).

[b,a]=ca2tf(d1,d2,beta) where d1, d2 and beta are complex, returns the
vector of coefficients b and the vector of coefficients a corresponding to the
numerator and the denominator of the transfer function

[b,a,bp]=ca2tf(d1,d2), where d1 and d2 are real, returns the vector bp of real
coefficients corresponding to the numerator of the power complementary filter
G(z)

[b,a,bp]=ca2tf(d1,d2,beta), where d1, d2 and beta are complex, returns the
vector of coefficients bp of real or complex coefficients that correspond to the
numerator of the power complementary filter G(z)

H z() B z() A z()⁄ 1
2
--- H1 z() H2 z()+[]= =

H z() B z() A z()⁄ 1
2
--- β()– H1 z()• β H2 z()•+[]= =

G z() Bp z() A z()⁄ 1
2
--- H1 z() H2 z()–[]= =

G z() Bp z() A z()⁄ 1
2j
----- β()– H1 z()• β H2 z()•+[]= =

ca2tf

13-88

Examples Create a filter, convert the filter to coupled allpass form, and convert the result
back to the original structure (create the power complementary filter as well).

See Also cl2tf, iirpowcomp, tf2ca, tf2cl

[b,a]=cheby1(10,.5,.4);
[d1,d2,beta]=tf2ca(b,a); % tf2ca returns the

% denominators of the
% allpasses.

[num,den,numpc]=ca2tf(d1,d2,beta); % Reconstruct the original
% filter plus the power
% complementary one.

[h,w,s]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
freqzplot([h hpc],w,s); % Plot the mag response of the

% original filter and the
% power complementary one.

cell2sos

13-89

13cell2sosPurpose Convert cell array to second-order-section matrix

Syntax s = cell2sos(c)
[s,g] = cell2sos(c)

Description s = cell2sos(c) converts cell array c of the form

 c = { {b1,a1}, {b2,a2}, ... {bi,ai} }

where each numerator vector bi and denominator vector ai contains the
coefficients of a linear or quadratic polynomial, to an L-by-6 second-order
section matrix s of the form

s = [b1 a1
b2 a2
...
bi ai]

When cell2sos encounters linear sections, it zero-pads the sections on the
right.

[s,g] = cell2sos(c) when the first element of c is a pair of scalars, forms the
scalar gain g with the first pair and uses the remaining elements of c to build
the s matrix.

Examples c = {{[0.0181 0.0181],[1.0000 -0.5095]},{[1 2 1],[1 -1.2505
0.5457]}}

c =
{1x2 cell} {1x2 cell}

s = cell2sos(c)
s =

 0.0181 0.0181 0 1.0000 -0.5095 0
 1.0000 2.0000 1.0000 1.0000 -1.2505 0.5457

See Also sos2ss, sos2tf, sos2zp, ss2sos, tf2sos, zp2sos

cicdecimate

13-90

13cicdecimatePurpose Use a cascaded integrator-comb (CIC) decimation filter to decrease the
sampling rate for a signal

Syntax y = cicdecimate(m,n,r,x,q)

Description y = cicdecimate(m,n,r,x,q) filters the data in input vector x, applying
a decimation factor (or sample rate reduction) r to the signal. r must be a
positive integer. For example, when r = 5, the decimation filter reduces the
signal length to one-fifth of the original length.

Input arguments m and n define the number of integrator and comb stages (n)
and the number of differential delays (m) in the CIC decimation filter. Although
m can be any positive integer, most often it is 1 or 2. Each integrator stage in
the CIC filter comprises a single-pole infinite impulse response (IIR) filter with
a unity feedback coefficient.

q represents a quantizer operating in signed fixed-point mode, as specified by
the fixed keyword argument to the function quantizer.

cicdecimate uses the int32 data type for all arithmetic operations it performs
while decimating the input signal. Limiting the data type to int32 means when
the most significant bit (MSB) at the filter output is greater than 32, the overall
sum can overflow causing the result to be wrong. When the MSB exceeds 32,
cicdecimate generates a warning message that the MSB is too large.

With reference to the high sampling rate, the transfer function for the
composite CIC filter is

Design Considerations
When you design your CIC decimation filter, remember the following general
points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of stages in the filter, determines the passband attentuation.
Increasing n improves the filter ability to reject aliasing and imaging, but it

H z() 1 z–
rm–()

n

1 z 1–
–()

n

1 z rm–
–

1 z 1–
–

 
 
 n

1 z 1– z 2– ... z rm– 1+
+ + + +()

n
= = =

cicdecimate

13-91

also increases the droop (or rolloff) in the filter passband. Using an
appropriate FIR filter in series after the CIC decimation filter can help you
compensate for the induced droop.

• The DC gain for the filter is a function of the decimation factor. Raising the
decimation factor increases the DC gain.

Examples This example applies a decimation factor r equal to 8 to a 160-point impulse
signal. The signal output from the filter has 160/r, or 20, points or samples.
Choosing 10 bits for the quantizer wordlength represents a fairly common
setting for analog to digital converters. The plot shown after the code presents
the stem plot of the decimated signal, with 20 samples remaining after
decimation:

m = 4; % Differential delays in the filter
n = 4; % filter stages
r = 8 % decimation factor
x = zeros(160,1); x(1) = 1; % Create a 160-point impulse signal
q = quantizer([10 0],'fixed'); % Define the quantizer
y = cicdecimate(m,n,r,x,q)
stem(y) % Plot the output as a stem plot
xlabel('Samples'); ylabel('Amplitude');
title('Decimated Signal');

cicdecimate

13-92

This example demonstrates one way to compute the frequency response, using
a 4-stage decimation filter with the decimation factor set to 7:

m = 1;n = 4; r = 7; % Define the filter parameters
w = linspace(0,pi,1024); % Set the frequency in radians
% Calculate the frequency response of the filter
h = exp(i*n*w/2*(1-r*m)).*(sin(r*m*w/2)./sin(w/2)).^n;
plot(w/pi,20*log10(abs(h))); grid on;
xlabel('Normalized Frequency Relative to the High Sampling...
Rate (\times\pi rad/sample)');
ylabel('Magnitude (dB)');
title('Frequency Response for the Example CIC...
Decimation Filter');

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

4

Samples

A
m

pl
itu

de

Decimated signal

cicdecimate

13-93

Here’s the frequency response plot for the filter. For details about the transfer
function used to produce the frequency response, refer to [1] in the References
section.

Algorithm To show how the CIC decimation filter is constructed, the following figure
presents a block diagram of the filter structure for a two-stage CIC decimation
filter (n = 2). fs is the high sampling rate, the input to the decimation process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−250

−200

−150

−100

−50

0

50

100

Normalized Frequency Relative to the High Sampling Rate (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Frequency Response for the Example CIC Decimation Filter

cicdecimate

13-94

See Also cicinterpolate, filterdesign

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172

Comb SectionIntegrator Section

fs fs fs/r fs/r
1

y

z
−1

z
−1

z
−(m)

z
−(m)

r1

x

cicinterpolate

13-95

13cicinterpolatePurpose Use a cascaded integrator-comb (CIC) interpolation filter to increase the
sampling rate for a signal

Syntax y = cicinterpolate(m,n,r,x,q)

Description y = cicinterpolate(m,n,r,x,q) filters the data in input vector x, applying
an interpolation factor (or sample rate increase) r to the signal. For example,
when r = 5, the CIC interpolation filter increases the signal length to five times
the original length.

Input arguments m and n define the number of integrator and comb stages (n)
and the number of differential delays (m) in the CIC interpolation filter.
Although m can be any positive integer, most often it is 1 or 2. Each integrator
stage comprises a single-pole infinite impulse response (IIR) filter with a unity
feedback coefficient.

q represents a quantizer operating in signed fixed-point mode, as specified by
the fixed keyword argument to the function quantizer.

cicinterpolate uses the int32 data type for all arithmetic operations it
performs while interpolating the input signal. Limiting the data type to int32
means when the most significant bit (MSB) at the filter output is greater than
32, the overall sum can overflow causing the result to be wrong. When the MSB
exceeds 32, cicinterpolate generates a warning message that the MSB is too
large.

With reference to the high, sampling rate, the transfer function for the
composite CIC filter is

Design Considerations
When you design your CIC interpolation filter, remember the following general
points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.

1 z–
rm–()

n

1 z 1–
–()

n

1 z rm–
–

1 z 1–
–

 
 
 n

1 z 1– z 2– ... z r–
+ + + +(= =

cicinterpolate

13-96

• n, the number of stages in the filter, determines the passband attentuation.
Increasing n improves the filter ability to reject aliasing and imaging, but it
also increases the droop or rolloff in the filter passband. Using an
appropriate FIR filter in series after the CIC interpolation filter can help you
compensate for the induced droop.

• The DC gain for the filter is a function of the interpolation factor. Raising the
interpolation factor increases the DC gain.

Examples This example applies an interpolation factor r equal to 8 to a 160 point impulse
signal. The signal output from the filter has 160*r, or 1280, points or samples.
Choosing 10 bits for the quantizer wordlength represents a fairly common
setting for analog to digital converters:

m = 4; % Differential delays in the filter
n = 4; % Filter stages
r = 8 % Interpolation factor
x = zeros(160,1); x(1) = 1; % Create a 160-point impulse signal
q = quantizer([10 0],'fixed'); % Define the quantizer
y = cicinterpole(m,n,r,x,q)
stem(y) % Plot the output as a stem plot
xlabel('Samples'); ylabel('Amplitude');
title('Interpolated Signal');

After interpolating the signal, y contains 1280 samples, as you see in the figure
shown.

cicinterpolate

13-97

Computing and plotting the frequency response of an interpolating filter can be
valuable. This example demonstrates one way to compute and display the
frequency response, using a 4-stage CIC interpolation filter with the
interpolation factor set to 7:

m = 1;n = 4; r = 7; % Define the filter parameters
w = linspace(0,pi,1024); % Set the frequency in radians
% Calculate the frequency response of the filter
h = exp(i*n*w/2*(1-r*m)).*(sin(r*m*w/2)./sin(w/2)).^n;
plot(w/pi,20*log10(abs(h))); grid on;
xlabel('Normalized Frequency Relative to the High Sampling'...
'Rate (\times\pi rad/sample)');
ylabel('Magnitude (dB)');
title('Frequency Response for the Example CIC'...
'Interpolation Filter');

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5
x 10

4

Samples

A
m

pl
itu

de

Interpolated signal

cicinterpolate

13-98

As with the CIC decimation filter, the figure shows the clear comb nature of the
interpolation filter.For details about the transfer function used to produce this
frequency response plot, refer to [2] the References section.

Algorithm To show how the CIC interpolation filter is constructed, the following figure
provides a block diagram of the filter structure for a two-stage CIC
interpolation filter (n = 2). fs is the high sampling rate, the output from the
interpolation process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−250

−200

−150

−100

−50

0

50

100

Normalized Frequency Relative to the High Sampling Rate (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Frequency Response for the Example CIC Interpolation Filter

cicinterpolate

13-99

See Also cicdecimate, filterdesign

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172

Comb Section

fs/r fs

Integrator Section

fs/r fs
1

y
r

z
−1

z
−1

z
−(m)

z
−(m)

1

x

cl2tf

13-100

13cl2tfPurpose Convert coupled allpass lattice to transfer function form

Syntax [b,a] = cl2tf(k1,k2)
[b,a] = cl2tf(k1,k2,beta)
[b,a,bp] = cl2tf(k1,k2)
[b,a,bp] = cl2tf(k1,k2,beta)

Description [b,a] = cl2tf(k1,k2) returns the numerator and denominator vectors of
coefficients b and a corresponding to the transfer function

where H1(z) and H2(z) are the transfer functions of the allpass filters
determined by k1 and k2, and k1 and k2 are real vectors of reflection
coefficients corresponding to allpass lattice structures.

[b,a] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns the
numerator and denominator vectors of coefficients b and a corresponding to the
transfer function

[b,a,bp] = cl2tf(k1,k2) where k1 and k2 are real, returns the vector bp of
real coefficients corresponding to the numerator of the power complementary
filter G(z)

[b,a,bp] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns
the vector of coefficients bp of possibly complex coefficients corresponding to
the numerator of the power complementary filter G(z)

Examples [b,a]=cheby1(10,.5,.4);
[k1,k2,beta]=tf2cl(b,a); %TF2CL returns the reflection coeffs

H z() B z() A z()⁄ 1
2
--- H1 z() H2 z()+[]= =

H z() B z() A z()⁄ 1
2
--- β()– H1 z()• β H2 z()•+[]= =

G z() Bp z() A z()⁄ 1
2
--- H1 z() H2 z()–[]= =

G z() Bp z() A z()⁄ 1
2j
----- β()– H1 z()• β H2 z()•+[]= =

cl2tf

13-101

% Reconstruct the original filter
% plus the power complementary one.
[num,den,numpc]=cl2tf(k1,k2,beta);
[h,w,s1]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
% Plot the mag response of the original filter and the power
% complementary one.
freqzplot([h hpc],w,s1);

See Also tf2cl, tf2ca, ca2tf, tf2latc, latc2tf, iirpowcomp

coeread

13-102

13coereadPurpose Read a XILINX CORE Generator™ coefficient (.COE) file

Syntax hq = coeread('filename')

Description hq = coeread(filename) extracts the Distributed Arithmetic FIR filter
coefficients defined in the XILINX CORE Generator .COE file specified by
filename. It returns the quantized filter object hq. If you do not provide the file
type extension .coe with the filename, the function assumes the .coe
extension.

See Also coewrite

coewrite

13-103

13coewritePurpose Write a Xilinx CORE Generator™ coefficient (.COE) file

Syntax coewrite(h)
coewrite(hq,radix)
coewrite(...,filename)

Description coewrite(hq) writes a XILINX Distributed Arithmetic FIR filter coefficient
.COE file which can be loaded into the XILINX CORE Generator. The
coefficients are extracted from the quantized filter object hq. Your quantized
filter must be a direct-form FIR structure with one section. You cannot export
nonquantized filters as .coe files, nor multiple-section filters. To enable you to
provide a name for the file, coewrite displays a dialog where you fill in the file
name. If you do not specify the name of the output file, the default file name is
untitled.coe.

coewrite(hq,radix) indicates the radix (number base) used to specify the
FIR filter coefficients. Valid radix values are 2 for binary, 10 for decimal, and
16 for hexadecimal (default).

coewrite(...,filename) writes a XILINX.COE file to filename. If you omit
the file extension, coewrite adds the .coe extension to the name of the file.

Examples coewrite generates an ASCII text file that contains the filter coefficents in a
format the XILINX CORE Generator can read and load. In this example, you
create a 30th-order quantized filter and generate the .coe file that include the
filter coefficients as well as associated information about the filter.

b = firceqrip(30,0.4,[0.05 0.03]);
hq = qfilt('fir',{b});
coewrite(hq,10,'mycoefile');

when you look at mycoefile.coe, you see the following:

;
; XILINX CORE Generator(tm) Distributed Arithmetic FIR filter
coefficient (.COE) File
; Generated by MATLAB(tm) and the Filter Design Toolbox.
;
; Generated on: 15-Mar-2002 13:47:15
;

coewrite

13-104

Radix = 10;
Coefficient_Width = 16;
CoefData = -41,
 -851,
 -366,
 308,
 651,
 22,
 -873,
 -658,
 749,
 1504,
 21,
-2367,
-2012,
 3014,
 9900,
....

coewrite puts the filter coefficients in column-major order and reports the
radix, the coefficient width, and the coefficients. These represent the minimum
set of data needed in a .coe file.

See Also coeread

convergent

13-105

13convergentPurpose Apply convergent rounding

Syntax convergent(x)

Description convergent(x) rounds the elements of x to the nearest integer, except in a tie,
then round to the nearest even integer.

Examples round and convergent differ in the way they treat values whose fractional part
is 0.5. In round, every tie is rounded up in absolute value. convergent rounds
ties to the nearest even integer.

x=[-3.5:3.5]';
[x convergent(x) round(x)]
ans =

 -3.5000 -4.0000 -4.0000
 -2.5000 -2.0000 -3.0000
 -1.5000 -2.0000 -2.0000
 -0.5000 0 -1.0000
 0.5000 0 1.0000
 1.5000 2.0000 2.0000
 2.5000 2.0000 3.0000
 3.5000 4.0000 4.0000

See Also quantizer/quantize

convert

13-106

13convertPurpose Convert filter structures of quantized filters

Syntax hq = convert(hq,newstruct)

Description hq = convert(hq,newstruct) returns a quantized filter whose structure has
been transformed to the filter structure specified by string newstruct. You can
enter any one of the following quantized filter structures:

• 'antisymmetricfir': Antisymmetric finite impulse response (FIR).

• 'df1': Direct form I.

• 'df1t': Direct form I transposed.

• 'df2': Direct form II.

• 'df2t': Direct form II transposed. Default filter structure.

• 'fir': FIR.

• 'firt': Direct form FIR transposed.

• 'latcallpass': Lattice allpass.

• 'latticeca': Lattice coupled-allpass.

• 'latticecapc': Lattice coupled-allpass power-complementary.

• 'latticear': Lattice autoregressive (AR).

• 'latticema': Lattice moving average (MA) minimum phase.

• 'latcmax': Lattice moving average (MA) maximum phase.

• 'latticearma': Lattice ARMA.

• 'statespace': Single-input/single-output state-space.

• 'symmetricfir': Symmetric FIR. Even and odd forms.

All filters can be converted to the following structures:

• df1
• df1t
• df2
• df2t
• statespace
• latticearma

convert

13-107

For the following filter classes, you can specify other conversions as well:

• Minimum phase FIR filters can be converted to latticema

• Maximum phase FIR filters can be converted to latcmax

• Allpass filters can be converted to latcallpass

convert generates an error if you specify a conversion that is not possible.

Examples [b,a]=ellip(5,3,40,.7);
Hq = qfilt('df2t',{b,a});
Hq2 = convert(Hq,'statespace')
Hq2 =
Quantized State-space filter
...
FilterStructure = statespace
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [5]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
Warning: 9 overflows in coefficients.

See Also qfilt

copyobj

13-108

13copyobjPurpose Make an independent copy of a quantizer, quantized filter, or quantized FFT

Syntax obj1 = copyobj(obj)
[obj1,obj2,...] = copyobj(obja,objb,...)

Description obj1 = copyobj(obj) makes a copy of obj and returns it in obj1. obj can be a
quantizer, quantized filter, or quantized FFT.

[obj1,obj2,...] = copyobj(obja,objb,...) copies obja into obj1, objb
into obj2, and so on. All objects can be quantizers, quantized filters, or
quantized FFTs.

Using copyobj to copy a quantizer, quantized filter, or quantized FFT is not the
same as using the command syntax object1 = object to copy a quantized
object. Quantized filters, quantized FFTs, and quantizers have memory (their
read-only properties). When you use copyobj, the resulting copy is
independent of the original item—it does not share the original object’s
memory, such as the values of the properties min, max, noverflows, or
noperations. Using object1 = object creates a new object that is an alias for
the original and shares the original object’s memory, and thus its property
values.

Examples q = quantizer('CoefficientFormat',[8 7]);
q1 = copyobj(q);

You can combine quantizers and quantized filters in the same copyobj
command. You cannot include quantized FFTs with other quantized objects in
one copyobj command.

hq = qfilt;
q=quantizer;
[hq1,q1] = copyobj(hq,q)

See Also qfilt, qfft, quantizer, get, set

denormalmax

13-109

13denormalmaxPurpose Return the largest denormalized quantized number for a quantizer

Syntax x = denormalmax(q)

Description x = denormalmax(q) is the largest positive denormalized quantized number
where q is a quantizer. Anything larger than x is a normalized number.
Denormalized numbers apply only to floating-point format. When q represents
fixed-point numbers, this function returns eps(q).

Examples q = quantizer('float',[6 3]);
x = denormalmax(q)

returns the value x = 0.1875 = 3/16.

Algorithm When q is a floating-point quantizer,
denormalmax(q) = realmin(q) - denormalmin(q).

When q is a fixed-point quantizer, denormalmax(q) = eps(q).

See Also denormalmin, eps, quantizer

denormalmin

13-110

13denormalminPurpose Return the smallest denormalized quantized number for a quantizer

Syntax x = denormalmin(q)

Description x = denormalmin(q) is the smallest positive denormalized quantized number
where q is a quantizer. Anything smaller than x underflows to zero with
respect to the quantizer q. Denormalized numbers apply only to floating-point
format. When q represents a fixed-point number, denormalmin returns eps(q).

Examples q = quantizer('float',[6 3]);
denormalmin(q)

returns the value 0.0625 = 1/16.

Algorithm When q is a floating-point quantizer, , where Emin is equal to
exponent(q).

When q is a fixed-point quantizer, , where f is equal to
fractionlength(q).

See Also denormalmax, eps, quantizer

x 2Emin f–
=

x eps q() 2 f–
= =

dfilt.calattice

13-111

13dfilt.calatticePurpose Construct a discrete-time, coupled-allpass, lattice filter object

Syntax Hd = dfilt.calattice(k1,k2,beta)
Hd = dfilt.calattice

Description Hd = dfilt.calattice(k1,k2,beta) returns a discrete-time, coupled-allpass,
lattice filter object, Hd, which is two allpass, lattice filter structures coupled
together. The lattice coefficients for each structure are vectors, k1 and k2. Input
argument beta is shown in the diagram below

Hd = dfilt.calattice returns a default, discrete-time coupled-allpass,
lattice filter object, Hd. The default values are k1 = k2 = [], which is the
default value for dfilt.latticeallpass, and beta = 1. This filter passes the
input through to the output unchanged.

dfilt.calattice

13-112

Example Specify a third-order lattice coupled-allpass filter structure for a dfilt filter, Hd
with the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hd = dfilt.calattice(k1,k2,beta)

k1 =
 0.9511 + 0.3088i
 0.7511 + 0.1158i
k2 =

dfilt.calattice

13-113

 0.7502 - 0.1218i
beta =
 0.1385 + 0.9904i
Hd =
 FilterStructure: 'Lattice Coupled Allpass'
 Allpass1: [1x1 dfilt.latticeallpass]
 Allpass2: [1x1 dfilt.latticeallpass]
 Beta: 0.1385+ 0.9904i

See Also dfilt.calatticepc

dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox
documentation

dfilt.calatticepc

13-114

13dfilt.calatticepcPurpose Construct a discrete-time, coupled-allpass, power-complementary lattice filter
object

Syntax Hd = dfilt.calatticepc(k1,k2,beta)
Hd = dfilt.calatticepc

Description Hd = dfilt.calatticepc(k1,k2) returns a discrete-time, coupled-allpass,
lattice filter object, Hd, with power-complementary output. This object is two
allpass lattice filter structures coupled together to produce complementary
output. The lattice coefficients for each structure are vectors, k1 and k2,
respectively. beta is shown in the diagram below

Hd = dfilt.calatticepc returns a default, discrete-time, coupled-allpass,
lattice filter object, Hd, with power-complementary output. The default values
are k1=k2=[], which is the default value for the dfilt.latticeallpass. The
default for beta=1. This filter passes the input through to the output
unchanged.

dfilt.calatticepc

13-115

Example Specify a third-order lattice coupled-allpass power complementary filter
structure for a filter Hd with the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hd = dfilt.calattice(k1,k2,beta)

k1 =
 0.9511 + 0.3088i
 0.7511 + 0.1158i
k2 =

dfilt.calatticepc

13-116

 0.7502 - 0.1218i
beta =
 0.1385 + 0.9904i
Hd =
 FilterStructure: 'Coupled-Allpass Lattice, Power
 Complementary Output'
 Allpass1: [1x1 dfilt.latticeallpass]
 Allpass2: [1x1 dfilt.latticeallpass]
 Beta: 0.1385+ 0.9904i

See Also dfilt.calattice

dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox
documentation

disp

13-117

13dispPurpose Display a quantizer, quantized FFT, or quantized filter

Description Similar to omitting the closing semicolon from an expression on the command
line, except that disp does not display the variable name. disp lists the
property names and property values for a quantizer, quantized filter, or
quantized FFT.

The following examples illustrate the default display for a quantized FFT F and
a quantizer q.

F = qfft;
disp(F)

 Radix = 2
 Length = 16
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OperandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 NumberOfSections = 4
 ScaleValues = [1]

q = quantizer
q =
 Mode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]
 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0

See Also set

eps

13-118

13epsPurpose Return the quantized relative accuracy for quantized filters, quantizers, and
quantized FFTs

Syntax eps(q)
eps(hq)
eps(f)

Description eps(q) returns the quantization level of quantizer object q, or the distance
from 1.0 to the next largest floating-point number when q is a floating-point
quantizer object.

eps(hq) returns the quantization level of quantized filter hq, or the distance
from 1.0 to the next largest floating-point number when hq is a floating-point
quantized filter.

eps(f) returns the quantization level of quantized FFT f, or the distance from
1.0 to the next largest floating-point number when f is a floating-point
quantized FFT.

Examples q = quantizer('float',[6 3]);
eps(q)

returns the value 0.25. The following code

hq = qfilt;
f = qfft;
eps(hq)
eps(f)

returns the values

coefficient 3.051757813e-005
 input 3.051757813e-005
 output 3.051757813e-005
multiplicand 3.051757813e-005
 product 9.313225746e-010
 sum 9.313225746e-010

for the quantizers in the quantized filter, and

eps

13-119

 coefficient 3.051757813e-005
 input 3.051757813e-005
 output 3.051757813e-005
multiplicand 3.051757813e-005
 product 9.313225746e-010
 sum 9.313225746e-010

for the quantizers in the quantized FFT.

Algorithm For fixed-point or floating-point numbers, where e is the relative
accuracy of the quantizer and f is the fraction length of the quantizer.

See Also eps, exponentbias, exponentlength, exponentmax, exponentmin

e 2 f–
=

errmean

13-120

13errmeanPurpose Return the mean of the quantization error resulting from quantizing a signal

Syntax qerr = errmean(q)

Description qerr = errmean(q) returns the mean value of the uniformly distributed
random quantization error that results when you use quantizer q to quantize
a signal.

The value of qerr does not depend on the signal quantized unless the precision
(the value of the least significant bit) of your signal and your quantizer are very
nearly the same. Use eps to determine the precision for quantizers or varied
wordlengths.

When the precision of your signal is close to the precision of your quantizer,
qerr may not match the theoretical value. When your signal has infinite
extent and infinite precision, the value calculated for qerr matches the
theoretical value of the mean of the uniformly distributed quantization error.

For most purposes, when the difference in precision between a signal and the
quantizers is greater then 16 bits, the result calculated by errmean is exact.
When you reduce the wordlength by three or four bits through quantization,
errmean generates an excellent approximation. For wordlength changes that
exceed four bits, errmean provides a less good match to the theoretical mean.
For fixed-point quantizers, the wordlength property defines the precision.

As you change the rounding mode for your quantizer, the mean error value
changes as well, as shown in this table.

Round Mode Probability Density Function
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ceil 1/ε; ; 0 otherwise ε/2 ε2/12 -6.02f - 10.79

convergent 1/ε; ; 0 otherwise 0 ε2/12 -6.02f - 10.79

fix 1/(2ε); ; 0 otherwise 0 ε2/3 -6.02f - 4.77

floor 1/ε; ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

round 1/ε; ; 0 otherwise 0 ε2/12 -6.02f - 10.79

0 x ε<≤

ε– 2⁄ x ε 2⁄≤ ≤

ε– x ε< <

ε– x 0≤<

ε– 2⁄ x ε 2⁄≤<

errmean

13-121

In the table, ε represents the quantization level (eps(q)) for your quantizer, x is
the uniformly distributed random quantization error, and f is the wordlength
of the quantizer.

For more information about the errmean algorithm, and for a discussion about
correction factors for quantizing from one fixed-point format and precision to
another, refer to [1] in the References section.

Examples Compare the mean value determined by Monte Carlo methods to the mean
value computed by errmean. In this example, the fraction length for q equals 15
bits (eps = 3.0518e-005) and the fraction length for the signal u is 31 bits
(eps = 4.6566e-010) .

q = quantizer('fixed','floor',[16 15]);
m = errmean(q)
m =

 -1.5259e-005 % =-eps(q/2) from the table
% Compare m to the sample mean from a Monte Carlo experiment
r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
m_est = mean(e) % Estimate of the error mean
m_est =

 -1.5471e-005
abs(m-m_est)

ans =

 2.1174e-007 % Difference between the error estimates

Algorithm You use similar equations to calculate the mean value for the five rounding
modes. In the following equations, x = y-u, where u is the original signal and y
is the signal value after quantization. ε is the minimum quantization step for
the quantizer. For all of the following, f(x) denotes the probability density
function of the error.

errmean

13-122

Ceil mode

Convergent mode

Fix mode

Floor mode

Round mode

f x()
1 ε 0 x ε<≤,⁄
0 otherwise,



=

µ E x() xf x() xd
∞–

∞

∫ ε 2⁄= = =

f x()
1 ε ε– 2⁄ x ε 2⁄≤ ≤,⁄

0 otherwise,



=

µ E x() xf x() xd
∞–

∞

∫ 0= = =

f x()
1 2ε() ε– x ε< <,⁄

0 otherwise,



=

µ E x() xf x() xd
∞–

∞

∫ 0= = =

f x()
1 ε ε– x 0≤<,⁄
0 otherwise,




=

µ E x() xf x() xd
∞–

∞

∫ ε 2⁄–= = =

errmean

13-123

See Also quantizer/errpdf, quantizer/errvar

References [1] Schlichthärle, Dietrich, Digital Filter, Springer, 2000, Section 8.3
“Quantization,” pp. 233-240

f x()
1 ε ε– 2⁄ x< ε 2⁄≤,⁄

0 otherwise,



=

µ E x() xf x() xd
∞–

∞

∫ 0= = =

errpdf

13-124

13errpdfPurpose Calculate the probability density function (pdf) of the quantization error

Syntax (qf,x) = errpdf(q)
(qf) = errpdf(q,x)

Description (qf,x) = errpdf(q) returns qf, the pdf of the quantization error, evaluated
at the values returned in x. When you do not provide x as an input vector to
define the values at which to calculate qf, errpdf uses 128 equally spaced
points between (-2*eps) and (2*eps) as the values at which it calculates qf.

(qf) = errpdf(q,x) returns qf, the pdf of the quantization error, evaluated
at the values specified in vector x. Values in qf result from using q to quantize
a signal. The error generated by the quantization process is random and
uniformly distributed around zero.

When the precision of your signal is close to the precision of your quantizer, qf
may not match the theoretical precision. When your signal has infinite extent
and infinite precision, the value calculated for qf matches the theoretical value
of the pdf of the uniformly distributed quantization error.

For most purposes, when the difference in precision between a signal and the
quantizers is greater then 16 bits, the result calculated by errpdf is exact.
When you reduce the wordlength by 3 or 4 bits through quantization, errpdf
generates an excellent approximation. For wordlength changes that exceed
four bits, errpdf provides a less good match to the theoretical mean. For
fixed-point quantizers, the wordlength property defines the precision.

As you change the rounding mode for your quantizer, the pdf changes as well,
as shown in this table.

Round Mode Probability Density Function
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ceil 1/ε; ; 0 otherwise ε/2 ε2/12 -6.02f - 10.79

convergent 1/ε; ; 0 otherwise 0 ε2/12 -6.02f - 10.79

fix 1/(2ε); ; 0 otherwise 0 ε2/3 -6.02f - 4.77

0 x ε<≤

ε– 2⁄ x ε 2⁄≤ ≤

ε– x ε< <

errpdf

13-125

In the table, ε represents the quantization level (eps(q)) for your quantizer, x is
the uniformly distributed random quantization error, and f is the wordlength
of the quantizer.

Examples Using a quantizer on a signal, compare the pdf calculated by errpdf to the
error generated by a Monte Carlo experiment. Notice that the quantizer uses
4 bits with 3 bits for the fraction length. Signal u in the Monte Carlo
experiment is a double array.

q = quantizer('round',[4 3]);
[f,x] = errpdf(q);
subplot(211)
plot(x,f)
title('Computed PDF of the quantization error.')

% Compare f to the sample pdf from a Monte Carlo experiment
r = realmax(q);
u = 2*r*rand(10000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
subplot(212)
hist(e,20);set(gca,'xlim',[min(x) max(x)])
title('Estimate of the PDF of the quantization error.')

Looking at the plot shown here you see that the computed, or theoretical, and
estimated pdfs agree closely.

floor 1/ε; ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

round 1/ε; ; 0 otherwise 0 ε2/12 -6.02f - 10.79

Round Mode Probability Density Function
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ε– x 0≤<

ε– 2⁄ x ε 2⁄≤<

errpdf

13-126

Algorithm Here are the methods for calculating the pdf for the five rounding modes. In
the equations, x = y-u, where u is the original signal and y is the signal value
after quantization. ε is the minimum quantization step for the quantizer. For
all of the following, f(x) denotes the probability density function of the error.

Ceil mode

Convergent mode

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8
Computed PDF of the quantization error

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

500

600
Estimated PDF of the quantization error

f x()
1 ε 0 x ε<≤,⁄
0 otherwise,



=

f x()
1 ε ε– 2⁄ x ε 2⁄≤ ≤,⁄

0 otherwise,



=

errpdf

13-127

Fix mode

Floor mode

Round mode

See Also quantizer/errmean, quantizer/errvar

References [1] Schlichthärle, Dietrich, Digital Filter, Springer, 2000, Section 8.3
“Quantization,” pp. 233-240

f x()
1 2ε() ε– x ε< <,⁄

0 otherwise,



=

f x()
1 ε ε– x 0≤<,⁄
0 otherwise,




=

f x()
1 ε ε– 2⁄ x< ε 2⁄≤,⁄

0 otherwise,



=

errvar

13-128

13errvarPurpose Return the variance of the quantization error resulting from quantizing a
signal

Syntax qvar = errvar(q)

Description qvar = errvar(q) returns the variance of the uniformly distributed random
quantization error that results when you use quantizer q to quantize a signal.

The value of errvar does not depend on the signal quantized unless the
precision (the value of the least significant bit) of your signal and your
quantizer are very nearly the same. Use eps to determine the precision for
quantizers or various wordlengths.

When the precision of your signal is close to the precision of your quantizer,
qvar may not match the theoretical value. When your signal has infinite extent
and infinite precision, the value calculated for qvar matches the theoretical
value of the variance of the uniformly distributed quantization error.

For most purposes, when the difference in precision between a signal and the
quantizers is greater then 16 bits, the result calculated by errvar is exact.
When you reduce the wordlength by 3 or 4 bits through quantization, errvar
generates an excellent approximation. For wordlength changes that exceed
4 bits, errvar provides a less good match to the theoretical mean. For
fixed-point quantizers, the wordlength property defines the precision.

As you change the rounding mode for your quantizer, the variance changes as
well, as shown in this table.

Round Mode Probability Density Function
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ceil 1/ε; ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

convergent 1/ε; ; 0 otherwise 0 ε2/12 -6.02f - 10.79

fix 1/(2ε); ; 0 otherwise 0 ε2/3 -6.02f - 4.77

floor 1/ε; ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

round 1/ε; ; 0 otherwise 0 ε2/12 -6.02f - 10.79

0 x ε<≤

ε– 2⁄ x ε 2⁄≤ ≤

ε– x ε< <

ε– x 0≤<

ε– 2⁄ x ε 2⁄≤<

errvar

13-129

In the table, ε represents the quantization level (eps(q)) for your quantizer, x is
the uniformly distributed random quantization error, and f is the wordlength
of the quantizer.

Examples To demonstrate the accuracy of errvar, compare the theoretical variance for
the quantization error as determined by Monte Carlo analysis using a signal to
the result from errvar:

q = quantizer;
v = errvar(q)

% Compare to the sample variance from a Monte Carlo experiment
r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
v_est = var(e) % Estimate of the error variance
v =

 7.7610e-011 % =eps(q)^2/12 from the table

v_est =

 7.5534e-011

v_est-v

ans =

 -2.0758e-012

Algorithm The variance depends on the rounding mode of the quantizer. Ceil, convergent,
floor, and round share the same variance through different calculations. Fix
differs by a factor of four. For the definition and derivation of µ for each mode,
refer to errvar. E(x) is the expected value of the random variable; the variance
is σ2. In the equations, x = y-u, where u is the original signal and y is the signal
value after quantization. ε is the minimum quantization step for the quantizer.

errvar

13-130

Ceil and floor modes

Convergent and round modes

Fix mode

See Also quantizer/errmean, quantizer/errpdf

References [1] Schlichthärle, Dietrich, Digital Filter, Springer, 2000, Section 8.3
“Quantization,” pp. 233-240

E x()2 1 ε x2 xd
ε–

0

∫⁄=

ε2 3⁄=

σ2 E x2() µ2
– ε2 3⁄ ε2 4⁄– ε2 12⁄= = =

E x()2 1 ε x2 xd

ε– 2⁄

ε 2⁄

∫⁄=

ε2 12⁄=

σ2 E x2() µ2
– ε2 12⁄ 0– ε2 12⁄= = =

E x()2 1 ε x2 xd
ε–

0

∫⁄=

ε2 3⁄=

σ2 E x2() µ2
– ε2 3⁄ 0– ε2 3⁄= = =

exponentbias

13-131

13exponentbiasPurpose Return the exponent bias for a quantizer

Syntax b = exponentbias(q)

Description b = exponentbias(q) returns the exponent bias of the quantizer q. For
fixed-point quantizers, exponentbias(q) returns 0.

Examples q = quantizer('double');
b = exponentbias(q)

returns the value b = 1023.

Algorithm For floating-point quantizers, , where e = eps(q), and
exponentbias is the same as the exponent maximum.

For fixed-point quantizers, b = 0 by definition.

See Also eps, exponentlength, exponentmax, exponentmin

b 2e 1– 1–=

exponentlength

13-132

13exponentlengthPurpose Return the exponent length of a quantizer

Syntax e = exponentlength(q)

Description e = exponentlength(q) returns the exponent length of quantizer q. When q is
a fixed-point quantizer, exponentlength(q) returns 0. This is useful because
exponent length is valid whether the quantizer mode is floating-point or
fixed-point.

Examples q = quantizer('double');
e = exponentlength(q);

returns the value e = 11.

Algorithm The exponent length is part of the format of a floating-point quantizer [w, e].
For fixed-point quantizers, e = 0 by definition.

See Also eps, exponentbias, exponentmax, exponentmin

exponentmax

13-133

13exponentmaxPurpose Return the maximum exponent for a quantizer

Syntax exponentmax(q)

Description exponentmax(q) returns the maximum exponent for quantizer q. When q is a
fixed-point quantizer, it returns 0.

q = quantizer('double');
exponentmax(q)

returns the value ans = 1023.

Algorithm For floating-point quantizers, .

For fixed-point quantizers, by definition.

See Also eps, exponentbias, exponentlength, exponentmin

Emax 2e 1– 1–=

Emax 0=

exponentmin

13-134

13exponentminPurpose Return the minimum exponent for a quantizer

Syntax emin = exponentmin(q)

Description emin = exponentmin(q) returns the minimum exponent for quantizer q. If q is
a fixed-point quantizer, exponentmin returns 0.

Examples q = quantizer('double');
emin = exponentmin(q)

returns the value emin = 1022.

Algorithm For floating-point quantizers, .

For fixed-point quantizers, .

See Also eps, exponentbias, exponentlength, exponentmax

Emin 2–
e 1– 2+=

Emin 0=

fdatool

13-135

13fdatoolPurpose Open the Filter Design and Analysis Tool.

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to:

• Design filters

• Quantize filters

• Analyze filters

• Modify existing filter designs

• Realize Simulink models of quantized, direct form, FIR filters

• Perform digital frequency transformations of filters

Refer to “Using FDATool with the Filter Design Toolbox” for more information
about using the quantization features of FDATool. For general information
about using FDATool, refer to “Filter Design and Analysis Tool” in your Signal
Processing Toolbox documentation.

When you open FDATool and you have Filter Design Toolbox installed,
FDATool incorporates additional features that are provided by Filter Design
Toolbox. With Filter Design Toolbox installed, FDATool lets you design and
analyze quantized filters, as well as convert quantized filters to various filter
structures, transform filters, and realize models of filters.

fdatool

13-136

Use the Set Quantization Parameters option to configure the quantization
settings for a quantized filter, or to access the tools to scale the filter
coefficients.

Set Quantization Parameters — provides access to the properties of the
quantizers that compose a quantized filter. When you click Set Quantization
Parameters, you see FDATool displaying the quantization parameters at the
bottom of the dialog, as shown in the figure.

fdatool

13-137

Transform Filter—clicking this button opens the Frequency
Transformations pane so you can use digital frequency transformations to
change the magnitude response of your filter.

Realize Model—starting from your quantized, direct form, FIR filter, clicking
this button creates a Simulink model of your filter structure in new model
window.

Turn quantization on—enables the Quantized Filter panel and quantizes
the current filter. Select this option when you want to quantize a filter or set
the quantization properties for a filter.

Optimize…—opens the Quantized Optimizations dialog to let you specify
how to quantize and scale your filter.

fdatool

13-138

Remarks By incorporating many advanced filter design methods from Filter Design
Toolbox,FDATool provides more design methods than the SPTool Filter
Designer.

See Also fdatool, fvtool, sptool in your Signal Processing Toolbox documentation

fft

13-139

13fftPurpose Apply a quantized fast Fourier transform to data

Syntax y = fft(F,x)
y = fft(F,x,dim)

Description y = fft(F,x) uses quantized FFT (fast Fourier transform) F to compute the
FFT of vector x. The parameters of the quantized FFT are specified in
quantized FFT F. The radix is specified by F.radix. The decimation is specified
by F.decimation. The length of the FFT is specified by F.length. When the
length of x is less than F.length, x is padded with zeros. When x is longer than
F.length, x is truncated. For matrices, the FFT operation is applied to each
column. For N-D arrays, the FFT operation operates on the first nonsingleton
dimension.

y = fft(F,x,dim) applies the quantized FFT operation across the dimension
dim.

Examples When you quantize a sinusoid, you generate errors as a result of the
quantization process. This example demonstrates this effect. We create a
sinusoid, quantize it, and look at the error between the quantized and
unquantized sinusoids. Then we plot the FFTs for both signals.

n = 128;
t = (0:n-1/n);
x = sin(2*pi*16*t)/16;% Reference sinusoid
q = quantizer([5 4]);
f = qfft('length',n,'inputformat',q);
plot(t,[quantize(q,x);x]);% Plot both signals
plot(t,[quantize(q,x)-x]);% Plot the error
plot(t,[20*log10(abs(fft(f,x)));...
(20*log10(abs(fft(x)))/20)])% Plot the FFTs for both signals

fft

13-140

The following figure presents the results.

Looking at the subplot of the error between the reference and quantized
sinusoids, you see that the error is periodic. Because the error is periodic, the
FFT of the quantized sinusoid includes periodic frequency content not in the
reference signal, as seen in the FFTs subplot.

See Also get, ifft, qreport, qfft, set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1
Reference Sinusoid & Quantized Sinusoid

Li
ne

ar

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0
Error

Li
ne

ar

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−20

0

20
FFTs of the Reference and Quantized Sinusoids

dB

Time in Seconds

Quantized
Reference

filter

13-141

13filterPurpose Apply a quantized filter to data and access states and filtering information

Syntax y = filter(Hq,x)
[y,zf] = filter(Hq,x)
[...] = filter(Hq,x,zi)
[...] = filter(Hq,x,zi,dim)
[y,zf,s,z,v] = filter(Hq,x...)

Description y = filter(Hq,x) filters a vector of real or complex input data x through a
quantized filter Hq, producing filtered output data y. The vectors x and y have
the same length.

If x is a matrix, y = filter(Hq,x) filters each column of x to produce a matrix
y. If x is a multidimensional array, y = filter(Hq,x) filters x along the first
nonsingleton dimension of x.

[y,zf] = filter(Hq,x) produces an additional output argument zf.
zf contains the final values for the state vector calculated from zero initial
conditions for the state. The form zf takes depends on the data to be filtered
and the number of stages in the filter, as detailed in Table 13-3, Final State
Form Depends on Filtered Data and Filter Structure.

[...] = filter(Hq,x,zi) specifies the initial conditions for the state vector
in zi. The form for specifying zi is described in Table 13-2, Initial State
Format Depends on the Filter Structure. To specify the same initial condition
for all state components, enter zi as a scalar. You can set zi to zero, [], or {}
to specify zero (the default) initial conditions.

The form of the initial and final states associated with a quantized filter Hq
depends on the filter structure and the data to be filtered. The following tables

filter

13-142

give the form for either entering the initial states or retrieving the final states
of the quantized filter.

The variables in these tables are described as follows:

• si is the number of states in the ith section of the filter.

• c is prod(size(x))/size(x,dim), where dim is the first nonsingleton
dimension into which you are filtering.

To figure out the dimensions of the initial or final conditions, run the filter once
with empty initial conditions. Then the final conditions are the right size for
the initial conditions:

[y,zf] = filter(Hq,x);

Look at the size and data type of zf. The initial conditions, zi, will be the same
size as zf.

Table 13-2: Initial State Format Depends on the Filter Structure

Number of Filter
Sections

Format of the Initial State

1 A column vector of length s1

n A 1-by-n cell array of vectors of length si,
i=1, 2,...,n

Table 13-3: Final State Form Depends on Filtered Data and Filter Structure

Filtered Data Number of
Filter Sections

Form of the Final State

Vector 1 A column vector of length s1

Vector n A 1-by-n cell array of vectors of
length si, i=1, 2,...,n

Multidimensional
array

1 An s1-by-c matrix

Multidimensional
array

n 1-by-n cell array of si-by-c
matrices, i=1, 2,...,n

filter

13-143

Use the StatesPerSection property of the quantized filter Hq to access the
number of states in each section. See “Quantized Filter Properties Reference”
on page 12-11 for more information on filter properties.

[...] = filter(Hq,x,zi,dim) applies the quantized filter Hq to the input
data located along the specific dimension of x specified by dim.

[y,zf,s,z,v] = filter(Hq,x...) returns s, a MATLAB structure
containing quantization information (refer to qreport for details); z, the filter’s
state sequence; and v, the number of overflows at each time step of the filter.
When you include four or five output arguments, the input argument x must
be a vector. z is a cell array containing the sequence of states at each time step,
having 1 element per filter and 1 column per time step. The initial conditions
of the kth filter section are in the first column of z{k}:zi{k}=z{k}(:,1). The
final conditions of the kth filter section are in the last column of
z{k}:zf{k} = z{k}(:,end). Overflows for the kth section are in v{k}.

Examples Find the response of a quantized digital filter.

randn('state',0);
x = randn(100,1);
warning on;
[b,a] = butter(3,.9,'high');
Hq = sos(qfilt('referencecoefficients',{b,a}))
Warning: 3 overflows in coefficients.

y = filter(Hq,x);

Warning: 27 overflows in QFILT/FILTER.

Max Min NOverflows NUnderflows NOperations
 Coefficient 1 -0.7419 0 0 4
 0.8238 -1 0 0 6
 Input 2.183 -2.171 27 0 100
 Output 0.4361 -0.45 0 0 100
Multiplicand 1 -1 0 2 600
 0.4361 -0.45 0 0 700
 Product 0.01276 -0.01227 0 0 600
 0.4361 -0.45 0 0 700
 Sum 0.01278 -0.01221 0 0 300
 0.2181 -0.225 0 0 500

filter

13-144

Hq.filterstructure

ans =

df2t

Notice the warnings returned during filter quantization and application. The
first warning indicates that one of the filter coefficients overflowed during
quantization before converting the filter to second-order section form. Applying
the function sos to the filter removed the coefficient overflows. The second
warning displays the overflow report, listing details about the filtering
operation.

Note Use qreport to display the information logged during a filtering
operation.

Algorithm The filter command implements fixed- or floating-point arithmetic on the
quantized filter structure you specify. The state vector z associated with the
filter is a vector whose components are derived from the values of each of the
input signals to each delay in the filter. The length of z is the same as the
number of delays in the filter.

The implementation of filter depends on the filter structure. For example,
the operation of filter at sample m for a direct form II transposed filter is
given by the quantized time domain difference equations for y and the states zi
shown below. Square brackets denote the quantization that takes place for the
input data x, the output data y, the coefficients, the products, and the sums.

y m()
b 1()[] x m()[][] z1 m 1–()+[]

a 1()[]
---=

z1 m() b 2()[] x m()[][] z+ 2 m 1–() a 2()[] y m()[]–[]=

! !=

zn 2– m() b n 1–()[] x m()[][] zn 1– m 1–()+[] a n 1–()[] y m()[]–[]=

zn 1– m() b n()[] x m()[][] a n()[] y m()[]–[]=

filter

13-145

Notice that for this df2t filter structure, you divide by a(1). For efficient
computation, choose a(1) to be a power of 2.

Note qfilt/filter does not normalize the filter coefficients automatically.
Function filter supplied by MATLAB does normalize the coefficients.

See Also impz, qfilt, qreport

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Pren-
tice-Hall, 1989.

firceqrip

13-146

13firceqripPurpose Design constrained, equiripple, finite impulse response (FIR) filters

Syntax h = firceqrip(n,wo,del)
h = firceqrip(..., slope ,r)
h = firceqrip(...,'passedge')
h = firceqrip(...,'stopedge')
h = firceqrip(...,'high')
h = firceqrip(...,'min')
h = firceqrip(...,'invsinc',c)

Description h = firceqrip(n,wo,del) design an order n filter (filter length equal n+1)
lowpass FIR filter with linear phase.

firceqrip produces the same equiripple lowpass filters that remez produces
using the Parks-McClellan algorithm. The difference is how you specify the
filter characteristics for the function.

Input argument wo specifies the cutoff frequency. The two-element vector del
specifies the peak or maximum error allowed in the passband and stopbands.
Enter [d1 d2] for del where d1 sets the passband error and d2 sets the
stopband error. Since firceqrip works in the normalized frequency domain,
you must set wo to be between 0 and 1 (0 < wo < 1).

h = firceqrip(..., slope ,r) uses the input keyword 'slope' and input
argument r to design a filter with a stopband that does not demonstrate
equiripple characteristics. r determines the slope of the stopband in dB when
r > 0. Try setting r to 10 to see the effect on the filter frequency response. In
the Examples section, Example 3 designs a filter with r equal to 20.

h = firceqrip(...,'passedge') designs a filter where wo specifies the
frequency at which the passband starts to roll off.

h = firceqrip(...,'stopedge') designs a filter where wo specifies the
frequency at which the stopband begins.

h = firceqrip(...,'high') designs a high pass FIR filter instead of
a lowpass filter.

h = firceqrip(...,'min') designs an FIR filter with minimum phase.

firceqrip

13-147

h = firceqrip(...,'invsinc',c)) designs a lowpass filter whose passband
has the shape of the inverse sinc function. For this syntax, keyword invsinc
applies the inverse sinc function as defined by whether c is a scalar or a
two-element vector:

• When you use c as a scalar with the invsinc keyword, firceqrip applies the
function 1/sinc(c*w), where w is the normalized frequency, to the passband.

• When you use c as a two-element vector entered as [c p],with the invsinc
keyword, firceqrip applies the function 1/sinc(c*w)p to the passband, where
w is the normalized frequency.

In both cases, c must meet the condition c < 1/wo.

When you use a cascaded-integrated comb (CIC) filter in series with this FIR
filter, argument p lets you compensate for the droop in the passband of the CIC
filter. Setting p equal to the number of stages in your CIC generally produces
an FIR filter whose passband neatly compensates for the CIC passband shape.

To let you specify precisely the FIR filter to design, use any or all of the optional
input arguments together. Any ordering of the optional arguments works—
order is not important in the function call. Refer to Examples 3 and 4 to see
multiple optional input arguments being used.

Note If the wo you specify is too small or too large, or if either c or p is too
large, your filter specifications may be unfeasible, causing the design
algorithm to fail to generate your filter.

Examples To introduce a few of the variations on FIR filters that you design with
firceqrip, these five examples cover both the default syntax
h = firceqrip(n,wo,del) and some of the optional input arguments. For each
example, the input arguments n, wo, and del remain the same.

Example 1—Design an order = 30 FIR filter without using optional input
arguments or keywords.

h = firceqrip(n,wo,del); fvtool(h)

Both the phase and magnitude response for the resulting lowpass filter appear
in the plot shown here.

firceqrip

13-148

Example 2—Design an order = 30 FIR filter with the stopedge keyword to
define the response at the edge of the filter stopband.

h = firceqrip(n,wo,del,'stopedge'); fvtool(h)

Example 3—Design an order = 30 FIR filter with the slope keyword and
r = 20.

h = firceqrip(n,wo,del,'slope',20,'stopedge'); fvtool(h)

Example 4—Design an order = 30 FIR filter defining the stopband and
specifying that the resulting filter is minimum phase with the min keyword.

h = firceqrip(n,wo,del,'stopedge','min'); fvtool(h)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−70

−50

−30

−10

10

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1400

−1120

−840

−560

−280

0

Normalized Frequency (×π rad/sample)

P
ha

se
(d

eg
re

es
)

Filter #1: Discrete filter magnitude
Filter #1: Discrete filter phase

firceqrip

13-149

Comparing this filter to the filter in Example 1, notice that the cutoff frequency
wo = 0.4 now applies to the edge of the stopband rather than the point at which
the frequency response magnitude is 0.5.

Viewing the zero-pole plot shown here reveals this is a minimum phase FIR
filter—the zeros lie on or inside the unit circle, z = 1.

Example 5—Design an order = 30 FIR filter with the invsinc keyword to
shape the filter passband with an inverse sinc function.

h = firceqrip(n,wo,del,'invsinc',[2 1.5]); fvtool(h)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

30

Real Part

Im
ag

in
ar

y
P

ar
t

Pole/Zero Plot

Filter #1: Zeros
Filter #1: Poles

firceqrip

13-150

With the inverse sinc function being applied defined as 1/sinc(2*w)1.5, the figure
shows the reshaping of the passband that results from using the invsinc
keyword option, and entering c as the two-element vector [2 1.5].

See Also firhalfband, firnyquist, gremez, ifir, iirgrpdelay, iirlpnorm, iirlpnormc

fircls, firls, remez in your Signal Processing Toolbox documentation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

firhalfband

13-151

13firhalfbandPurpose Design a halfband FIR filter

Syntax b = firhalfband(n,fp)
b = firhalfband(n,win)
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')

Description b = firhalfband(n,fp) designs a lowpass halfband FIR filter of order N with
an equiripple characteristic. N must be selected such that N/2 is an odd integer.
fp determines the passband edge frequency, and it must satisfy 0 < fp < 1/2,
where 1/2 corresponds to rad/sample.

b = firhalfband(n,win) designs a lowpass Nth-order filter using the
truncated, windowed-impulse response method instead of the equiripple
method. win is an n+1 length vector. The ideal impulse response is truncated to
length n + 1, and then multiplied point-by-point with the window specified in
win.

b = firhalfband('minorder',fp,dev) designs a lowpass minimum-order
filter, with passband edge fp. The peak ripple is constrained by the scalar dev.
This design uses the equiripple method.

b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass
minimum-order filter, with passband edge fp. The peak ripple is constrained
by the scalar dev. This design uses the Kaiser window method.

b = firhalfband(...,'high') returns a highpass halfband FIR filter.

Examples This example designs a minimum order halfband filter with specified
maximum ripple:

b=firhalfband('minorder',.45,0.0001);
[h,w,s]=freqz(b); s.plot='mag'; s.yunits = 'li';
fvtool(h,w,s); % Plot magnitude only in linear units
figure;
impz(b) % Impulse response is zero for every other sample

See Also firnyquist, gremez

π 2⁄

firhalfband

13-152

fir1, firls, remez in your Signal Processing Toolbox documentation

References Saramaki, T, “Finite Impulse Response Filter Design,” Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

firlp2lp

13-153

13firlp2lpPurpose Convert FIR Type I lowpass to to FIR Type 1 lowpass with inverse band width.

Syntax g = firlp2lp(b)

Description g = firlp2lp(b) transforms the Type I lowpass FIR filter b with zero-phase
response Hr(w) to a Type I lowpass FIR filter g with zero-phase response
[1 - Hr(π-w)].

If b is a narrowband filter, g will be a wideband filter and vice versa. The
passband and stopband ripples of g will be equal to the stopband and passband
ripples of b.

Examples Overlay the original narrowband lowpass and the resulting wideband lowpass

b = gremez(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
zerophase(b);
hold on
h = firlp2lp(b);
zerophase(h); hold off

See Also firlp2hp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

firlp2hp

13-154

13firlp2hpPurpose Convert FIR Type I lowpass filter to Type I FIR highpass filter

 Syntax g = firlp2hp(b)
g = firlp2hp(b,'wide')

Description g = firlp2hp(b) transforms the type I lowpass FIR filter b with zero-phase
response Hr(w) into a type I highpass FIR filter g with zero-phase response
Hr(π-w).

The passband and stopband ripples of g will be equal to the passband and
stopband ripples of b.

g = firlp2hp(b,'wide') transforms the Type I lowpass FIR filter b with
zero-phase response Hr(w) into a Type I highpass FIR filter g with zero-phase
response 1 - Hr(w).

For this case, the passband and stopband ripples of g will be equal to the
stopband and passband ripples of b.

Examples Overlay the original narrowband lowpass and the resulting narrowband
highpass and wideband highpass

b = gremez(36,[0 .2 .25 1],[1 1 0 0],[1 3]);
zerophase(b); hold on;
h = firlp2hp(b);
zerophase(h);
g = firlp2hp(b,'wide');
zerophase(g); hold off

See Also firlp2lp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

firlpnorm

13-155

13firlpnormPurpose Least P-norm optimal FIR filter design

Syntax b = firlpnorm(n,f,edges,a)
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

Description b = firlpnorm(n,f,edges,a) returns a filter of numerator order n which
represents the best approximation to the frequency response described by f
and a in the least-Pth norm sense. P is set to 128 by default, which essentially
equivalent to the infinity norm. Vector edges specifies the band-edge
frequencies for multiband designs. firlpnorm uses an unconstrained
quasi-Newton algorithm to design the specified filter.

f and a must have the same number of elements, which can exceed the number
of elements in edges. This lets you specify filters with any gain contour within
each band. However, the frequencies in edges must also be in vector f. Always
use freqz to check the resulting filter.

b = firlpnorm(n,f,edges,a,w) uses the weights in w to weight the error.
w has one entry per frequency point (the same length as f and a) which tells
firlpnorm how much emphasis to put on minimizing the error in the vicinity
of each frequency point relative to the other points. For example,

b = firlpnorm(20,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband, and with
emphasis placed on minimizing the error in the stopband.

b = firlpnorm(n,f,edges,a,w,p) where p is a two-element vector [pmin
pmax] lets you specify the minimum and maximum values of p used in the
least-pth algorithm. Default is [2 128] which essentially yields the L-infinity,
or Chebyshev, norm. pmin and pmax should be even numbers. The design
algorithm starts optimizing the filter with pmin and moves toward an optimal
filter in the pmax sense.When p is the string 'inspect', firlpnorm does not

firlpnorm

13-156

optimize the resulting filter. You might use this feature to inspect the initial
zero placement.

b = firlpnorm(n,f,edges,a,w,p,dens) specifies the grid density dens used
in the optimization. The number of grid points is [dens*(n+1)]. The default is
20. You can specify dens as a single-element cell array. The grid is equally
spaced.

b = firlpnorm(n,f,edges,a,w,p,dens,initnum) lets you determine the
initial estimate of the filter numerator coefficients in vector initnum. This can
prove helpful for difficult optimization problems. The pole-zero editor in the
Signal Processing Toolbox can be used for generating initnum.

b = firlpnorm(...,'minphase') where string 'minphase' is the last
argument in the argument list generates a minimum-phase FIR filter. By
default, firlpnorm design mixed-phase filters. Specifying input option
'minphase' causes firlpnorm to use a different optimization method to design
the minimum-phase filter. As a result of the different optimization used, the
minimum-phase filter can yield slightly different results.

[b,err] = firlpnorm(...) returns the least-pth approximation error err.

Examples To demonstrate firlpnorm, here are two examples — the first designs a
lowpass filter and the second a highpass, minimum-phase filter.

% Lowpass filter with a peak of 1.4 in the passband.
b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...
[1 1 1 2 2]);
fvtool(b)

firlpnorm

13-157

From the figure you see the resulting filter is lowpass, with the desired 1.4
peak in the passband (notice the 1.4 specified in vector a).

Now for the minimum-phase filter.

% Highpass minimum-phase filter optimized for the 4-norm.
b = firlpnorm(44,[0 .4 .45 1],[0 .4 .45 1],[0 0 1 1],[5 1 1 1],...
[2 4],'minphase');
fvtool(b)

As shown in the next figure, this is a minimum-phase, highpass filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Lowpass FIR Filter Magnitude Response

firlpnorm

13-158

The next zero-pole plot shows the minimum phase nature more clearly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−180

−140

−100

−60

−20

20

M
ag

ni
tu

de
 (

dB
)

Magnitude and Phase Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−800

−640

−480

−320

−160

0

rad/sample

P
ha

se
 (

de
gr

ee
s)

Filter #1: Discrete filter magnitude
Filter #1: Discrete filter phase

firlpnorm

13-159

See Also gremez, iirgrpdelay, iirlpnorm, iirlpnormc
filter, fvtool, freqz, zplane in your Signal Processing Toolbox
documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Part

Im
ag

in
ar

y
P

ar
t

Zero−Pole Plot of Minimum Phase FIR Filter

244

firminphase

13-160

13firminphasePurpose Compute the minimum-phase FIR spectral factor

Syntax h = firminphase(b)
h = firminphase(b,nz)

Description h = firminphase(b) computes the minimum-phase FIR spectral factor h of a
linear-phase FIR filter b. Filter b must be real, have even order, and have
nonnegative zero-phase response.

h = firminphase(b,nz) specifies the number of zeros, nz, of b that lie on the
unit circle. You must specify nz as an even number to compute the
minimum-phase spectral factor because every root on the unit circle must have
even multiplicity. Including nz can help firminphase calculate the required
FIR spectral factor. Zeros with multiplicity greter than two on the unit circle
cause problems in the spectral factor determination.

Note You can find the maximum-phase spectral factor, g, by reversing h,
such that , and .

Example This example designs a constrained least squares filter with a nonnegative
zero-phase response, and then uses firminphase to compute the
minimum-phase spectral factor.

f = [0 0.4 0.8 1];
a = [0 1 0];
up = [0.02 1.02 0.01];
lo = [0 0.98 0]; % The zeros insure nonnegative zero-phase resp.
n = 32;
b = fircls(n,f,a,up,lo);
h = firminphase(b);

See Also gremez
fircls, zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

g fliplr h()= b conv h g,()=

firnyquist

13-161

13firnyquistPurpose Design a Lowpass Nyquist (L-th band) FIR filter

Syntax firnyquist(n,l,r,varargin)

Description b = firnyquist(n,l,r) designs an N-th order, L-th band, Nyquist FIR filter
with a roll-off factor r and an equiripple characteristic.

The rolloff factor r is related to the normalized transition width tw by
 (rad/sample). The order, n, must be even. l must be an integer

greater than one. If l is not specified, it defaults to 4. r must satisfy 0< r < 1.
If r is not specified, it defaults to 0.5.

b = firnyquist('minorder',l,r,dev) designs a minimum-order, L-th band
Nyquist FIR filter with a rolloff factor r using the Kaiser window. The peak
ripple is constrained by the scalar dev.

b = firnyquist(n,l,r,decay) designs an N-th order, L-th band, Nyquist FIR
filter where the scalar decay, specifies the rate of decay in the stopband. decay
must be nonnegative. If omitted or left empty, decay defaults to 0 which yields
an equiripple stopband. A nonequiripple stopband may be desirable for
decimation purposes.

b = firnyquist(n,l,r,'nonnegative') returns an FIR filter with
nonnegative zero-phase response. This filter can be spectrally factored into
minimum-phase and maximum-phase “square-root” filters. This allows using
the spectral factors in applications such as matched-filtering.

b = firnyquist(n,l,r,'minphase') returns the minimum-phase spectral
factor bmin of order n. bmin meets the condition b=conv(bmin,bmax) so that b
is an L-th band FIR Nyquist filter of order 2n with rolloff factor r. Obtain bmax,
the maximum phase spectral factor by reversing the coefficients of bmin. For
example, bmax = bmin(end:-1:1).

Example Example 1: This example designs a minimum phase factor of a Nyquist filter.

bmin = firnyquist(47,10,.45,'minphase');
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

tw 2π r l⁄()=

firnyquist

13-162

Example 2: This example compares filters with different decays.

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,.5);
b3 = firnyquist(72,8,.3,1);
fvtool(b1,1,b2,1,b3,1);

See Also firhalfband, gremez, firminphase
firrcos, firls in your Signal Processing Toolbox documentation

References [1] T. Saramaki, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

fractionlength

13-163

13fractionlengthPurpose Return the fraction length for a quantizer

Syntax f = fractionlength(q)

Description f = fractionlength(q) returns the fraction length of quantizer q. This is
useful because fraction length is valid whether the quantizer mode is
floating-point or fixed-point.

Examples For a floating-point quantizer

q = quantizer('float',[32 8]);
f = fractionlength(q);

returns .

For a fixed-point quantizer

q = quantizer('fixed',[6 4])
f = fractionlength(q);

returns f = 4.

Algorithm For floating-point quantizers, f = w – e – 1, where w is the word length and e
is the exponent length.

For fixed-point quantizers, f is part of the format [w f].

See Also quantizer

f 23 32= = 8– 1–

freqz

13-164

13freqzPurpose Compute the frequency response of quantized filters

Syntax [h,w] = freqz(Hq,n)
h = freqz(Hq,w)
[h,w] = freqz(Hq,n,'whole')
[h,w,units,href] = freqz(Hq,...)
[h,f] = freqz(Hq,n,fs)
h = freqz(Hq,f,fs)
[h,f] = freqz(Hq,n,'whole',fs)
[h,f,s] = freqz(Hq,...)
[h,f,units,href] = freqz(Hq,...,fs)
freqz(Hq,...)

Description [h,w] = freqz(Hq,n) returns the frequency response vector h and the
corresponding frequency vector w for the quantized filter Hq. freqz uses the
transfer function associated with the quantized filter to calculate the frequency
response of the filter. The vectors h and w are both of length n. The frequency
vector w has values ranging from 0 to π radians per sample. If you do not specify
the integer n, or you specify it as the empty vector [], the frequency response
is calculated using the default value of 512 samples.

h = freqz(Hq,w) returns the frequency response vector h calculated at the
frequencies (in radians per sample) supplied by the vector w. The vector w can
have any length.

[h,w] = freqz(Hq,n,'whole') uses n sample points around the entire unit
circle to calculate the frequency response. Frequency vector w has length n and
values ranging from 0 to 2π radians per sample.

[h,w,units,href] = freqz(Hq,...) returns the optional string argument
units, specifying the units for the frequency vector w. The string returned in
units is 'rad/sample', denoting radians per sample. The optional output
argument href is the frequency response of the transfer function associated
with the reference filter used to specify the quantized filter Hq.

[h,f] = freqz(Hq,n,fs) returns the frequency response vector h and the
corresponding frequency vector f for the quantized filter Hq. The vectors h and
f are both of length n. The frequency response calculation uses the sampling

freqz

13-165

frequency specified by the scalar fs (in Hz). The frequency vector f has values
ranging from 0 to (fs/2) Hz.

h = freqz(Hq,f,fs) returns the frequency response vector h calculated at the
frequencies (in Hz) supplied in the vector f. Vector f can be any length.

[h,f] = freqz(Hq,n,'whole',fs) uses n points around the entire unit circle
to calculate the frequency response. Frequency vector f has length n and has
values ranging from 0 to fs Hz.

[h,f,s] = freqz(Hq,...) returns the structure s with the following fields:

• s.xunits—a string specifying the frequency axis units. The contents of
s.xunits can be one of the following:

- 'rad/sample' (default)
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'

- A user-specified string

• s.yunits—a string specifying the vertical axis units. The contents of
s.yunits can be one of the following:

- 'dB' (default)
- 'linear'
- 'squared'

• s.plot—a string specifying the type of plot to produce. The contents of
s.plot can be one of the following:

- 'both' (default)
- 'mag'
- 'phase'

[h,f,units,href] = freqz(Hq,...,fs) returns the optional MATLAB
structure units, that freqzplot uses for plotting. The string returned in units
is 'Hz' for hertz. The optional output argument href is the frequency response
of the transfer function associated with the reference filter used to specify the
quantized filter Hq.

freqz

13-166

freqz(Hq,...) plots the magnitude and unwrapped phase of the frequency
response of the quantized filter Hq in the current figure window.

Remarks There are several ways of analyzing the frequency response of quantized
filters. freqz accounts for quantization effects in the filter coefficients, but does
not account for quantization effects in filtering arithmetic. To account for the
quantization effects in filtering arithmetic, refer to function nlm.

Algorithm freqz calculates the frequency response for a quantized filter from the filter
transfer function Hq(z). The complex-valued frequency response is calculated

by evaluating Hq(ejω) at discrete values of w specified by the syntax you use.
The integer input argument n determines the number of equally-spaced points
around the upper half of the unit circle at which freqz evaluates the frequency
response. The frequency ranges from 0 to π radians per sample when you do not
supply a sampling frequency as an input argument. When you supply the
scalar sampling frequency fs as an input argument to freqz, the frequency
ranges from 0 to fs/2 Hz.

To calculate the transfer function associated with a quantized filter, freqz
uses the values of the QuantizedCoefficients and FilterStructure
properties.

When you include the optional output argument href in the command, freqz
uses the value of the ReferenceCoefficients property to calculate the
frequency response of the reference filter transfer function.

Examples Plot the estimated frequency response of a quantized filter.

b = fir1(80,0.5,kaiser(81,8));
Hq = qfilt('fir',{b});
[h,w,units,href] = freqz(Hq);
plot(w,20 * log10(abs(h)),'-',w,20 * log10(abs(href)),'--')
legend('Quantized filter','Reference filter',3)
xlabel('Frequency in rad/sample')
ylabel('Magnitude in dB')

freqz

13-167

title('Magnitude of the Frequency Response Compared')

See Also qfilt
fvtool in your Signal Processing Toolbox documentation

0 0.5 1 1.5 2 2.5 3 3.5
−160

−140

−120

−100

−80

−60

−40

−20

0

20
Magnitude of the Frequency Response Compared

M
ag

ni
tu

de
 in

 d
B

Frequency in rad/sample

Quantized filter
Reference filter

get

13-168

13getPurpose Return the property values for quantized filters, quantizers, and quantized
FFTs

Syntax get(obj,pn,pv)
get(hq)
struct = get(hq)
v = get(hq,'propertyname')
value = get(f, 'propertyname')
structure = get(f)
value = get(q, 'propertyname')
structure = get(q)

Description get(obj,pn,pv) displays the property names and property values associated
with obj, where obj is one of the following:

• A quantizer

• A quantized filter

• A quantized FFT

pn is the name of a property of the object obj, and pv is the value associated
with pn.

get(hq) displays a list of the property names and property values associated
with quantized filter hq.

struct = get(hq) returns the MATLAB structure struct, a list of the
properties associated with the quantized filter hq, along with the properties’
associated values. Each field associated with struct is named according to the
corresponding property name.

v = get(hq,'propertyname') returns the property value v associated with
the property named in the string 'propertyname' for the quantized filter hq. If
you replace the string 'propertyname' by a cell array of a vector of strings
containing property names, get returns a cell array of a vector of corresponding
values.

value = get(f, 'propertyname') returns the property value value
associated with the property named in the string 'propertyname' for the
quantized FFT f. If you replace the string 'propertyname' by a cell array of a

get

13-169

vector of strings containing property names, get returns a cell array of a vector
of corresponding values.

structure = get(f) returns a structure containing the properties and states
of quantized FFT f.

value = get(q, 'propertyname') returns the property value value
associated with the property named in the string 'propertyname' for the
quantizer q. If you replace the string 'propertyname' by a cell array of a vector
of strings containing property names, get returns a cell array of a vector of
corresponding values.

structure = get(q) returns a structure containing the properties and states
of quantizer q.

Remarks For more information on the properties associated with quantized filters, see
“A Quick Guide to Quantized Filter Properties” on page 12-10. For more
information on the properties associated with quantized FFTs, see “A Quick
Guide to Quantized FFT Properties” on page 12-51. For more information on
the properties associated with quantizers, refer to “A Quick Guide to Quantizer
Properties” on page 12-2.

Examples Use get to list the properties of quantized filter hq, along with the property
values. Then retrieve the value associated with the OutputFormat property for
this filter in a structure v.

hq = qfilt;
get(hq)

Quantized Direct form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
+ (1) 0.999969482421875 1.000000000000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
+ (1) 0.999969482421875 1.000000000000000000

 FilterStructure = df2t
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [0]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])

get

13-170

 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
Warning: 2 overflows in coefficients.

v = get(hq,'OutputFormat')

v =

 Mode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0
 NOperations = 0

q = quantizer('fixed', 'floor', 'saturate', [16 15])
struct = get(q)
mode = get(q, 'mode')
format = get(q, 'format')
noverflows = get(q, 'noverflows')

get also supports the dot notation for setting and accessing properties.

q = quantizer('fixed', 'floor', 'saturate', [16 15])
struct = get(q)
mode = q.mode
format = q.format
noverflows = q.noverflows

See Also qfft, qfilt, quantizer, set

gremez

13-171

13gremezPurpose Use the Parks-McClellan technique to design digital FIR filters

Syntax b = gremez(n,f,a,w)
b = gremez(n,f,a,'hilbert')
b = gremez(n,f,a,'differentiator')
b = gremez(m,f,a,r)
b = gremez({m,ni},f,a,r)
b = gremez(n,f,a,w,c)
b = gremez(n,f,a,w,e)
b = gremez(n,f,a,s)
b = gremez(n,f,a,s,w,e)

Description gremez is a minimax filter design algorithm you use to design the following
types of real FIR filters:

• Types 1-4 linear phase:

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase

• Minimum order (even or odd)

• Extra ripple

• Maximal ripple

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain

• Arbitrary shape frequency response curve filters

b = gremez(n,f,a,w) returns a length n+1 linear phase FIR filter which has
the best approximation to the desired frequency response described by f and
a in the minimax sense. w is a vector of weights, one per band. When you omit
w, all bands are weighted equally. For more information on the input
arguments, refer to remez in Signal Processing Toolbox User’s Guide.

gremez

13-172

b = gremez(n,f,a,'hilbert') and b = gremez(n,f,a,'differentiator')
design FIR Hilbert transformers and differentiators. For more information on
designing these filters, refer to remez in Signal Processing Toolbox User’s
Guide.

b = gremez(m,f,a,r), where m is one of 'minorder', 'mineven' or 'minodd',
designs filters repeatedly until the minimum order filter, as specified in m, that
meets the specifications is found. r is a vector containing the peak ripple per
frequency band. You must specify r. When you specify 'mineven' or 'minodd', the
minimum even or odd order filter is found.

b = gremez({m,ni},f,a,r) where m is one of 'minorder', 'mineven' or 'minodd',
uses ni as the initial estimate of the filter order. ni is optional for common filter
designs, but it must be specified for designs in which remezord cannot be used,
such as while designing differentiators or Hilbert transformers.

b = gremez(n,f,a,w,c) designs filters having constrained error magnitudes
(ripples). c is a cell array of strings of length w. The entries of c must be either
'c' to indicate that the corresponding element in w is a constraint (the ripple for
that band cannot exceed w) or 'w' indicating that the corresponding entry in w is
a weight. There must be at least one unconstrained band—c must contain at
least one 'w' entry. For example,

b = gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2], {'w' 'c'}) uses a
weight of one in the passband, and constrains the stopband ripple to 0.2 or less.

A hint about using constrained values: if the resulting filter does not touch the
constraints, increase the error weighting you apply to the unconstrained
bands.

b = gremez(n,f,a,w,e) specifies independent approximation errors for
different bands. Use this syntax to design extra ripple or maximal ripple filters.
These filters have interesting properties such as having the minimum
transition width. e is a cell array of strings specifying the approximation errors
to use. Its length must equal the number of bands. Entries of e must be in the
form 'e#' where # indicates which approximation error to use for the
corresponding band. For example, when e = {'e1','e2','e1'}, the first and
third bands use the same approximation error 'e1' and the second band uses
a different one 'e2'. Note that when all bands use the same approximation

gremez

13-173

error, such as {'e1','e1','e1',...}, it is equivalent to omitting e, as in
b = gremez(n,f,a,w).

b = gremez(n,f,a,s) is used to design filters with special properties at
certain frequency points. s is a cell array of strings and must be the same
length as f and a. Entries of s must be one of:

• 'n' - normal frequency point.

• 's' - single-point band. The frequency “band” is given by a single point. The
corresponding gain at this frequency point must be specified in a.

• 'f' - forced frequency point. Forces the gain at the specified frequency band
to be the value specified.

• 'i' - indeterminate frequency point. Use this argument when adjacent
bands abut one another (no transition region).

For example, the following command designs a bandstop filter with zero-valued
single-point stop bands (notches) at 0.25 and 0.55.

b = gremez(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})

b = gremez(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'})
designs a highpass filter with the gain at 0.06 forced to be zero. The band edge
at 0.055 is indeterminate since the first two bands actually touch. The other
band edges are normal.

b = gremez(n,f,a,s,w,e) specifies weights and independent approximation
errors for filters with special properties. The weights and properties are
included in vectors w and e. Sometimes, you may need to use independent
approximation errors to get designs with forced values to converge. For
example,

b = gremez(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

b = gremez(...,'1') designs a type 1 filter (even-order symmetric). You can
specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), and
type 4 (odd-order antisymmetric) filters as well. Note that restrictions apply to
a at f=0 or f=1 for FIR filter types 2, 3, and 4.

gremez

13-174

b = gremez(...,'minphase') designs a minimum-phase FIR filter. You can
use the argument 'maxphase' to design a maximum phase FIR filter.

b = gremez(..., 'check') returns a warning when there are potential
transition-region anomalies.

b = remez(...,{lgrid}), where {lgrid} is a scalar cell array. The value of
the scalar controls the density of the frequency grid by setting the number of
samples used along the frequency axis.

[b,err] = gremez(...) returns the unweighted approximation error
magnitudes. err contains one element for each independent approximation
error returned by the function.

[b,err,res] = gremez(...) returns the structure res comprising optional
results computed by gremez. res contains the following fields.

Structure Field Contents

res.fgrid Vector containing the frequency grid used in
the filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency
grid

res.error Error at each point (desired response - actual
response) on the frequency grid

res.iextr Vector of indices into fgrid of extremal
frequencies

res.fextr Vector of extremal frequencies

res.order Filter order

gremez

13-175

gremez is also a “function function”, allowing you to write a function that
defines the desired frequency response.

b = gremez(n,f,fresp,w) returns a length N+1 FIR filter which has the best
approximation to the desired frequency response as returned by the
user-defined function fresp. gremez uses the following syntax to call fresp

[dh,dw] = fresp(n,f,gf,w)

where:

• fresp is the string variable that identifies the function that you use to define
your desired filter frequency response.

• n is the filter order.

• f is the vector of frequency band edges which must appear monotonically
between 0 and 1, where 1 is one-half of the sampling frequency. The
frequency bands span f(k) to f(k+1) for k odd. The intervals f(k+1) to
f(k+2) for k odd are “transition bands” or “don't care” regions during
optimization.

res.edgecheck Transition-region anomaly check. One element
per band edge. Element values have the
following meanings:

1 = OK
0 = probable transition-region anomaly
-1 = edge not checked

Computed when you specify the 'check' input
option in the function syntax.

res.iterations Number of Remez iterations for the
optimization

res.evals Number of function evaluations for the
optimization

Structure Field Contents

gremez

13-176

• gf is a vector of grid points that have been chosen over each specified
frequency band by gremez, and determines the frequencies at which gremez
evaluates the response function.

• w is a vector of real, positive weights, one per band, for use during
optimization. w is optional in the call to gremez. If you do not specify w, it is
set to unity weighting before being passed to fresp.

• dh and dw are the desired frequency response and optimization weight
vectors, evaluated at each frequency in grid gf.

gremez includes a predefined frequency response function named 'remezfrf2'.
You can write your own based on the simpler 'remezfrf'. See the help for
private/remezfrf for more information.

b = gremez(n,f,{fresp,p1,p2,...},w) specifies optional arguments p1,
p2,..., pn to be passed to the response function fresp.

b = gremez(n,f,a,w) is a synonym for
b = gremez(n,f,{'remezfrf2',a},w), where a is a vector containing your
specified response amplitudes at each band edge in f. By default, gremez
designs symmetric (even) FIR filters. 'remezfrf2' is the predefined frequency
response function. If you do not specify your own frequency response function
(the fresp string variable), gremez uses 'remezfrf2'.

b = gremez(...,'h') and b = gremez(...,'d') design antisymmetric (odd)
filters. When you omit the 'h' or 'd' arguments from the gremez command
syntax, each frequency response function fresp can tell gremez to design either
an even or odd filter. Use the command syntax
sym = fresp('defaults',{n,f,[],w,p1,p2,...}). gremez expects fresp to
return sym = 'even' or sym = 'odd'. If fresp does not support this call,
gremez assumes even symmetry.

For more information about the input arguments to gremez, refer to remez.

See Also remez, cremez, butter, cheby1, cheby2, ellip, freqz, filter, firls, and
fircls in your Signal Processing Toolbox documentation

gremez

13-177

Reference Shpak, D.J. and A. Antoniou, "A generalized Remez method for the design

of FIR digital filters," IEEE Trans. Circuits and Systems, pp. 161-174,Feb.
1990.

hex2num

13-178

13hex2numPurpose Convert hexadecimal string to a number

Syntax x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description x = hex2num(q,h) converts hexadecimal string h to numeric matrix x. The
attributes of the numbers in x are specified by quantizer q. When h is a cell
array containing hexadecimal strings, hex2num returns x as a cell array of the
same dimension containing numbers. For fixed-point hexadecimal strings,
hex2num uses two’s complement representation. For floating-point strings, the
representation is IEEE Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number,
the fixed-point conversion zero fills on the left. Floating-point conversion zero
fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal strings h1, h2,...
to numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that
num2hex returns the hexadecimal strings in a column.

Examples To create all of the 4-bit fixed-point two’s complement numbers fractional form,
use the following code.

q = quantizer([4 3]);
h = '7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)
x =

 0.8750 0.3750 -0.1250 -0.6250
 0.7500 0.2500 -0.2500 -0.7500
 0.6250 0.1250 -0.3750 -0.8750
 0.5000 0 -0.5000 -1.0000

See Also num2hex, bin2num, num2bin

ifft

13-179

13ifftPurpose Apply the inverse quantized FFT to data

Syntax y = ifft(f,x)
y = ifft(f,x,dim)

Description y = ifft(f,x) is the quantized inverse FFT of x. The parameters of the
quantized FFT are specified in quantized FFT f.

y = ifft(f,x,dim) is the quantized inverse FFT of x across the dimension
dim.

See Also fft, get, qfft, qreport, set

ifir

13-180

13ifirPurpose Design interpolated FIR filters

Syntax h = ifir(l,type,f,dev)
h = ifir(l,type,f,dev,str)

Description h = ifir(l,type,f,dev) finds a periodic filter and an
image-suppressor filter G(z) such that

l is the interpolation factor.

h represents the optimal minimax FIR approximation to the desired response
specified by the string type. Specify the filter band edge frequencies in vector
f. With ifir, you designs a filter that meets the response defined by type
which does not exceed the peak ripple specified in vector dev.

type must be a string with either 'low' to generate lowpass filters or 'high' for
highpass filters. f must be a two-element vector containing two values — the
first defining the passband edge frequency and the second that defines the
stopband edge frequency. Vector dev must contain two values that specify the
peak ripple or deviation allowed in the passband and stopband.

h = ifir(l,type,f,dev,str) uses the string specified in str to select the
degree of optimization the interpolation algorithm uses. str can be one of three
allowed strings:

str lets you direct the filter design algorithm to trade between the time it takes
to design the filter and optimizing the filter order. The 'advanced' option can
substantially reduce the filter order, especially for g(z).

str String Value Description

'simple'

'intermediate'

'advanced'

f zl()

h f zl()G z()=

ifir

13-181

Examples The first example creates a lowpass filter using ifir with an interpolation
factor of 6. In example 2, the code designs a wideband highpass filter with the
same interpolation factor. You can see the plots of the examples after the code
sections.

Create a narrowband lowpass design using an interpolation factor of 6.

[h,g]=ifir(6,'low',[.12 .14],[.01 .001]);
[Hh,w]=freqz(h,1,1024); Hg=freqz(g,1,1024);
H = Hh.*Hg; % Compounded response
subplot(2,1,1), freqzplot([Hh,Hg],w,'mag');
legend('Periodic Filter','Image Suppressor Filter');
subplot(2,1,2), freqzplot(H,w,'mag');
legend('Overall Filter');

Use the 'high' option to create a wideband highpass design using an
interpolation factor of 6.

[h,g,d]=ifir(6,'high',[.12 .14],[.001 .01]);
[Hh,w]=freqz(h,1,1024); Hg=freqz(g,1,1024);
H = Hh.*Hg; % Branch 1 compounded response
Hd = freqz(d,1,1024); % Branch 2 response
Hoverall = H+Hd;
freqzplot(Hoverall,w,'mag');
title('Overall Filter');

iirbpc2bpc

13-182

13iirbpc2bpcPurpose Transform an IIR complex bandpass filter to an IIR complex bandpass filter
with different frequency response characteristics

Syntax [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the complex bandpass prototype by applying a
first-order complex bandpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

This transformation effectively places two features of an original filter, located
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and
Wt2 respectively. It is assumed that Wt2 is greater than Wt1. In most of the cases
the features selected for the transformation are the band edges of the filter
passbands. In general it is possible to select any feature; e.g., the stopband
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., complex notch filters or resonators can be repositioned at two distinct
desired frequencies at any place around the unit circle; e.g., in the adaptive
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc (b, a, 0.5, [0.25,0.75]);
[num, den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.5]);

Verify the result by comparing the prototype filter with the target filter:

iirbpc2bpc

13-183

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpassbpc2bpc, zpkbpc2bpc

iirbpc2bpc

13-184

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Periodic Filter
Image Suppressor Filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Overall Filter

iirbpc2bpc

13-185

See Also gremez

fir1, firls, remez in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Periodic Filter
Image Suppressor Filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Overall Filter

iircomb

13-186

13iircombPurpose Design an IIR comb notching or peaking digital filter

Syntax [num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb(, 'type')

Description [num,den] = iircomb(n,bw) returns a digital notching filter with order n and
with the width of the filter notch at -3dB set to bw, the filter bandwidth. The
filter order must be a positive integer. n also defines the number of notches in
the filter across the frequency range from 0 to 2π—the number of notches
equals n+1.

For the notching filter, the transfer function takes the form

where a and b are the filter coefficients and n is the filter order or the number
of notches in the filter minus 1.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by
q = ω0/bw where ω0 is the frequency to remove from the signal.

[num,den] = iircomb(n,bw,ab) returns a digital notching filter whose
bandwidth, bw, is specified at a level of -ab decibels. Including the optional
input argument ab lets you specify the magnitude response bandwidth at a
level that is not the default -3dB point, such as -6 dB or 0 dB.

[num,den] = iircomb(,'type') returns a digital filter of the specified type.
The input argument type can be either

• 'notch' to design an IIR notch filter. Notch filters attenuate the response at
the specified frequencies. This is the default type. When you omit the type
input argument, iircomb returns a notch filter.

• 'peak' to design an IIR peaking filter. Peaking filters boost the signal at the
specified frequencies.

H z() b 1 z n–
–

1 az n–
–

---------------------×=

iircomb

13-187

The transfer function for peaking filters is

Examples Design and plot an IIR notch filter with 11 notches (equal to filter order plus 1)
that removes a 60 Hz tone (f0) from a signal at 600 Hz (fs). For this example,
set the Q factor for the filter to 35 and use it to specify the filter bandwidth.

fs = 600; fo = 60; q = 35; bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note the type flag 'notch'
fvtool(b,a);

Using the Filter Visualization Tool (FVTool) generates the following plot
showing the filter notches. Note the notches are evenly spaced and one falls at
exactly 60 Hz.

H z() b 1 z n–
+

1 az n–
–

---------------------×=

iircomb

13-188

See Also gremez, iirnotch, iirpeak

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

iirftransf

13-189

13iirftransfPurpose IIR frequency transformation of the digital filter

Syntax [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)

Description [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen) returns
the numerator and denominator vectors, OutNum and OutDen, of the target
filter, which is the result of transforming the prototype filter specified by the
numerator, OrigNum, and denominator, OrigDen, with the mapping filter given
by the numerator, FTFNum, and the denominator, FTFDen. If the allpass
mapping filter is not specified, then the function returns an original filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments OrigNum
Numerator of the prototype lowpass filter

OrigDen
Denominator of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

OutNum
Numerator of the target filter

OutDen
Denominator of the target filter

See Also zpkftransf

iirgrpdelay

13-190

13iirgrpdelayPurpose Optimal IIR filter design with prescribed group-delay

Syntax [num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)

Description [num,den] = iirgrpdelay(n,f,edges,a) returns an allpass IIR filter of
order n (n must be even) which is the best approximation to the relative
group-delay response described by f and a in the least-pth sense. f is a vector
of frequencies between 0 and 1 and a is specified in samples. The vector edges
specifies the band-edge frequencies for multi-band designs. iirgrpdelay uses
a constrained Newton-type algorithm. Always check your resulting filter using
grpdelay or freqz.

[num,den] = iirgrpdelay(n,f,edges,a,w) uses the weights in w to weight
the error. w has one entry per frequency point and must be the same length
length as f and a). Entries in w tell iirgrpdelay how much emphasis to put on
minimizing the error in the vicinity of each specified frequency point relative
to the other points.

f and a must have the same number of elements. f and a can contains more
elements than the vector edges contains. This lets you use f and a to specify a
filter that has any group-delay contour within each band.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius) returns a filter having a
maximum pole radius equal to radius, where 0<radius<1. radius defaults to
0.999999. Filters whose pole radius you constrain to be less than 1.0 can better
retain transfer function accuracy after quantization.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p), where p is a
two-element vector [pmin pmax], lets you determine the minimum and
maximum values of p used in the least-pth algorithm. p defaults to [2 128]
which yields filters very similar to the L-infinity, or Chebyshev, norm. pmin and

iirgrpdelay

13-191

pmax should be even. If p is the string 'inspect', no optimization occurs. You
might use this feature to inspect the initial pole/zero placement.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens) specifies the
grid density dens used in the optimization process. The number of grid points
is (dens*(n+1)). The default is 20. dens can be specified as a single-element
cell array. The grid is not equally spaced.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden) allows
you to specify the initial estimate of the denominator coefficients in vector
initden. This can be useful for difficult optimization problems. The pole-zero
editor in the Signal Processing Toolbox can be used for generating initden.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
allows the initial estimate of the group delay offset to be specified by the value
of tau, in samples.

[num,den,tau] = iirgrpdelay(n,f,edges,a,w) returns the resulting group
delay offset. In all cases, the resulting filter has a group delay that
approximates [a + tau]. Allpass filters can have only positive group delay and
a non-zero value of tau accounts for any additional group delay that is needed
to meet the shape of the contour specified by (f,a). The default for tau is
max(a).

Hint: If the zeros or poles cluster together, your filter order may be too low or
the pole radius may be too small (overly constrained). Try increasing n or
radius.

For group-delay equalization of an IIR filter, compute a by subtracting the
filter's group delay from its maximum group delay. For example,

[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2); % Equalize only the passband.
a = max(g)-g;
[num,den]=iirgrpdelay(8, f, [0 0.2], a);

See Also freqz, filter, grpdelay, iirlpnorm, iirlpnormc, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

iirlp2bp

13-192

13iirlp2bpPurpose Transform an IIR real lowpass filter to an IIR real bandpass filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a second-order
real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “DC Mobility,” which
means that the Nyquist feature stays at Nyquist, but the DC feature moves to
a location dependent on the selection of Wts.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

iirlp2bp

13-193

Create the real bandpass filter by placing the cutoff frequencies of the
prototype filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num, den] = iirlp2bp(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2bp, zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

iirlp2bp

13-194

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings,
vol. 1, pp. 1129-1231, June 1969.

iirlp2bpc

13-195

13iirlp2bpcPurpose IIR lowpass to complex bandpass frequency transformation frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a first-order
real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandpass filters for radio receivers from the high-quality
prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

iirlp2bpc

13-196

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and
Wt2=0.75 creating a complex bandpass filter:

[num, den] = iirlp2bpc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also iirftransf, allpasslp2bpc, zpklp2bpc

iirlp2bs

13-197

13iirlp2bsPurpose Transform an IIR real lowpass filter to an IIR real bandstop filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a second-order
real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “Nyquist Mobility,”
which means that the DC feature stays at DC, but the Nyquist feature moves
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create the real bandstop filter by placing the cutoff frequencies of the prototype
filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num, den] = iirlp2bs(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

iirlp2bs

13-198

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings,
vol. 1, pp. 1129-1231, June 1969.

iirlp2bsc

13-199

13iirlp2bscPurpose Transform an IIR real lowpass filter to an IIR complex bandstop filter
frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a first-order
real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and the denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. Additionally the transformation swaps passbands with
stopbands in the target filter.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandstop filters for band attenuation or frequency
equalizers, from the high-quality prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

iirlp2bsc

13-200

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and
Wt2=0.75 creating a complex bandstop filter:

[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2bsc, zpklp2bsc.

iirlp2hp

13-201

13iirlp2hpPurpose Transform a discrete time lowpass IIR filter to a highpass filter

Syntax [num,den] = iirlp2hp(b,a,wc,wd)

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the
numerator and denominator coefficients (zeros and poles) for a lowpass IIR
filter, iirlp2bp transforms the magnitude response from lowpass to highpass.
num and den return the coefficients for the transformed highpass filter. For wc,
enter a selected frequency from your lowpass filter. You use the chosen
frequency to define the magnitude response value you want in the highpass
filter. Enter one frequency for the highpass filter — the value that defines the
location of the transformed point — in wd. Note that all frequencies are
normalized between zero and one. Notice also that the filter order does not
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the
magnitude response at the wd values of your bandstop filter to be the same as
the magnitude response of your lowpass filter at wc. Filter performance
between the values in wd is not specified, except that the stopband retains the
ripple nature of your original lowpass filter and the magnitude response in the
stopband is equal to the peak response of your lowpass filter. To accurately
specify the filter magnitude response across the stopband of your bandpass
filter, use a frequency value from within the stopband of your lowpass filter as
wc. Then your bandstop filter response is the same magnitude and ripple as
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what
makes this function useful. If you have a lowpass filter whose characteristics,
such as rolloff or passband ripple, particularly meet your needs, the
transformation function lets you create a new filter with the same
characteristic performance features, but in a highpass version. Without
designing the highpass filter from the beginning.

In some cases tranforming your filter may cause numerical problems, resulting
in incorrect conversion to the highpass filter. Use fvtool to verify the response
of your converted filter.

Examples This example transforms an IIR filter from lowpass to high pass by moving the
magnitude response at one frequency in the source filter to a new location in
the transformed filter. To generate a highpass filter whose passband flattens

iirlp2hp

13-202

out at 0.4, we select the frequency in the lowpass filter where the passband
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.4.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);
fvtool(b,a,num,den);

In the figure showing the magnitude responses for the two filters, the
transition band for the highpass filter is essentially the mirror image of the
transition for the lowpass filter from 0.0175 to 0.025, stretched out over a wider
frequency range. In the passbands, the filter share common ripple
characteristics and magnitude.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

 Normalized Frequency: 0.4
 Magnitude (dB): −0.241

 Normalized Frequency: 0.0176
 Magnitude (dB): −0.742

Filter #1: Lowpass filter magnitude
Filter #2: Highpass filter magnitude

iirlp2hp

13-203

See Also iirlp2bp, iirlp2bs, iirlp2lp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach,
Second Edition, McGraw-Hill, 2001.

iirlp2lp

13-204

13iirlp2lpPurpose Transform a discrete time lowpass IIR filter to a different lowpass filter

Syntax [num,den] = iirlp2lp(b,a,wc,wd)

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the
numerator and denominator coefficients (zeros and poles) for a lowpass IIR
filter, iirlp2bp transforms the magnitude response from lowpass to highpass.
num and den return the coefficients for the transformed highpass filter. For wc,
enter a selected frequency from your lowpass filter. You use the chosen
frequency to define the magnitude response value you want in the highpass
filter. Enter one frequency for the highpass filter — the value that defines the
location of the transformed point — in wd. Note that all frequencies are
normalized between zero and one. Notice also that the filter order does not
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the
magnitude response at the wd values of your bandstop filter to be the same as
the magnitude response of your lowpass filter at wc. Filter performance
between the values in wd is not specified, except that the stopband retains the
ripple nature of your original lowpass filter and the magnitude response in the
stopband is equal to the peak response of your lowpass filter. To accurately
specify the filter magnitude response across the stopband of your bandpass
filter, use a frequency value from within the stopband of your lowpass filter as
wc. Then your bandstop filter response is the same magnitude and ripple as
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what
makes this function useful. If you have a lowpass filter whose characteristics,
such as rolloff or passband ripple, particularly meet your needs, the
transformation function lets you create a new filter with the same
characteristic performance features, but in a highpass version. Without
designing the highpass filter from the beginning.

In some cases tranforming your filter may cause numerical problems, resulting
in incorrect conversion to the highpass filter. Use fvtool to verify the response
of your converted filter.

Examples This example transforms an IIR filter from lowpass to high pass by moving the
magnitude response at one frequency in the source filter to a new location in
the transformed filter. To generate a lowpass filter whose passband extends

iirlp2lp

13-205

out to 0.2, we select the frequency in the lowpass filter where the passband
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.2.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);
fvtool(b,a,num,den);

Moving the edge of the passband from 0.0175 to 0.2 results in a new lowpass
filter whose peak response inband is the same as the original filter: same
ripple, same absolute magnitude.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

 Normalized Frequency: 0.199
 Magnitude (dB): −0.0564

 Normalized Frequency: 0.0176
 Magnitude (dB): −0.241

Filter #1: Original lowpass filter magnitude
Filter #2: Transformed filter magnitude

iirlp2lp

13-206

Notice that the rolloff is slightly less steep and the stopband profiles are the
same for both filters; the new filter stopband is a “stretched” version of the
original, as is the passband of the new filter.

See Also iirlp2bp, iirlp2bs, iirlp2hp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach,
Second Edition, McGraw-Hill, 2001.

iirlp2mb

13-207

13iirlp2mbPurpose Transform an IIR real lowpass filter to an IIR real M-band filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)

[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Mth-order
real lowpass to real multibandpass frequency mapping. By default the DC
feature is kept at its original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2mb(B,A,Wo,Wt,Pass) allows you
to specify an additional parameter, Pass, which chooses between using the “DC
Mobility” and the “Nyquist Mobility”. In the first case the Nyquist feature stays
at its original location and the DC feature is free to move. In the second case
the DC feature is kept at an original frequency and the Nyquist feature is
movable.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

iirlp2mb

13-208

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Example 1: Create the real multiband filter with two passbands:

[num1, den1] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10);
[num2, den2] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'pass');

Example 2: Create the real multiband filter with two stopbands:

[num3, den3] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with target filters:

fvtool(b, a, num1, den1, num2, den2, num3, den3);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass being the default

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

iirlp2mb

13-209

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering,
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and
frequency transformation problem,” Proceedings 20th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168,
November 1986.

[3] Mullis, C.T. and R. A. Roberts, Digital Signal Processing, section 6.7,
Reading, Mass., Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm
for frequency transformations, Linear Circuits, Systems and Signal Processing:
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

iirlp2mbc

13-210

13iirlp2mbcPurpose Transform an IIR real lowpass filter to an IIR complex M-band filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Mth-order
real lowpass to complex multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Example 1: Create the complex multiband filter with two passbands:

[num1, den1] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10);

Example 2: Create the complex multiband filter with two passbands:

iirlp2mbc

13-211

[num2, den2] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10, 'pass');

Example 3: Create the complex multiband filter with two stopbands:

[num3, den3] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num1, den1, num2, den2, num3, den3);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wc
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2mbc, zpklp2mbc

iirlp2xc

13-212

13iirlp2xcPurpose Transform an IIR real lowpass filter to an IIR complex N-point filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Nth-order
real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation
effectively places N features of an original filter, located at frequencies
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., a stopband edge, DC, the deep minimum in the stopband, or
other ones. The only condition is that the features must be selected in such a
way that when creating N bands around the unit circle, there will be no band
overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

iirlp2xc

13-213

[b, a] = ellip(3, 0.1, 30, 0.409);

Create the complex bandpass filter from the real lowpass filter:

[num, den] = iirlp2xc(b, a, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2xc, zpklp2xc

iirlp2xn

13-214

13iirlp2xnPurpose Transform an IIR real lowpass filter to an IIR real N-point filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)

[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Nth-order
real lowpass to real multipoint frequency transformation, where N is the
number of features being mapped. By default the DC feature is kept at its
original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2xn(B,A,Wo,Wt,Pass) allows you
to specify an additional parameter, Pass, which chooses between using the “DC
Mobility” and the “Nyquist Mobility”. In the first case the Nyquist feature stays
at its original location and the DC feature is free to move. In the second case
the DC feature is kept at an original frequency and the Nyquist feature is
allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation
effectively places N features of an original filter, located at frequencies
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the

iirlp2xn

13-215

stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and
Wt2=0.75 creating a real bandpass filter:

[num, den] = iirlp2xn(b, a, [-0.5 0.5], [0.25 0.75], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass being the default

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

iirlp2xn

13-216

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2xn, zpklp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

iirlpnorm

13-217

13iirlpnormPurpose Least P-norm optimal IIR filter design

Syntax [num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)

Description [num,den] = iirlpnorm(n,d,f,edges,a) returns a filter having a numerator
order n and denominator order d which is the best approximation to the desired
frequency response described by f and a in the least-pth sense. The vector
edges specifies the band-edge frequencies for multi-band designs. An
unconstrained quasi-Newton algorithm is employed and any poles or zeros that
lie outside of the unit circle are reflected back inside. n and d should be chosen
so that the zeros and poles are used effectively. See the “Hints” section. Always
use freqz to check the resulting filter.

[num,den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in w to weight
the error. w has one entry per frequency point (the same length as f and a)
which tells iirlpnorm how much emphasis to put on minimizing the error in
the vicinity of each frequency point relative to the other points. f and a must
have the same number of elements, which may exceed the number of elements
in edges. This allows for the specification of filters having any gain contour
within each band. The frequencies specified in edges must also appear in the
vector f. For example,

[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

is a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p) where p is a two-element
vector [pmin pmax] allows for the specification of the minimum and maximum
values of p used in the least-pth algorithm. Default is [2 128] which essentially
yields the L-infinity, or Chebyshev, norm. Pmin and pmax should be even. If p is
the string 'inspect', no optimization will occur. This can be used to inspect
the initial pole/zero placement.

iirlpnorm

13-218

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the grid density
dens used in the optimization. The number of grid points is (dens*(n+d+1)).
The default is 20. dens can be specified as a single-element cell array. The grid
is not equally spaced.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)
allows for the specification of the initial estimate of the filter numerator and
denominator coefficients in vectors initnum and initden. This may be useful
for difficult optimization problems. The pole-zero editor in the Signal
Processing Toolbox can be used for generating initnum and initden.

Hints

• This is a weighted least-pth optimization.

• Check the radii and locations of the poles and zeros for your filter. If the zeros
are on the unit circle and the poles are well inside the unit circle, try
increasing the order of the numerator or reducing the error weighting in the
stopband.

• Similarly, if several poles have a large radii and the zeros are well inside of
the unit circle, try increasing the order of the denominator or reducing the
error weighting in the passband.

See Also iirlpnormc, filter, freqz, iirgrpdelay, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

iirlpnormc

13-219

13iirlpnormcPurpose Design a constrained least P-norm optimal IIR filter

Syntax [num,den] = iirlpnormc(n,d,f,edges,a)
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,...

dens,initnum,initden)

Description [num,den] = iirlpnormc(n,d,f,edges,a) returns a filter having a
numerator order n and denominator order d which is the best approximation to
the desired frequency response described by f and a in the least-pth sense. The
vector edges specifies the band-edge frequencies for multi-band designs. A
constrained Newton-type algorithm is employed. n and d should be chosen so
that the zeros and poles are used effectively. See the “Hints” section. Always
check the resulting filter using freqz.

[num,den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w to weight
the error. w has one entry per frequency point (the same length as f and a)
which tells iirlpnormc how much emphasis to put on minimizing the error in
the vicinity of each frequency point relative to the other points. f and a must
have the same number of elements, which can exceed the number of elements
in edges. This allows for the specification of filters having any gain contour
within each band. The frequencies specified in edges must also appear in the
vector f. For example,

[num,den] = iirlpnormc(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter having
a maximum pole radius of radius where 0<radius<1. radius defaults to
0.999999. Filters having a reduced pole radius may retain better transfer
function accuracy after you quantize them.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) where p is a
two-element vector [pmin pmax] allows for the specification of the minimum

iirlpnormc

13-220

and maximum values of p used in the least-pth algorithm. Default is [2 128]
which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax
should be even. If p is the string 'inspect', no optimization will occur. This can
be used to inspect the initial pole/zero placement.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) specifies the
grid density dens used in the optimization. The number of grid points is
(dens*(n+d+1)). The default is 20. dens can be specified as a single-element
cell array. The grid is not equally spaced.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens,...
initnum,initden) allows for the specification of the initial estimate of the
filter numerator and denominator coefficients in vectors initnum and initden.
This may be useful for difficult optimization problems. The pole-zero editor in
the Signal Processing Toolbox can be used for generating initnum and initden.

Hints

• This is a weighted least-pth optimization.

• Check the radii and location of the resulting poles and zeros.

• If the zeros are all on the unit circle and the poles are well inside of the unit
circle, try increasing the order of the numerator or reducing the error
weighting in the stopband.

• Similarly, if several poles have a large radius and the zeros are well inside of
the unit circle, try increasing the order of the denominator or reducing the
error weight in the passband.

• If you reduce the pole radius, you might need to increase the order of the
denominator.

See Also freqz, filter, iirgrpdelay, iirlpnorm, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

iirnotch

13-221

13iirnotchPurpose Design a second-order IIR notch digital filter

Syntax [num,den] = iirnotch(w0,bw)
[num,den] = iirnotch(w0,bw,ab)

Description [num,den] = iirnotch(w0,bw) eturns a digital notching filter with the notch
located at w0, and with the bandwidth at the -3 dB point set to bw. To design the
filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0 corresponds to
π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by
q = ω0/bw where ω0 is w0, the frequency to remove from the signal.

[num,den] = iirnotch(w0,bw,ab) returns a digital notching filter whose
bandwidth, bw, is specified at a level of -ab decibels. Including the optional
input argument ab lets you specify the magnitude response bandwidth at a
level that is not the default -3dB point, such as -6 dB or 0 dB.

Examples Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from a signal
at 300 Hz (fs). For this example, set the Q factor for the filter to 35 and use it
to specify the filter bandwidth:

wo = 60/(300/2); bw = wo/35;
[b,a] = iirnotch(wo,bw);
fvtool(b,a);

Shown in the next plot, the notch filter has the desired bandwidth with the
notch located at 60 Hz, or 0.4π radians per sample. Compare this plot to the
comb filter plot shown on the reference page for iircomb.

iirnotch

13-222

See Also gremez, iircomb, iirpeak

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

iirpeak

13-223

13iirpeakPurpose Design a second-order IIR peak or resonator digital filter

Syntax [num,den] = iirpeak(w0,bw)
[num,den] = iirpeak(w0,bw,ab)

Description [num,den] = iirpeak(w0,bw) eturns a second-order digital peaking filter
with the peak located at w0, and with the bandwidth at the +3dB point set to
bw. To design the filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0
corresponds to π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by
q = ω0/bw where ω0 is w0 the signal frequency to boost.

[num,den] = iirpeak(w0,bw,ab) returns a digital peaking filter whose
bandwidth, bw, is specified at a level of +ab decibels. Including the optional
input argument ab lets you specify the magnitude response bandwidth at a
level that is not the default +3dB point, such as +6 dB or 0 dB.

Examples Design and plot an IIR peaking filter that boosts the frequency at 1.75 Khz in
a signal and has bandwidth of 500 Hz at the -3 dB point:

fs = 10000; wo = 1750/(fs/2); bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a);

Shown in the next plot, the peak filter has the desired gain and bandwidth at
1.75 KHz.

iirpeak

13-224

See Also gremez, iircomb, iirnotch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

iirpowcomp

13-225

13iirpowcompPurpose Compute power complementary filter.

Syntax [bp,ap] = iirpowcomp(b,a)
[bp,ap,c] = iirpowcomp(b,a)

Description [bp,ap] = iirpowcomp(b,a) returns the coefficients of the power
complementary IIR filter g(z) = bp(z)/ap(z) in vectors bp and ap, given the
coefficients of the IIR filter h(z) = b(z)/a(z) in vectors b and a. b must be
symmetric (Hermitian) or antisymmetric (antihermitian) and of the same
length as a. The two power complementary filters satisfy the relation

|H(w)|2 + |G(w)|2 = 1.

[bp,ap,c] = iirpowcomp(b,a) where c is a complex scalar of magnitude =1,
forces bp to satisfy the generalized hermitian property

conj(bp(end:-1:1)) = c*bp.

When c is omitted, it is chosen as follows:

• When b is real, chooses C as 1 or -1, whichever yields bp real

• When b is complex, C defaults to 1

ap is always equal to a.

Examples [b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);
[h,w,s]=freqz(b,a); [h1,w,s]=freqz(bp,ap);
s.plot='mag'; s.yunits='sq';freqzplot([h h1],w,s)

See Also tf2ca, tf2cl, ca2tf, cl2tf

iirrateup

13-226

13iirrateupPurpose Upsample an IIR filter by an integer factor

Syntax [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)

Description [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter being transformed from any prototype by applying an Nth-order rateup
frequency transformation, where N is the upsample ratio. Transformation
creates N equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

N
Frequency multiplication ratio

Num
Numerator of the target filter

Den
Denominator of the target filter

iirrateup

13-227

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpassrateup, zpkrateup

iirshift

13-228

13iirshiftPurpose Shift the frequency response of an IIR real filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a second-order
real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass
mapping filter, AllpassDen. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

This transformation places one selected feature of an original filter located at
frequency Wo to the required target frequency location, Wt. This transformation
implements the “DC Mobility,” which means that the Nyquist feature stays at
Nyquist, but the DC feature moves to a location dependent on the selection of
Wo and Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible to
select any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can change their position in a simple way
without designing them from the beginning.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Perform the real frequency shift by defining where the selected feature of the
prototype filter, originally at Wo=0.5, should be placed in the target filter,
Wt=0.75:

iirshift

13-229

Wo = 0.5; Wt = 0.75;

[num, den] = iirshift(b, a, Wo, Wt);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpassshift, zpkshift.

iirshiftc

13-230

13iirshiftcPurpose Shift the frequency response of an IIR complex filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a first-order
complex frequency shift transformation. This transformation rotates all the
features of an original filter by the same amount specified by the location of the
selected feature of the prototype filter, originally at Wo, placed at Wt in the
target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5) calculates
the allpass filter for doing the Hilbert transformation, i.e. a 90 degree
counterclockwise rotation of an original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5) calculates
the allpass filter for doing an inverse Hilbert transformation, i.e. a 90 degree
clockwise rotation of an original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Rotate all features of the prototype filter in the frequency domain by the same
amount by specifying where the selected feature of an original filter, Wo=0.5,
should appear in the target filter, Wt=0.25:

[num, den] = iirshiftc(b, a, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

iirshiftc

13-231

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpassshiftc, zpkshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert
transformers, and half-band low-pass filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

impz

13-232

13impzPurpose Compute the impulse response of quantized filters

Syntax [h,t] = impz(hq)
[h,t] = impz(hq,n)
[h,t] = impz(hq,n,Fs)
[h,t,ref] = impz(hq,...)
impz(hq,...)

Description [h,t] = impz(hq) computes the response of the quantized filter hq to an
impulse. impz returns the computed impulse response in the column vector h
and the corresponding sample times in the column vector t (where
t = [0:n-1]' and n = length(t) is computed automatically).

[h,t] = impz(hq,n) computes n samples of the quantized impulse response
for any positive integer n. In this case, t = [0:n-1]'. When n is a vector of
integers, impz computes the impulse response at those integer locations,
starting the response computation from 0 (and t=n or t=[0 n]). If, instead of n,
you include the empty vector [] as the second argument, impz computes the
number of samples automatically.

[h,t] = impz(hq,n,Fs) computes n samples and produces a vector t of
length n so that the samples are spaced 1/Fs units apart.

[h,t,ref] = impz(hq,...) returns the impulse response of the quantized
filter hq in the column vector h, and returns the impulse response of the
reference filter in the vector ref.

impz(hq,...) with no output arguments plots the impulse response of the
reference filter associated with hq, and the quantized impulse response of
quantized filter hq in a new figure window. impz uses stem for plotting the
impulse responses.

Note impz works for both real and complex quantized filters. When you omit
the output arguments, only the real part of the impulse response is plotted.

impz

13-233

Examples Create a quantized filter for a fourth-order, low-pass elliptic filter with a cutoff
frequency of 0.4 times the Nyquist frequency. Use a second-order sections
structure to resist quantization errors. Plot the first 50 samples of the
quantized impulse response, along with the reference impulse response.

% Specify transfer function parameters for the reference filter.

[b,a] = ellip(4,3,20,.6);

% Create a quantized filter from the reference filter. Convert the
quantized filter to second-order section form, order, and scale.

hq = sos(qfilt('ref',{b,a}));

Warning: 1 overflow in coefficients.

impz(hq,50)

0 5 10 15 20 25 30 35 40 45
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Quantized response
Reference response

impz

13-234

Algorithm impz applied to the quantized filter hq applies the filter command twice to a
length n impulse sequence:

• Once for a quantized filter whose coefficients are determined by the
ReferenceCoefficients property value for hq

• Once for a quantized filter whose coefficients are determined by the
QuantizedCoefficients property value for hq

The resulting plots use stem.

Warnings that occur with impz are a result of the filter command. In
particular, you get an input overflow warning with impz when the InputFormat
property value for the quantized filter hq is fixed-point and has only one bit to
the left of the radix point.

For example, when your InputFormat property is set to {'fixed',[16,15]},
you get an input overflow warning when you implement impz.

See Also filter

initkalman

13-235

13initkalmanPurpose Configure the initialization structure used as an input argument to
adaptkalman

Syntax s = initkalman(w0,k0,qm,qp)
s = initkalman(w0,k0,qm,qp,zi)

Description s = initkalman(w0,k0,qm,qp) returns the fully populated structure s that
you use when you call adaptkalman. Vector w0 contains the initial values of the
filter coefficients. Its length equals the order of the adapting FIR filter plus one.

k0 contains the initial state error covariance matrix. It should be an Hermitian
symmetric square matrix with dimensions equal to length(w0).

qm is the measurement noise variance and qp is the process noise covariance
matrix.

s = initkalman(w0,k0,qm,qp,zi) adds input argument zi to specify the
filter initial conditions. When you omit zi or specify it as empty, [], initkalman
defaults to zi equal to a zero vector of length [length(w0)-1]. When you use
adaptkalman in program structures like for-loops, the initial conditions provide
the filter weights for the first iteration of the loop. Recall that each iteration of
the Kalman filter algorithm uses the weights from the previous iteration.
Without initial conditions the first interation has no input to use. For each loop
iteration the same problem occurs and the filter never adapts to the unknown.

When you check the contents of s after you use initkalman MATLAB displays
the structure elements, rather than the input argument names. To help you

initkalman

13-236

remember which element in s corresponds to each input argument to
initkalman, the following table provides the mapping.

For example, after you use initkalman to create s, MATLAB returns the
structure shown when you enter s at the prompt. In this example, we use a
31st-order filter.

s

s =

initkalman
argument

Structure
Field

Argument Description

w0 s.coeffs Kalman adaptive filter coefficients. Should be
initialized with the initial values for the FIR
filter coefficients. Updated coefficients are
returned when you use s as an output
argument.

k0 s.errcov The state error covariance matrix. Initialize
this element with the initial error state
covariance matrix. An updated matrix is
returned when you use s as an output
argument.

qm s.measvar Conntains the measurement noise variance
matrix.

qp s.procov Contains the process noise covariance matrix.

s.states Returns the states of the FIR filter. This is an
optional element. If omitted, it defaults to a
zero vector of length equal to the filter order.

s.gain Kalman gain vector. Not required, but
computed and returned after every iteration.

s.iter Total number of iterations in adaptive filter
run. This is read-only.

initkalman

13-237

 coeffs: [1x32 double]
 states: [31x1 double]
 errcov: [32x32 double]
 measvar: 2
 procov: [32x32 double]
 gain: []
 iter: 0

Examples Prepare the initialization structure needed to identify an unknown FIR filter
with 32 coefficients. To see this structure used in an example, refer to
adaptkalman.

w0 = zeros(1,32); % Intial filter coefficients
k0 = 0.5*eye(32); % Initial state error correlation matrix
qm = 2; % Measurement noise covariance
qp = 0.1*eye(32); % Process noise covariance
s = initkalman(w0,k0,qm,qp);

See Also adaptkalman, initlms, initnlms, initrls, initse

Reference S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996.

initlms

13-238

13initlmsPurpose Configure the initialization structure used as an input argument to adaptlms

Syntax s = initlms(w0,mu)
s = initlms(w0,mu,zi)
s = initlms(w0,mu,zi,lf)

Description s = initlms(w0,mu) returns the fully populated structure s that you use
when you call adaptklms. Vector w0 contains the initial values of the filter
coefficients. Its length should be equal to [order of the adapting FIR filter + 1].
mu is the Least Mean Square (LMS) algorithm step size. The step size you
specify determines both the time it takes for the LMS algorithm to converge to
a solution and the accuracy of that solution (how closely the result approaches
the minimum least mean square error). Generally, small step sizes adapt more
slowly but more closely and large step sizes adapt more quickly with larger
error compared to the true minimum mean square error.

In matrix form, the LMS algorithm is

(13-1)

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the LMS algorithm seeks to minimize.
µ (mu) is the step size. As you specify mu smaller, the correction to the filter
weights gets smaller for each sample and the LMS error falls more slowly.
Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
bounds:

where N is the number of samples in the signal.

s = initlms(w0,mu,zi) adds input argument zi to specify the filter initial
conditions. When you omit zi or specify it as empty, [], initkalman defaults to
zi equal to a zero vector of length equal to [length(w0)-1]. For conditional
processing such as using adaptlms in a for-loop, specifying the initial
conditions is very important. Each iteration of the LMS algorithm uses the

w k 1+() w k() µe k()x k()+=

0 µ 1
N InputSignalPower{ }
---< <

initlms

13-239

weights from the prior interation. You supply the initial conditions so the first
iteration has a set of prior filter weights to start from.

s = initlms(w0,mu,zi,lf) specifies the leakage factor lf as an input
argument. Including the leakage factor can improve the behavior of the
algorithm. Leaking the weight w(k) (the leakage factor applies to the weight
in equation 11-1) forces the algorithm to continue to adapt even after it reaches
its minimum value. While this can mean that the leaky LMS does not achieve
quite so accurate a measure of the minimum mean square error, the sensitivity
to errors, or to small values in the input is reduced when you use the leakage
factor. Typically, set lf between 0.9 (considered very leaky) and 1.0, meaning
no leakage. If you specify lf as empty, it defaults to one.

When you check the contents of s after you use initlms MATLAB displays the
structure elements, rather than the input argument names. To help you
remember which element in s corresponds to each input argument to initlms,
the following table provides the mapping.

initlms
Argument

Structure
Field

Argument Contents

wo s.coeffs LMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

mu s.step Sets the LMS algorithm step size. Determines
both how quickly and how closely the adative
filter adapts to the filter solution.

initlms

13-240

For example, after you use initlms to create s, MATLAB returns the structure
shown when you enter s at the prompt. In this example, we created s for
a 31st-order filter.

s

s =

 coeffs: [1x32 double]
 states: [31x1 double]
 step: 0.8000
 leakage: 1
 iter: 0

Examples To use adaptlms, you must provide at least two input arguments that define
the LMS algorithm to use — w0 and mu. Structure s comprises these data sets

zi s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use
adaptlms in a loop structure, use this element
to specify the initial filter states for the
adapting FIR filter.

lf
s.leakage

Specifies the LMS leakage parameter. Allows
you to implement a leaky LMS algorithm.
Including a leakage factor can improve the
results of the algorithm by forcing the LMS
algorithm to continue to adapt even after it
reaches a minimum value. This is an optional
field. Defaults to one if omitted (specifying no
leakage) or set to empty, [].

s.iter Total number of iterations in the adaptive
filter run. Although you can set this in s, you
should not. Consider it a read-only value.

initlms
Argument

Structure
Field

Argument Contents

initlms

13-241

and forms the initialization for adaptlms. In this example, use initlms to
configure s to identify an unknown 31st-order FIR filter. To see this structure
in use, refer to adaptlms.

w0 = zeros(1,32); % Intial filter coefficients
mu = 0.8; % LMS step size.
s = initlms(w0,mu);

See Also adaptlms, initnlms, adaptnlms, initrls

Reference Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, Inc, 1996.

initnlms

13-242

13initnlmsPurpose Configure the initialization structure used as an input argument to adaptnlms

Syntax s = initnlms(w0,mu)
s = initnlms(w0,mu,zi)
s = initnlms(w0,mu,zi,lf)
s = initnlms(w0,mu,zi,lf,offset)

Description s = initnlms(w0,mu) returns the fully populated structure s that you use
when you call adaptnlms. Vector w0 contains the initial values of the filter
coefficients. Its length should equal the order of the adapting FIR filter plus
one. mu is the Normalized Least Mean Square (NLMS) algorithm step size. The
step size you specify determines both the time it takes for the NLMS algorithm
to converge to a solution and the accuracy of that solution (how closely the
result approaches the minimum least mean square error). Generally, small
step sizes adapt more slowly but more closely and large step sizes adapt more
quickly with larger error compared to the true minimum mean square error.

In vector form, the NLMS algorithm is

where

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the NLMS algorithm seeks to
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the NLMS error falls more
slowly. Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
bounds:

where N is the number of samples in the signal.

w k 1+() w k() µne k()x k()+=

µn
1

ε x k() 2
+

----------------------------=

0 µ 1
N InputSignalPower{ }
---< <

initnlms

13-243

s = initnlms(w0,mu,zi) adds input argument zi to specify the filter initial
conditions. When you omit zi or specify it as empty, [], initnlms defaults to zi
equal to a zero vector of length [length(w0)-1]. For conditional processing
such as using adaptnlms in a for-loop, specifying the initial conditions is very
important. Each iteration of the NLMS algorithm uses the weights from the
prior interation. You supply the initial conditions so the first iteration has a set
of prior filter weights to start from.

s = initnlms(w0,mu,zi,lf) specifies the leakage factor lf. Including the
leakage factor can improve the behavior of the algorithm. Leaking the weight
w(k) (the leakage factor applies to the weight in equation 11-2) forces the
algorithm to continue to adapt even after it reaches its minimum value. This
can mean that the leaky NLMS does not achieve quite so accurate a measure
of the minimum mean square error. However, the sensitivity to errors, or to
small values in the input is reduced when you use the leakage factor. Typically,
set lf between 0.9 (considered very leaky) and 1.0, meaning no leakage. If you
specify lf as empty, it defaults to one.

s = initnlms(w0,mu,zi,lf,offset) specifies an optional offset for the
normalization term. This is useful to avoid divide by zero (or very small
numbers) conditions when the square of the input data norm becomes very
small. If offset is specified as empty, it defaults to zero.

When you check the contents of s after you use initnlms MATLAB displays the
structure elements, rather than the input argument names. To help you

initnlms

13-244

remember which element in s corresponds to each input argument to initlms,
the following table provides the mapping.

initnlms
Argument

Structure
Field

Argument Contents

wo s.coeffs NLMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

mu s.step Sets the NLMS algorithm step size.
Determines both how quickly and how closely
the adative filter adapts to the filter solution.

zi s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use
adaptlms in a loop structure, use this element
to specify the initial filter states for the
adapting FIR filter.

lf
s.leakage

Specifies the NLMS leakage parameter.
Allows you to implement a leaky NLMS
algorithm. Including a leakage factor can
improve the results of the algorithm by forcing
the NLMS algorithm to continue to adapt even
after it reaches a minimum value. This is an
optional field. Defaults to one if omitted
(specifying no leakage) or set to empty, [].

initnlms

13-245

For example, after you use initnlms to create s, MATLAB returns the
structure shown when you enter s at the prompt. In this example, we created
s for a 31st-order filter.

s

s =

 coeffs: [1x32 double]
 states: [31x1 double]
 step: 0.8000
 leakage: 1
 iter: 0

See Also adaptnlms, adaptlms, adaptrls, initlms, initkalman

Reference Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley
and Sons, 1996

offset s.offset Specifies an optional offset for the
normalization term. Use this to avoid divide
by zero (or by very small numbers) when the
square of input data norm becomes very small.
When omitted, it defaults to zero.

s.iter Total number of iterations in the adaptive
filter run. Although you can set this in s, you
should not. Consider it a read-only value.

initnlms
Argument

Structure
Field

Argument Contents

initrls

13-246

13initrlsPurpose Configure the initialization structure used as an input argument to adaptrls

Syntax s = initrls(w0,p0,lambda)
s = initrls(w0,p0,lambda,zi)
s = initrls(w0,p0,lambda,zi,alg)

Description s = initrls(w0,p0,lambda) returns the fully populated structure s that you
use when you call adaptrls. Vector w0 contains the initial values of the filter
coefficients. Its length should equal the order of the adapting FIR filter plus
one.

p0 is the inverse of the initial error covariance matrix. It must be an
Hermitian symmetric square matrix with dimensions equal to length(w0).

lambda is the forgetting factor, also called the exponential weighting factor, in
the recursive least squares (RLS) algorithm. RLS algorithms calculate the
least squares error vector using all previous data; data from long ago is given
the same weight as newly received data. It is possible for bad data from the
past to affect the current solution. In RLS terms this is called inifinite memory.
lambda lets you determine how the RLS algorithm treats old data. When you
specify lambda, the RLS algorithm applies a weighting factor to sample data
using lambda in the following calculation:

weighting factor for a sample = lambda(sample age)

where sample age represents the age of the sample being weighted. For a
recent sample, sample age might be 1 or 2 or 10, meaning that the sample is 1,
2, or 10 iterations old. A sample from 100 iterations earlier would have sample

age = 100 and a weighting factor of 0.9100 = 2.6 x 10-5 when lambda = 0.9. Thus
earlier samples have less affect on the least squares error vector than recent
samples. lambda should satisfy 0 < lambda <= 1, where lambda = 1 denotes
infinite memory — all previous data is equally weighted in the RLS algorithm.

s = initrls(w0,p0,lambda,zi) adds input argument zi to specify the filter
initial conditions. When you omit zi or specify it as empty, [], initrls defaults
to zi equal to a zero vector of length [length(w0)-1].

s = initrls(w0,p0,lambda,zi,alg) adds the input argument 'alg' that
specifies which version of the RLS algorithm gets used in RLS computations.

initrls

13-247

String alg can be either 'direct' (default) to use the RLS algorithm or 'sqrt' to
use the more stable square root (QR decomposition) RLS algorithm.

When you check the contents of s after you use initrls MATLAB displays the
structure elements, rather than the input argument names. To help you

String alg Description

direct Specifies the standard RLS algorithm to determine the
least squares weight vector for the adaptive filter weights.
This is the default setting.

sqrt Specifies the QR decomposition RLS algorithm to
determine the least squares weight vector for the adaptive
filter coefficients. The QR algorithm applies the QR
decomposition to the incoming data matrix, rather than
working with the correlation matrix of the input data as
the RLS algorithm does. In the RLS algorithm, the input
data correlation matrix is averaged over time. Working
directly with the input data matrix makes the QR version
more stable numerically.

initrls

13-248

remember which element in s corresponds to each input argument to initrls,
the following table provides the mapping

initrls
Argument

Structure
Field

Argument Contents

w0 s.coeffs NLMS FIR filter coefficients. Should be
initialized with the initial coefficients for the
FIR filter prior to adapting. You need
(adapting filter order + 1) entries in s.coeffs.
Updated filter coefficients are returned in
s.coeffs when you use s as an output
argument.

p0 s.invcov The inverse of the input covariance matrix.
Should be initialized with the initial input
covariance matrix inverse. p0 has dimensions
equal to the filter order, or length(w0)-1.
When you use s as an output argument to
adaptrls, with the 'direct' algorithm
specified, adaptrls returns the updated
matrix in s.invcov.

lambda s.lambda The forgetting factor that defines how the RLS
algorithm weighs more recent and less recent
samples. While lambda can be between 0 and 1,
usually you set 0.9 < lambda ≤ 1.0

zi s.states Returns the states of the FIR filter after
adaptation. This is an optional element. If
omitted, it defaults to a zero vector of length
equal to the filter order. When you use
adaptrls in a loop structure, use this element
to specify the initial filter states for the
adapting FIR filter.

initrls

13-249

Examples Create the structure s that you use with adaptrls. In this example we plan to
identify an unknown 32nd-order FIR filter. Set w0 to contain 33 initial filter
coefficients. Since p0 is the inverse correlation matrix, our correlation matrix
must have been the identity matrix with 0.2 on the diagonal and zeros
everywhere else. By default we use the direct RLS algorithm and we let all
earlier samples be weighted equally, lambda = 1.

w0 = zeros(1,33); % Intial filter coefficients
p0 = 5*eye(33); % Initial input correlation matrix inverse
lambda = 1; % Exponential memory weighting factor
s = initrls(w0,p0,lambda);

To see the results of using this s, refer to adaptrls.

See Also adaptrls, initkalman, initlms, initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, Inc, 1996.

s.gain RLS gain is a read-only value. For each
iteration of the algorithm, the gain from the
previous iteration feeds into the algorithm. For
the first iteration, the default gain is []. After
the algorithm finishes adapting, s.gain
contains the final gain value.

s.iter Total number of iterations in the adaptive
filter run. Although you can set this in s, you
should not. Consider it a read-only value.

alg s.alg Specifies the RLS algorithm to use for the
adapting process. This is an optional element.
Enter either 'direct' for the conventional RLS
algorithm or 'sqrt' for the more stable square
root (QR) method. direct is the default
algorithm; used when you omit alg.

initrls
Argument

Structure
Field

Argument Contents

initsd

13-250

13initsdPurpose Configure the initialization structure used as an input argument to adaptsd

Syntax s = initsd(w0,mu)
s = initsd(w0,mu,zi)
s = initsd(w0,mu,zi,lf)

Description s = initsd(w0,mu) returns the fully populated structure s that you use when
you call adaptsd. Vector w0 contains the initial values of the filter coefficients.
Its length should equal the order of the adapting FIR filter plus one. mu is the
sign data least mean square (SDLMS) algorithm step size. The step size you
specify determines both the time it takes for the SDLMS algorithm to converge
to a solution and the accuracy of that solution (how closely the result
approaches the minimum least mean square error). Generally, small step sizes
adapt more slowly but more closely and large step sizes adapt more quickly
with larger error compared to the true minimum mean square error.

In matrix form, the SDLMS algorithm is

, (13-2)

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SDLMS algorithm seeks to
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the SDLMS error falls more
slowly. Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
bounds:

where N is the number of samples in the signal. Also, define mu as a power of
two.

w k 1+() w k() µe k()sgn x k()[]+= sgn x k()[]
 1 x k(), 0>

 0 x k(), 0=

1– x k(), 0<





=

0 µ 1
N InputSignalPower{ }
---< <

initsd

13-251

s = initsd(w0,mu,zi) adds input argument zi to specify the filter initial
conditions. When you omit zi or specify it as empty, [], initsd defaults to zi
equal to a zero vector of length [length(w0)-1]. For conditional processing
such as using adaptse in a for-loop, specifying the initial conditions is very
important. Each iteration of the SDLMS algorithm uses the weights from the
prior interation. You supply the initial conditions so the first iteration has a set
of prior filter weights to start from.

s = initsd(w0,mu,zi,lf) specifies the leakage factor lf. Including the
leakage factor can improve the behavior of the algorithm. Leaking the weight
w(k) (the leakage factor applies to the weight in Equation 13-2) forces the
algorithm to continue to adapt even after it reaches its minimum value. This
can mean that the leaky SDLMS does not achieve quite so accurate a measure
of the minimum mean square error. However, the sensitivity to errors, or to
small values in the input is reduced when you use the leakage factor. Typically,
set lf between 0.9 (considered very leaky) and 1.0, meaning no leakage. If you
specify lf as empty, it defaults to one.

See Also adaptsd, initse, initss, adaptlms, adaptrls, initlms, initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, Inc, 1996.

initse

13-252

13initsePurpose Configure the initialization structure used as an input argument to adaptse

Syntax s = initse(w0,mu)
s = initse(w0,mu,zi)
s = initse(w0,mu,zi,lf)

Description s = initse(w0,mu) returns the fully populated structure s that you use when
you call adaptse. Vector w0 contains the initial values of the filter coefficients.
Its length should equal the order of the adapting FIR filter plus one. mu is the
sign error least mean square (SELMS) algorithm step size. The step size you
specify determines both the time it takes for the SELMS algorithm to converge
to a solution and the accuracy of that solution (how closely the result
approaches the minimum least mean square error). Generally, small step sizes
adapt more slowly but more closely and large step sizes adapt more quickly
with larger error compared to the true minimum mean square error.

In matrix form, the SELMS algorithm is

, (13-3)

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SELMS algorithm seeks to
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the SELMS error falls more
slowly. Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
bounds:

where N is the number of samples in the signal. Also, define mu as a power of
two.

w k 1+() w k() µ e k()[]sgn x k()[]+= sgn e k()[]
 1 e k(), 0>

 0 e k(), 0=

1– e k(), 0<





=

0 µ 1
N InputSignalPower{ }
---< <

initse

13-253

s = initse(w0,mu,zi) adds input argument zi to specify the filter initial
conditions. When you omit zi or specify it as empty, [], initss defaults to zi
equal to a zero vector of length [length(w0)-1]. For conditional processing
such as using adaptss in a for-loop, specifying the initial conditions is very
important. Each iteration of the SELMS algorithm uses the weights from the
prior interation. You supply the initial conditions so the first iteration has a set
of prior filter weights to start from.

s = initnlms(w0,mu,zi,lf) specifies the leakage factor lf. Including the
leakage factor can improve the behavior of the algorithm. Leaking the weight
w(k) (the leakage factor applies to the weight in Equation 13-3) forces the
algorithm to continue to adapt even after it reaches its minimum value. This
can mean that the leaky SELMS does not achieve quite so accurate a measure
of the minimum mean square error. However, the sensitivity to errors, or to
small values in the input is reduced when you use the leakage factor. Typically,
set lf between 0.9 (considered very leaky) and 1.0, meaning no leakage. If you
specify lf as empty, it defaults to one.

See Also adaptsd, initse, initss, adaptlms, adaptrls, initlms, initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, Inc, 1996.

initss

13-254

13initssPurpose Configure the initialization structure used as an input argument to adaptss

Syntax s = initss(w0,mu)
s = initss(w0,mu,zi)
s = initss(w0,mu,zi,lf)

Description s = initss(w0,mu) returns the fully populated structure s that you use when
you call adaptss. Vector w0 contains the initial values of the filter coefficients.
Its length should equal the order of the adapting FIR filter plus one. mu is the
sign sign least mean square (SSLMS) algorithm step size. The step size you
specify determines both the time it takes for the SSLMS algorithm to converge
to a solution and the accuracy of that solution (how closely the result
approaches the minimum least mean square error). Generally, small step sizes
adapt more slowly but more closely and large step sizes adapt more quickly
with larger error compared to the true minimum mean square error.

In matrix form, the SSLMS algorithm is

,

(13-4)

where z(k) is

Vector w contains the weights applied to the filter coefficients and vector x
contains the input data. e(k) (equal to desired signal - filtered signal) is the
error at time k and is the quantity the SSLMS algorithm seeks to minimize.
µ (mu) is the step size. As you specify mu smaller, the correction to the filter
weights gets smaller for each sample and the SSLMS error falls more slowly.
Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
bounds:

w k 1+() w k() µ e k()[]sgn x k()[]sgn+=

sgn z k()[]
 1 z k(), 0>

 0 z k(), 0=

1– z k(), 0<





=

z k() e k()[] x k()[]sgn=

0 µ 1
N InputSignalPower{ }
---< <

initss

13-255

where N is the number of samples in the signal. Also, define mu as a power of
two.

s = initss(w0,mu,zi) adds input argument zi to specify the filter initial
conditions. When you omit zi or specify it as empty, [], initss defaults to zi
equal to a zero vector of length [length(w0)-1]. For conditional processing
such as using adaptss in a for-loop, specifying the initial conditions is very
important. Each iteration of the SSLMS algorithm uses the weights from the
prior interation. You supply the initial conditions so the first iteration has a set
of prior filter weights to start from.

s = initss(w0,mu,zi,lf) specifies the leakage factor lf. Including the
leakage factor can improve the behavior of the algorithm. Leaking the weight
w(k) (the leakage factor applies to the weight in Equation 13-4) forces the
algorithm to continue to adapt even after it reaches its minimum value. This
can mean that the leaky SSLMS does not achieve quite so accurate a measure
of the minimum mean square error. However, the sensitivity to errors, or to
small values in the input is reduced when you use the leakage factor. Typically,
set lf between 0.9 (considered very leaky) and 1.0, meaning no leakage. If you
specify lf as empty, it defaults to one.

See Also adaptsd, initse, initss, adaptlms, adaptrls, initlms, initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, Inc, 1996.

isallpass

13-256

13isallpassPurpose Test quantized filters to determine whether they are allpass structures

Syntax flag = isallpass(f)
flag = isallpass(f,k)

Description flag = isallpass(f) determines whether the filter object f is an allpass
filter, returning 1 if true and 0 if false.

flag = isallpass(f,k) determines whether the k-th section of the filter
object f is an allpass section and returns 1 if true and 0 if false.

Since lattice coupled allpass filters always have allpass sections, this function
always returns 1 for filters whose structure is latticeca.

See Also isfir, islinphase, ismaxphase, isminphase, isreal, issos, isstable

isfir

13-257

13isfirPurpose Test quantized filters to see whether they are FIR filters

Syntax flag = isfir(hq)
flag = isfir(hq,k)

Description flag = isfir(hq) determines whether quantized filter hq is an FIR filter,
returning flag equal to 1 when the quantized filter is an FIR filter, and 0 when
it is IIR.

flag = isfir(hq,k) determines whether the kth-section of quantized filter hq
is an FIR filter, returning flag equal to 1 when the kth-section is an FIR filter
and 0 when it is IIR.

isfir(hq) looks at filter hq and determines whether the filter, in transfer
function form, has a scalar for its denominator. If it does, it is an FIR filter.

Examples hq = qfilt;
isfir(hq)
ans =

 1

returns 1 for the status of filter hq; the filter is an FIR structure with
denominator reference coefficient equal to one.

See Also isallpass, islinphase, ismaxphase, isminphase, isreal, issos, isstable

isfixed

13-258

13isfixedPurpose Test and return whether a quantizer is fixed point

Syntax res = isfixed(q)

Description res = isfixed(q) returns res = 1 (logical true) when q is a fixed-point
quantizer. When q is not fixed point, isfixed returns res = 0. When you
develop programs that use one or more quantizers, you may find this function
useful to determine the mode of a quantizer within your program, and respond
to the returned value.

Examples Demonstrate the results of testing both fixed-point and nonfixed-point
quantizers:

q = quantizer('double'); % Create a floating-point quantizer
res = isfixed(q)
res =
0
q = quantizer('ufixed'); % Create a fixed-point quantizer
res = isfixed(q)
res =
1

See Also isfloat, quantizer

isfloat

13-259

13isfloatPurpose Test and return whether a quantizer is floating point

Syntax res = isfloat(q)

Description res = isfloat(q) returns res = 1 (logical true) when q is a floating-point
quantizer. When q is not floating point, isfloat returns res = 0. When you
develop programs that use one or more quantizers, you may find this function
useful to determine the mode of a quantizer within your program, and respond
to the returned value.

Examples Demonstrate the results of testing both fixed-point and nonfixed-point
quantizers:

q = quantizer('double'); % Create a floating-point quantizer
res = isfloat(q)
res =
1
q = quantizer('ufixed'); % Create a fixed-point quantizer
res = isfloat(q)
res =
0

See Also isfixed, quantizer

isnone

13-260

13isnonePurpose Determine and return whether a quantizer has quantization mode equal to
none

Syntax res = isnone(q)

Description res = isnone(q) returns res = 1 (logical true) when qauntizer q has mode
equal to none. Recall that quantizers may have one of five modes—none,
double, fixed, float, or single. When you develop programs that use one or more
quantizers, you may find this function useful for determining the mode of a
quantizer within your program, and responding to the returned value.

Examples Create and test two quantizers—one operating in double mode and the other
with mode set to none:

q = quantizer('double'); % Create a double data type quantizer
res = isnone(q)
res =
0
q = quantizer('none'); % Create a quantizer with mode = none
res = isnone(q)
res =
1

See Also isfixed, isfloat

islinphase

13-261

13islinphasePurpose Test quantized filters to see whether they are linear phase

Syntax flag = islinphase(hq)
flag = islinphase(hq,k)

Description flag = islinphase(hq) determines if the quantized filter hq is linear phase,
and returns 1 if true and 0 if false.

flag = islinphase(hq,k) determines if the kth-section of the filter hq is a
linear phase section and returns 1 if true and 0 if false.

The determination is based on the reference coefficients. A filter has linear
phase if it is FIR and its transfer function coefficients are are symmetric or
antisymmetric. If it is IIR and it has poles on or outside the unit circle and both
numerator and denominator are symmetric or antisymmetric, it is linear phase
also.

Examples This IIR filter has linear phase.

num=[1 0 0 0 0 -1];
den=[1 -1];
hq = qfilt('df2t',{num,den});
islinphase(hq)
ans =

 1

See Also isallpass, isfir, ismaxphase, isminphase, isreal, issos, isstable

ismaxphase

13-262

13ismaxphasePurpose Test quantized filters to see whether they are maximum phase filters

Syntax flag = ismaxphase(hq)
flag = ismaxphase(hq,k)

Description flag = ismaxphase(hq) determines whether filter hq is maximum phase,
returning 1 if true and 0 if false.

flag = ismaxphase(hq,k) determines if the kth-section of filter hq is a
maximum phase section and returns 1 if true and 0 if false.

The determination is based on the reference coefficients. A filter is maximum
phase when the zeros of its transfer function are on or outside the unit circle,
or when the numerator is a scalar.

Examples hq = qfilt;
ismaxphase(hq)

returns 1 so this is a maximum phase quantized filter. Notice that the filter
coefficients (zeros) are 1.0 before quantization. Compare to isminphase.

See Also isallpass, isfir, islinphase, isminphase, isreal, issos, isstable

isminphase

13-263

13isminphasePurpose Test quantized filters to see if they are minimum phase

Syntax flag = isminphase(hq)
flag = isminphase(hq,k)

Description flag = isminphase(hq) determines if the filter hq is minimum phase and
returns 1 if true and 0 if false.

flag = isminphase(hq,k) determines if the k-th section of the filter hq is a
minimum phase section and returns 1 if true and 0 if false.

The determination is based on the reference coefficients. A filter is minimum
phase when the zeros of its transfer function are on or inside the unit circle, or
the numerator is a scalar.

Examples This example creates a minimum phase quantized filter.

hq = qfilt;
isminphase(hq)

If you look at the example in ismaxphase, you may notice that this filter is also
maximum phase. Since both the poles and zeros of the filter lie on the unit
circle, it passes the tests for minimum and maximum phase designation.

See Also isallpass, isfir, islinphase, ismaxphase, isreal, issos, isstable,

isreal

13-264

13isrealPurpose Test quantized filters for purely real coefficients

Syntax r = isreal(hq)

Description r = isreal(hq) returns r = 1 (or true) if all reference filter coefficients for the
quantized filter hq are real, and returns r = 0 (or false) otherwise.

isreal(hq) returns 1 if all filter coefficients in quantized filter hq have zero
imaginary part. Otherwise, isreal(hq) returns a 0 indicating that the filter
is complex. Complex quantized filters have one or more coefficients with
nonzero imaginary parts.

Note Quantizing a filter cannot make a real filter into a complex filter.

Examples % Create a reference filter.
[b,a] = ellip(2,0.5,20,0.4);

% Create a quantized filter from the reference filter.

hq = qfilt('df2t',{b,a});

% Test if all filter coefficients are real.

r = isreal(hq)

r =
 1

isreal

13-265

See Also isfir, islinphase, ismaxphase, isminphase, issos, isstable, isallpass

issos

13-266

13issosPurpose Test whether quantized filters are composed of second-order sections

Syntax flag = issos(hq)

Description flag = issos(hq) determines whether quantized filter hq consists of
second-order sections. Returns 1 if all sections of quantized filter hq have order
less than or equal to two, and 0 otherwise.

Examples warning off
[b,a] = butter(5,.5);
hq = sos(qfilt('ref',{b,a}));
v = issos(hq)
v =

 1
hq.statespersection

ans =

 1 2 2

Quantized filter hq is in second-order section form.

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, isstable

isstable

13-267

13isstablePurpose Test whether a quantized filter is stable

Syntax r = isstable(hq)
r = isstable(hq,k)

Description r = isstable(hq) tests quantized filter hq to determine whether its poles are
inside the unit circle. If the poles lie on or outside the circle, isstable returns
r = 0. If the poles are inside the circle, isstable returns r = 1.

r = isstable(hq,k) returns the stability of the kth-section of a multiple
section quantized filter. Based on the locations of the poles of the specified
section, isstable returns r = 1 if the filter section is stable, and 0 otherwise.

To determine the filter stability, isstable checks the quantized filter
coefficients. When the poles lie on or inside the unit circle, the quantized filter
is stable. FIR filters are stable by design since the defining transfer functions
do not have denominator polynomials.

Examples Since filter stability is very important in your design process, use isstable to
deterime whether you quantized IIR filter is indeed stable:

hq = qfilt;
isstable(hq)
ans =

1

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, issos,
zplane

length

13-268

13lengthPurpose Return the length of a quantized FFT

Syntax length(f)

Description length(f) returns the value of the length property of quantized FFT f. The
value of the length property must be a positive integer that is also a power of
the radix of the quantized FFT (f.radix). The length of the FFT is the length
of the data vector that the FFT operates on.

Examples f = qfft;
length(f)

returns the default 16 for the length of the FFT.

See Also qfft, get, set

limitcycle

13-269

13limitcyclePurpose Detect limit cycles in a quantized filter

Syntax limitcycle(hq)
limitcycle(hq, ntrials, inputlength, stopcriterion, displaytype)
[limitcycletype, zi, stateperiod, statesequence,...

overflowsperstep, trial, section] = limitcycle(hq, ...)

Description limitcycle(hq) runs 20 Monte Carlo trials with quantized filter hq. Each trial
uses a new set of initial states (determined randomly) and zero input vector of
length 100. Monte Carlo processing stops if a zero-input limit cycle is detected
in quantized filter hq. At completion, limitcycle returns one of the following
strings:

• 'granular' indicating that a granular overflow occurred

• 'overflow' indicating that an overflow limitcycle occurred

• 'none' indicating that no limit cycles were detected during the Monte Carlo
trials

limitcycle(hq, ntrials, inputlength, stopcriterion, displaytype)
lets you set the following arguments:

• ntrials — the number of monte carlo trials (default is 20).

• inputLength — the length of the zero vector used as input to the filter
(default is 100).

• stopcriterion — the criterion for stopping the Monte Carlo trials
processing. stopcriterion can be set to 'either' (the default), 'granular',
'overflow', or 'none'. If stopcriterion is:

stopcriterion Description

'either' Monte Carlo trials will stop when either a
granular or overflow limit cycle is detected

'granular' Monte Carlo trials stop when a granular limit
cycle was detected

limitcycle

13-270

• displaytype — the display type. When displaytype is nonzero, limitcycle
displays messages about the progress of the Monte Carlo trials.

[LimitcycleType, Zi, StatePeriod, StateSequence, overflowsperstep,
trial, section] = limitcycle(hq,...) also returns

• limitcycletype — one of 'granular' to indicate that a granular overflow
occurred; 'overflow' to indicate that an overflow limitcycle occurred; or
'none' to indicate that no limit cycles were detected during the Monte Carlo
trials.

• zi — the initial condition that caused the limit cycle.

• stateperiod — an integer indicating the repeat period of the limit cycle
(-1 if the filter converged and the last state is zero, 0 if the last state is not
zero and no limit cycle was detected).

• statesequence — a matrix containing the sequence of states at every time
step (one matrix column per time step). The final conditions are in the last
column of statesequence zf = statesequence(:,end). The initial
conditions of the section are in the first column of statesequence
zi = statesequence(:,1).

• overflowsperstep — a cell array that contains one vector of integers for
each section of the filter that indicates the total number of overflows that
occurred during each time step. The overflows from the kth-section are found
in overflowsperstep{k}.

• trial — the number of the trial on which Monte Carlo processing stopped.

• section — the number of the section in which the limitcycle was detected.

Only the parameters of the last limit cycle are returned. If Monte Carlo
processing does not detect any limit cycles, the parameters of the last Monte
Carlo trial are returned.

'overflow' Monte Carlo trials stop when an overflow limit
cycle was detected

'none' Monte Carlo trials do not stop until all trials have
been run

stopcriterion Description

limitcycle

13-271

Examples In this example, there is a region of initial conditions in which no limit cycles
occur, and a region where they do. If no limit cycles are detected before the
Monte Carlo trials are over, the state sequence spirals to zero. When a limit
cycle is found, the states do not end at zero. Each time you run this example, it
uses a different sequence of random initial conditions, so the plot you get may
differ from the one displayed in the following figure.

a = [-1 -1; 0.5 0];
b = [0; 1];
c = [1 0];
d = 0;
hq = qfilt('statespace',{a,b,c,d},'overflowmode','wrap');
[limitcycletype, zi, stateperiod, statesequence] = limitcycle(hq);
plot(statesequence(1,:), statesequence(2,:),'-o')
xlabel('State 1');
ylabel('State 2');
axis([-2 2 -2 2]); axis square; grid
title(['Limit cycle type:',limitcycletype])

limitcycle

13-272

See Also freqz, nlm

max

13-273

13maxPurpose Return the maximum value of a quantizer object before quantization

Syntax max(q)

Description max(q) is the maximum value before quantization during a call to
quantize(q,...) for quantizer q. This value is the maximum value
encountered over successive calls to quantize and is reset with reset(q).
max(q) is equivalent to get(q,'max') and q.max.

Examples q = quantizer;
warning on
y = quantize(q,-20:10);
max(q)

returns the value 10 and a warning for 29 overflows.

See Also min

min

13-274

13min

Purpose Return the minimum value of a quantizer object before quantization

Syntax max(q)

Description max(q) is the minimum value before quantization during a call to
quantize(q,...) for quantizer q. This value is the minimum value
encountered over successive calls to quantize and is reset with reset(q).
min(q) is equivalent to get(q,'min') and q.min.

Examples q = quantizer;
warning on
y = quantize(q,-20:10);
min(q)

returns the value -20 and a warning for 29 overflows.

See Also max

nlm

13-275

13nlmPurpose Use the noise loading method to estimate the frequency response of a quantized
filter

Syntax [h,w,pnn,nf] = nlm(hq,n,l)
[h,w,pnn,nf] = nlm(hq,n,l,'whole')
[h,f,...] = nlm(hq,n,l,fs)
[h,f,...] = nlm(hq,n,l,'whole',fs)
nlm(hq,...)

Description [h,w,pnn,nf] = nlm(hq,n,l) uses the noise loading method to estimate the
complex frequency response of quantized filter hq. Using nlm returns the
complex frequency response h, frequency vector w, in radians/sample, power
spectral density pnn, and noise figure nf, for the quantized filter hq, at n
equally-spaced points around the upper half of the unit circle. Noise figure nf
and power spectral density pnn are given in dB. nlm averages over l Monte
Carlo trials. The Monte Carlo trials result in a noise-like signal that contains
complete frequency content across the spectrum. When you omit n or l from the
command, or leave them empty, n defaults to 512 and l defaults to 10.

[h,w,pnn,nf] = nlm(hq,n,l,'whole') uses n points around the entire unit
circle, rather than the upper half.

[h,f,...] = nlm(hq,n,l,fs) and [h,f,...] = nlm(hq,n,l,'whole',fs)
returns frequency vector f, in Hz, where fs is the sampling frequency in Hz.

nlm(hq,...) without output arguments plots the magnitude and unwrapped
phase of hq, comparing the estimated response to the theoretical frequency
response calculated by [h,w] = freqz(hq,n) in the current figure window.

Examples Use the noise loading method to determine the frequency response of a
quantized IIR filter Hq.

[b,a] = butter(6, 0.5);
hq = qfilt('df2t',{b,a});
nlm(hq,1024,20)

For comparison, the plot shows the theoretical response and the response
estimated by nlm. Additionally, you see the estimated phase response for
comparison.

nlm

13-276

See Also freqz, qfilt

References McClellan, et al., Computer-Based Exercises for Signal Processing Using
MATLAB 5, Prentice-Hall, 1998, 243.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2000

−1500

−1000

−500

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−400

−300

−200

−100

0

100

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Noise Loading Method. Noise figure = 3.6634 dB

Quantized NLM
Quantized FREQZ
Reference FREQZ
Noise Power Spectrum

noperations

13-277

13noperationsPurpose Number of quantization operations performed by a quantizer, quantized filter,
or quantized FFT

Syntax noperations(q)
noperations(hq)
noperations(f)

Description noperations(q) is the number of quantization operations during a call to
quantize(q,...) for quantizer q. This value accumulates over successive calls
to quantize. You reset the value of noperations to zero by issuing the
command reset(q).

noperations(hq) is the number of sum and product quantization operations
performed during a call to filter(hq,...) for quantized filter hq.

noperations(f) is the number of sum and product quantization operations
performed during a call to fft(f,...) or ifft(f,...) for quantized FFT f.

Here’s how noperations counts quantization operations—each time any data
element gets quantized, noperations gets incremented by one. Both the real
and complex parts count, separately. For example, (complex * complex) counts
four quantization operations for products and two for sum—
(a+bi)*(c+di) = (a*c - b*d) + (a*d + b*c). In contrast, (real*real) counts one
quantization operation.

In addition, the real and complex parts of the inputs get quantized
individually. As a result, for a complex input of length 204 elements,
noperations counts 408 quantizations—204 for the real part of the input and
204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded
from real values to complex values, with a corresponding increase in the
number of quantization operations recorded by noperations. In concrete
terms, (real*real) requires fewer quantizations than (real*complex) and
(complex*complex). Changing all the values to complex because one is complex,
such as the coefficient, makes the (real*real) into (real*complex), raising
noperations count.

Examples noperations returns the number of quantizations it counts. You call it as a
quantizer, or as part of designing a quantized filter or quantized FFT.

noperations

13-278

noperations reports the total number of sum and product quantizations for
quantized filters and quantized FFTs. For quantizers, noperations reports all
the quantization operations.

The following code does not perform any adds or multiplies; it quantizes the
specified data according to the properties of quantizer q:

warning on
q=quantizer;
y = quantize(q,-20:10);
noperations(q)

and returns 31 and a warning for 29 overflows. Notice that the next example
returns an operations count (NOperations) that includes only quantizations
performed during multiply and add operations.

[b,a] = ellip(4,3,20,.6);
hq = qfilt('df2',{b,a},'roundmode','fix');
y=filter(hq,randn(100,1));

Warning: 32 overflows in QFILT/FILTER.
 Max Min NOverflows NUnderflows NOperations
 Coefficient 1.398 0.2259 2 0 10
 Input 2.183 -2.171 27 0 100
 Output 0.9377 -0.8144 0 0 100
Multiplicand 1.972 -2 310 0 1200
 Product 1 -1 0 0 1200

Sum 1.972 -2.426 3 0 1000

noperations(hq)
ans =

 2200

Returning a total of 2200 operations shows that noperations represents the
total sum and product quantizations performed, as you see in the result listing
from the filter call.

See Also get, qfft, qfilt, quantizer

normalize

13-279

13normalizePurpose Normalize quantized filter coefficients

Syntax h = normalize(Hq)

Description h = normalize(Hq) accounts for quantized filter coefficient overflow by
normalizing the quantized filter coefficients in the quantized filter Hq. The new
quantized filter h contains the normalized coefficients. All quantized filter
coefficients for h stored in the QuantizedCoefficients property value are
modified to have magnitude less than or equal to one. The result also modifies
the ReferenceCoefficients property value for h accordingly. normalize also
modifies the ScaleValues property value for h from that of Hq, so that input
data to each section of h are scaled to compensate for the normalized filter
coefficients. The scaling factors used in normalize are powers of two. There
may be a different scaling factor for each section of the quantized filter. You can
apply normalize to direct form IIR and FIR filters only. To apply normalize to
a quantized filter, its property Hq.FilterStructure must be one of the
following strings:

• 'df1'
• 'df1t'
• 'df2'
• 'df2t'
• 'fir'

• 'firt'
• antisymmetricfir
• 'symmetricfir'

Examples Create a direct form II transposed quantized filter and use normalize to
account for overflow.

% Create a low pass reference filter in the Signal Proc. Toolbox.

[b,a] = ellip(5,2,40,0.4);

% Create the quantized filter from the reference.

hq = qfilt('df2t',{b,a});

Warning: 5 overflows in coefficients.

normalize

13-280

You are warned that some of the coefficients have overflowed. To account for
this overflow, use normalize to modify the ReferenceCoefficients,
QuantizedCoefficients, and ScaleValues property values for Hq.

hq = normalize(hq)

hq =
Quantized Direct form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
 (1) 0.365295410156250 0.365289835338219130
 (2) 0.395721435546875 0.395708380608267300
 (3) 0.724884033203125 0.724891008581378560
 (4) 0.724884033203125 0.724891008581378120
 (5) 0.395721435546875 0.395708380608267240
 (6) 0.365295410156250 0.365289835338218350
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
 (1) 0.250000000000000 0.250000000000000000
 (2) -0.541015625000000 -0.541012429707579350
 (3) 0.790557861328125 0.790542752251058410
 (4) -0.668945312500000 -0.668930473694134720
 (5) 0.365966796875000 0.365965902328318770
 (6) -0.103698730468750 -0.103697674644671510

 FilterStructure = df2t
 ScaleValues = [0.03125 1]
 NumberOfSections = 1
 StatesPerSection = [5]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])

Notice that none of the coefficients overflow, and that the ScaleValues
property value has changed.

See Also get, set

noverflows

13-281

13noverflowsPurpose Return the number of overflows from the most recent FFT or IFFT operation

Syntax noverflows(F)
noverflows(Hq)
noverflows(Hq,'sum')
noverflows (Q)

Description noverflows(F) returns the number of overflows resulting from the most recent
fft or ifft operation that used quantized fft (F).

noverflows(Hq) returns the number of overflows resulting from the most
recent filter operation that used quantized filter (Hq).

noverflows(Hq,'sum') returns the number of overflows that resulted from the
most recent qfilt operation. When the quantized filter has one section, this
returns a scalar. When the filter uses two or more sections, noverflows returns
a vector containing one element for each filter section.

noverflows(Q) returns the number of overflows resulting from the most recent
quantize operation that used quantizer (Q).

Examples Create a quantized fft f and apply it to a data set. Check the number of
overflows that result when you use f. Then apply f to a second data set and
check the overflows again.

warning on
n=128;
t = (1:n)/n;
x = sin(2*pi*10*t)/10;
f = qfft('length',n);
plot(t,abs([fft(f,x);fft(x)]))
noverflows(f)

returns 24 for the number of overflows and a warning of 24 overflows.

Now, apply f to another data set.

x = sin(2*pi*10*t)/5;
plot(t,abs([fft(f,x);fft(x)]))
noverflows(f)

Now you see 58 overflows.

noverflows

13-282

See Also get, max, range, reset

num2bin

13-283

13num2binPurpose Convert a number to a binary string

Syntax num2bin(Hq)
c = num2bin(Hq)
y = num2bin(q,x)

Description num2bin(Hq) with no left-hand-side argument displays the quantized
coefficients in quantized filter Hq as binary strings.

c = num2bin(Hq) with a left-hand-side argument c returns a cell array of
quantized coefficients as binary strings. Cell array c inherits the configuration
of cell array Hq.QuantizedCoefficients.

When the mode of Hq is float, double, or single, the coefficients are converted to
IEEE Standard 754 style binary strings.

If the mode of Hq is fixed, the coefficients are converted to two’s complement
binary strings.

y = num2bin(q,x) converts numeric array x into binary strings returned in y.
When x is a cell array, each numeric element of x is converted to binary. If x is
a structure, each numeric field of x is converted to binary.

num2bin and bin2num are inverses of one another, differing in that num2bin
returns the binary strings in a column.

Examples x=magic(3)/9

x =
 0.8889 0.1111 0.6667
 0.3333 0.5556 0.7778
 0.4444 1.0000 0.2222

q=quantizer([4 3]);
y = num2bin(q,x)

y =
0111
0010
0011
0000

num2bin

13-284

0100
0111
0101
0110
0001

Algorithm Numeric values in the input data are quantized first by quantizer q, then
converted to their binary equivalents. When Hq has coefficients exactly equal
to 1, or when the input data set x includes values equal to 1 and 1 is outside the
quantizer’s range, 1 is quantized according to the property values set for q
because no binary representation for 1 exists. Beware of this behavior when
q.overflowmode = 'wrap', because the value 1 in the input data or quantized
filter coefficients gets converted and wrapped to –1 (1000 binary).

For example,

q = quantizer([4 3],'wrap');
range (q)

ans =
 -1.0000 0.8750

num2bin(q,1)

returns the binary 10002 = –110 because 1 lies outside the maximum value
(0.8750) for q.

Errors When one or more quantized coefficients have real or imaginary parts that
equal 1, and the number format does not include 1 in its range, those
coefficients are saturated to 1 – ε (where ε is the epsilon of the coefficient
quantizer) and the operation returns a warning message.

See Also bin2num, hex2num, num2hex

num2hex

13-285

13num2hexPurpose Convert a number to its hexadecimal equivalent

Syntax num2hex(Hq)
c = num2hex(Hq)
y = num2hex(q,x)

Description num2hex(Hq) with no left-hand-side argument displays the quantized
coefficients in quantized filter Hq as hexadecimal strings.

c = num2hex(Hq) with a left-hand-side argument c returns a cell array of
quantized coefficients as hexadecimal strings. Cell array c inherits the
configuration of cell array Hq.QuantizedCoefficients.

When the mode of Hq is 'float', 'double', or 'single', the coefficients are
converted to IEEE Standard 754 style hexadecimal strings.

If the mode of Hq is fixed, the coefficients are converted to two’s complement
hexadecimal strings.

y = num2hex(q,x) converts numeric array x into hexadecimal strings returned
in y. When x is a cell array, each numeric element of x is converted to
hexadecimal. If x is a structure, each numeric field of x is converted to
hexadecimal.

For fixed-point quantizers, the representation is two’s complement. For
floating-point quantizers, the representation is IEEE Standard 754 style.

For example, for q = quantizer('double')

num2hex(q,nan)

ans =

fff8000000000000

The leading fraction bit is 1, all other fraction bits are 0. Sign bit is 1, exponent
bits are all 1.

num2hex(q,inf)

ans =

7ff0000000000000

num2hex

13-286

Sign bit is 0, exponent bits are all 1, all fraction bits are 0.

num2hex(q,-inf)

ans =

fff0000000000000

Sign bit is 1, exponent bits are all 1, all fraction bits are 0.

num2hex and hex2num are inverses of each other, except that num2hex returns
the hexadecimal strings in a column.

Examples This is a floating-point example using a quantizer q that has 6-bit word length
and 3-bit exponent length.

x=magic(3)
x =
 8 1 6
 3 5 7
 4 9 2

q=quantizer('float',[6 3]);
y = num2hex(q,x)

y =

0
8
0
8
8
8
0
8
0

Algorithm Call the num2hex method of the coefficient’s quantizer. The numeric values are
quantized first by q; if you have coefficients that are exactly equal to 1, and 1
is not representable in the arithmetic format, no binary representation for 1

num2hex

13-287

will exist, and 1 is quantized according to q. Beware of this when
q.overflowmode = 'wrap', because 1 will be quantized to –1.

For example,

q = quantizer([4 3],'wrap');
num2hex(q, 1)

returns the hexadecimal 816 = –110.

Errors If one or more quantized coefficients has a real or imaginary part that is exactly
equal to 1, and 1 is outside the range for the quantizer, those coefficients are
saturated to 1 – ε (where ε is the epsilon of the coefficient quantizer) and the
operation returns a warning message.

See Also bin2num, hex2num, num2bin

num2int

13-288

13num2intPurpose Convert number to signed integer

Syntax y = num2int(q,x)
y = num2int(hq)
y = num2int(q,c)
[y1,y2,] = num2int(q,x1,x2,)

Description y = num2int(q,x) uses q.format to convert numeric x to an integer.

y = num2int(hq) uses q.coefficientformat to convert the coefficients of
quantized filter hq to integers. This function is equivalent to

y = num2int(hq.coefficientquantizer,hq.quantizedcoefficients)

y = num2int(q,{c}) uses q.format to convert the entries in cell array c to
integers, returned in cell array y.

[y1,y2,] = num2int(q,x1,x2,) uses q.format to convert numeric values
x1, x2, … to integers y1,y2,….

Examples All of the four-bit, two’s complement, fixed-point numbers in fractional form
are given by

x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750
0.625 0.125 -0.375 -0.875
0.500 0 -0.500 -1.000];

q=quantizer([4 3]);

y = num2int(q,x)

num2int

13-289

y =

 7 3 -1 -5
 6 2 -2 -6
 5 1 -3 -7
 4 0 -4 -8

For a quantized filter hq

[b,a] = butter(3,.9,'high')

b =

 0.0029 -0.0087 0.0087 -0.0029
a =

 1.0000 2.3741 1.9294 0.5321

hq = sos(qfilt('referencecoefficients',{b,a}))
hq.format = [4 3]
Warning: 1 overflow in coefficients.
hq =
Quantized Direct form II transposed filter
------- Section 1 -------
Numerator
 QuantizedCoefficients{1}{1} ReferenceCoefficients{1}{1}
 (1) 0.750 0.741915184087109990
 (2) -0.750 -0.741922736650797670
Denominator
 QuantizedCoefficients{1}{2} ReferenceCoefficients{1}{2}
+ (1) 0.875 0.999969482421875000
 (2) 0.750 0.726520355687005010
------- Section 2 -------
Numerator
 QuantizedCoefficients{2}{1} ReferenceCoefficients{2}{1}
 (1) 0.500 0.500000000000000000
 (2) -1.000 -0.999994910089555320
 (3) 0.500 0.499994910141368990
Denominator
 QuantizedCoefficients{2}{2} ReferenceCoefficients{2}{2}
 (1) 0.500 0.500000000000000000

num2int

13-290

 (2) 0.875 0.823776107851993070
 (3) 0.375 0.366169458636399440

 FilterStructure = df2t
 ScaleValues = [0.00390625 1 1]
 NumberOfSections = 2
 StatesPerSection = [1 2]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [4 3])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [4 3])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [4 3])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [4 3])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [4 3])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [4 3])
Warning: 1 overflow in coefficients.

num2int(hq)

hq.QuantizedCoefficients{1}{1} =

 6 -6

hq.QuantizedCoefficients{1}{2} =

 7 6

hq.QuantizedCoefficients{2}{1} =

 4 -8 4

hq.QuantizedCoefficients{2}{2} =

 4 7 3

Algorithm When q is a fixed-point quantizer and f is equal to fractionlength(q), and x is
numeric

y=x*2f.

When q is a floating-point quantizer, y = x. num2int is meaningful only for
fixed-point quantizers.

num2int

13-291

See Also bin2num, hex2num, num2bin, num2hex

numberofsections

13-292

13numberofsectionsPurpose Return the number of sections in a quantized filter

Syntax numberofsections(hq)

Description numberofsections(hq) returns the number of sections in a quantized filter.
The filter reference coefficients determine the number of sections.

Examples Create a double-precision filter using the Butterworth method. Convert the
filter to a quantized filter in second-order section form, then use the function
numberofsections to determine the number of sections that make up the filter.

[b,a] = butter(7,.5);
Hq = sos(qfilt('df2t',{b,a}));
numberofsections(Hq)

See Also get, qfilt, set, sos

nunderflows

13-293

13nunderflowsPurpose Return the number of underflows from the most recent quantizer operation

Syntax nunderflows(q)

Description nunderflows(q) is the number of underflows during a call to quantize(q,...)
for quantizer object q. An underflow is defined as a number that is nonzero
before it is quantized, and zero after it is quantized. The number of underflows
accumulates over successive calls to quantize. Use the function reset(q) to
return nunderflows to zero.

Examples q = quantizer('fixed','floor',[4 3]);
 x = (0:eps(q)/4:2*eps(q))';
 y = quantize(q,x);
 nunderflows(q)

ans =

 3

By looking at x and y, you can see which ones went to zero.

[x,y]

ans =

 0 0
 0.0313 0
 0.0625 0
 0.0938 0
 0.1250 0.1250
 0.1563 0.1250
 0.1875 0.1250
 0.2188 0.1250
 0.2500 0.2500

nunderflows

13-294

See Also denormalmin, eps, quantize, quantizer, reset

optimizeunitygains

13-295

13optimizeunitygainsPurpose Optimize unity gains for a quantized filter

Syntax optimizeunitygains(hq)

Description optimizeunitygains(hq) returns the value of the optimizeunitygains
property of quantized filter object hq. The value of the property can be one of
these two strings:

• on — optimize for coefficients whose real or imaginary part is exactly equal
to 1. Even if 1 cannot be represented by the number format specified by the
CoefficientFormat property, skip multiplications by a real or imaginary
part of a coefficient that is equal to 1.

• off — do not optimize for coefficients whose real or imaginary part is exactly
equal to 1. If 1 cannot be represented by the number format specified by the
CoefficientFormat property, then quantize real or imaginary parts of
coefficients that are equal to 1 to the next lower quantization level.

When optimizeunitygains is on, quantizer(hq,'coefficient') returns a
unitquantizer. If optimizeunitygains is off, quantizer(hq,'coefficient')
returns a quantizer.

Examplse Hq = qfilt;
optimizeunitygains(Hq)

returns the default 'off'.

See Also qfilt, qfilt/get, quantizer, unitquantizer

order

13-296

13orderPurpose Return the filter order of a quantized filter

Syntax n=order(hq)
n=order(hq,k)

Description n = order(hq) returns the order n of the quantized filter hq. When hq is a
single-section filter, n is the number of delays required for a minimum
realization of the filter.

When hq has more than one section, n is the number of delays required for a
minimum realization of the overall filter.

n=order(hq,k) returns the order n of the k-th section of quantized filter hq.

Examples Create a reference filter. Quantize the filter and convert to second-order section
form. Then use order to check the filter order of the second section and the
overall filter.

[b,a] = ellip(4,3,20,.6); % Create the reference filter.

% Quantize the filter and convert to second-order sections.
Hq = sos(qfilt('df2',{b,a},'roundmode','fix'))

n=order(Hq) % Check the order of the overall filter.
n = 4

n=order(Hq,2) % Check the order of the second section, k=2.
n = 2

qfft

13-297

13qfftPurpose Construct a quantized FFT

Syntax f = qfft
f = qfft('propertyname1',propertyvalue1, ...)
f = qfft(a)
f = qfft(pn,pv)
f = qfft('quantize ,[14 13])

Description f = qfft creates a quantized FFT with default property values.

f = qfft('propertyname1',propertyvalue1,...) uses property name/
property value pairs to set the properties of the quantized FFT.

f = qfft(a), where a is a structure whose field names are quantized FFT
property names, sets the properties named in each field name to the values
contained in the structure.

f = qfft(pn,pv) sets the quantized FFT properties specified in the cell array
of strings pn to the corresponding property values in cell array pv.

f = qfft('quantize ,[14 13]) sets all data format properties for the
quantized FFT to the same word length and fraction length.

Refer to “A Quick Guide to Quantized FFT Properties” on page 12-51 for a list
of quantized FFT properties.

Examples Create a quantized FFT f and apply it to a data set. Plot the result.

warning on
n=128;
t = (1:n)/n;
x = sin(2*pi*10*t)/10;
f = qfft('length',n);
plot(t,abs([fft(f,x);fft(x)]))

qfft

13-298

See Also fft, get, ifft, qreport, set

qfilt

13-299

13qfiltPurpose Construct a quantized filter

Syntax Hq = qfilt
Hq = qfilt('Structure',{Coef})
Hq = qfilt('prop1',value1,'prop2',value2,...)
Hq = qfilt('Structure',{Coef},'prop1',value1,'prop2',value2,...)
Hq = qfilt(quantizer ,[13, 14])

Description Hq = qfilt creates a quantized filter Hq with default property settings. The
default settings for Hq imply Hq is a fixed-point quantized filter with a
transposed direct form II filter structure. All of the filter properties, along with
their default values are listed in “Quantized Filter Properties Reference” on
page 12-11.

Hq = qfilt('Structure',{Coef}) creates a quantized filter Hq with all
properties set to default values, except that the filter structure is specified by
the string 'Structure', and the reference filter parameters (the
ReferenceCoefficients property values) are specified in the cell array
{Coef}. The syntax for entering reference coefficients is specified in “Specifying
the Filter Reference Coefficients” on page 8-7. 'Structure' can be one of the
strings for the FilterStructure property values listed in the following table.

Table 13-4: Filter Structure Properties

Property Value String Description

'df1' Direct form I

'df1t' Direct form I transposed

'df2' Direct form II

'df2t' Direct form II transposed

'fir' Finite impulse response (FIR)

'firt Finite impulse response transposed

'antisymmetricfir Direct form antisymmetric FIR, available odd or
even

qfilt

13-300

Hq = qfilt('prop1',value1,'prop2',value2,...) creates a quantized
filter Hq with all properties set to the default values, except for those you
specify with the input string arguments 'prop1', 'prop2',..., along with the
corresponding values in value1, value2,.... Filter properties you can set, with
their default values, are listed in “Quantized Filter Properties Reference” on
page 12-11. Any properties that you do not explicitly set when you create the
quantized filter are assigned default values.

You can also use the shortcut

Hq = qfilt('Structure',{Coef},'prop1',value1,'prop2',value2,...)

by first specifying the FilterStructure property value as 'Structure' and the
reference filter parameters (the ReferenceCoefficients property values) in
the cell array {Coef}.

Hq = qfilt('quantizer',[13 14] sets all the data format properties for
quantized filter Hq to the same word length and fraction length.

Examples Example 1: Quantized Filter with Two Second-Order Sections

From a reference filter, create a fixed-point quantized filter Hq that has two
second-order sections, setting the rounding mode to 'fix' and displaying the
results.

% Create the reference filter transfer function.

'symmetricfir' Direct form symmetric FIR, available odd or even

'latticear' Lattice autoregressive (AR)

'latticema' Lattice moving average (MA)

'latticearma' Lattice ARMA

'latticeca' Lattice coupled-allpass

'latticecapc' Lattice coupled-allpass power complementary

'statespace' Single-input, single-output state-space

Table 13-4: Filter Structure Properties (Continued)

Property Value String Description

qfilt

13-301

[b,a] = ellip(4,3,20,.6);

% Create a quantized filter with 2 second-order sections
% and display the results.
hq = sos(qfilt('df2',{b,a},'roundmode','fix'))

hq =
Quantized Direct form II transposed filter
------- Section 1 -------
Numerator
 QuantizedCoefficients{1}{1} ReferenceCoefficients{1}{1}
 (1) 0.551605224609375 0.551616219027048720

 (2) 0.776458740234375 0.776489000631472080
 (3) 0.551605224609375 0.551616219027047940
Denominator
 QuantizedCoefficients{1}{2} ReferenceCoefficients{1}{2}
 (1) 0.999969482421875 0.999969482421875000
 (2) -0.054809570312500 -0.054810658312267876
 (3) 0.473083496093750 0.473108096805785360
------- Section 2 -------
Numerator
 QuantizedCoefficients{2}{1} ReferenceCoefficients{2}{1}
 (1) 0.499969482421875 0.499984741210937500
 (2) 0.359802246093750 0.359832079066733920
 (3) 0.499969482421875 0.499984741210938170
Denominator
 QuantizedCoefficients{2}{2} ReferenceCoefficients{2}{2}
 (1) 0.999969482421875 0.999969482421875000
 (2) 0.588378906250000 0.588389482549356520
 (3) 0.957336425781250 0.957363508666007170

 FilterStructure = df2t
 ScaleValues = [0.5 2 1]
 NumberOfSections = 2
 StatesPerSection = [2 2]
 CoefficientFormat = quantizer('fixed', 'fix', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'fix', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'fix', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'fix', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'fix', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'fix', 'saturate', [32 30])

Example 2: Quantized Filter from Table of Filter Coefficients

qfilt

13-302

In this example, you create a sixth-order quantized filter from filter coefficients
in a reference table.

Enter the filter coefficients from a table of coefficients. The following
coefficients represent a 6-pole Chebyshev high pass filter, with 0.5% ripple in
the passband and cutoff at 0.25 in normalized frequency.

Numerator:

b=[.0143445 -0.08606701 .2151675 -.28689 -.2151675 0.08606701 0.0143445]

Denominator:

a=[1.0 1.076051 1.662847 1.191062 0.7403085 0.2752156 0.0572225]

Create a quantized filter using the reference coefficients b and a.

hq = qfilt('ref',{b,a})

hq =

Quantized Direct form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
 (1) 0.014343261718750 0.014344500000000000
 (2) -0.086059570312500 -0.086067009999999999
 (3) 0.215179443359375 0.215167500000000010
 (4) -0.286895751953125 -0.286889999999999980
 (5) 0.215179443359375 0.215167500000000010
 (6) -0.086059570312500 -0.086067009999999999
 (7) 0.014343261718750 0.014344500000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
+ (1) 0.999969482421875 1.000000000000000000
+ (2) 0.999969482421875 1.076051000000000100
+ (3) 0.999969482421875 1.662847000000000000
+ (4) 0.999969482421875 1.191062000000000100
 (5) 0.740295410156250 0.740308500000000040
 (6) 0.275207519531250 0.275215600000000000
 (7) 0.057220458984375 0.057222500000000003

 FilterStructure = df2t
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [6]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])

qfilt

13-303

MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
Warning: 4 overflows in coefficients.

Eliminate the overflows by normalizing the coefficients.

hq2 = normalize(hq)

You have a sixth-order, high pass filter with no overflowing coefficients.

Some things to think about when you use coefficients from a table.

• Take care to assign the numerator and denominator values correctly. In your
table, know which coefficients are for the numerator, which for the
denominator.

• Verify that the sign of the denominator coefficients is correct for MATLAB.

• Note whether all coefficients are provided. Some tables omit the first
coefficient for the denominator. If omitted, set the first denominator
coefficient equal to 1.0.

Example 3: Comparing Fixed-Point and Floating-Point Filters

To demonstrate the effect of filtering a signal with a quantized filter that has
a leading zero in the denominator coefficients, this example creates a default
quantized filter, then changes the reference coefficients to be numerator=1 and
denominator=0.

q=qfilt

q =
Quantized Direct form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
+ (1) 0.999969482421875 1.000000000000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
+ (1) 0.999969482421875 1.000000000000000000

 FilterStructure = df2t
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [0]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])

qfilt

13-304

MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
Warning: 2 overflows in coefficients.

q.ref={1 0};
Warning: 1 overflow in coefficients.

q is a fixed-point quantized filter with references coefficients of b=1 and a=0.
Now filter a signal with q and look at the results.

filter(q,rand(1,2))
Warning: 3 overflows in QFILT/FILTER.

 Max Min NOverflows NUnderflows NOperations
 Coefficient 1 0 1 0 2
 Input 0.9501 0.2311 0 0 2
 Output 1 1 0 0 2
Multiplicand 2 0.2311 2 0 8
 Product Inf 0.2311 2 0 8
 Sum 0.9501 0.2311 0 0 2

ans =

 1.0000 1.0000

In two’s complement fixed-point format, NaNs and Infs cannot be represented.
When the division by zero occurs during the filtering process, which happens
when the leading coefficient in the denominator is zero, the result saturates to
(1-215). The direct form filter structures, such as df1 and df2t, demonstrate
this behavior when they have leading zeros in the denominator.

When you change the filter mode to 'float' from 'fixed', the results return as
Inf, as you should expect.

q.mode='float';
filter(q,rand(1,2))

Warning: 6 overflows in QFILT/FILTER.

 Max Min NOverflows NUnderflows NOperations

 Coefficient 1 0 0 0 2

 Input 0.6068 0.486 0 0 2

 Output Inf 1.798e+308 2 0 2

Multiplicand Inf 0.25 2 0 8

 Product Inf 0.25 4 0 8

 Sum 0.5 0.25 0 0 2

qfilt

13-305

ans =

 Inf Inf

Changing the mode results in Inf because IEEE floating-point arithmetic
returns Inf as the result of a division by zero operation.

See Also get, set, setbits

qfilt2tf

13-306

13qfilt2tfPurpose Convert quantized filters to transfer function form

Syntax [Bq,Aq,Br,Ar] = qfilt2tf(Hq)
[Cq,Cr] = qfilt2tf(Hq,'sections')

Description [Bq,Aq,Br,Ar] = qfilt2tf(Hq) converts the quantized filter coefficients
from quantized filter Hq into transfer function form with numerator Bq and
denominator Aq, and the reference coefficients into transfer-function form with
numerator Br and denominator Ar. When quantized filter Hq has more than
one section, all the numerator polynomials are are convolved into the
numerator polynomial of a single transfer function. Similarly, the
denominator polynomials are convolved into a denominator polynomial of a
single transfer function.

[Cq,Cr] = qfilt2tf(Hq,'sections') returns one cell array per section,
where Cq is the transfer function form of the quantized coefficients and Cr is
the transfer function form of the reference coefficients.

Cq = {{Bq1,Aq1},{Bq2,Aq2},...}
Cr = {{Br1,Ar1},{Br2,Ar2},...}

Examples To demonstrate the conversion, use butter to a create a reference filter in
statespace form. Make a statespace quantized filter from the reference filter
and convert the quantized filter to transfer function form.

[A,B,C,D]=butter(3,.2);
Hq=qfilt('statespace',{A,B,C,D},'mode','double');
[bq,aq]=qfilt2tf(Hq)
bq =

 0.0181 0.0543 0.0543 0.0181

aq =

 1.0000 -1.7600 1.1829 -0.2781

See Also qfilt

qreport

13-307

13qreportPurpose Display the results of applying a quantizer, quantized FFT or quantized filter
to data

Syntax qreport(obj)
s = qreport (obj)

where obj is one of the following objects:

• Quantizer

• Quantized filter

• Quantized FFT

Description qreport(obj) displays the minimum (Min), maximum (Max), number of
overflows (NOver), and underflows (NUnder) of the most recent application of
obj to a data set, where obj is a quantized filter or a quantized FFT. Each
section of quantized filter Hq or stage of quantized FFT F is represented by one
line of information in the report.

Setting warning to ON displays this report when a quantized filter or quantized
FFT overflows.

s = qreport(obj) returns a MATLAB structure containing the information.

Also, qreport(s) displays the report for the structure s.

Examples Display the results of filtering a data set with a quantized filter Hq.

[b,a] = butter(6,.5);
Hq = sos(qfilt('ReferenceCoefficients',{b,a}));
Y = filter(Hq,rand(50,1));
qreport(Hq)

Max Min NOverflows NUnderflows NOperations
 Coefficient 1 -5.169e-016 0 1 6
 1 -1.11e-016 0 1 6
 1 -8.326e-017 0 1 6
 Input 0.9501 0.009861 0 0 50
 Output 0.9555 0.02808 0 0 50
Multiplicand 0.9501 0.0006161 0 0 400
 0.394 0.02808 0 0 350
 0.9556 0.02808 0 0 350
 Product 0.394 -0.001708 0 0 400
 0.6424 -0.05511 0 0 350
 0.9556 -0.5626 0 0 350

qreport

13-308

 Sum 0.09852 -0.0007188 0 0 250
 0.3212 -0.003827 0 0 250
 0.9555 -0.2523 0 0 250

Display the results of running qfft F on a set of random data.

F = qfft('length',64,'scale',1/64);
Y = fft(F,rand(64,1));
qreport(F)

Max Min NOverflows NUnderflows NOperations
 Coefficient 1 -1 6 5 126
 Input 0.9883 0.01176 0 0 64
 Output 0.5364 -0.06312 0 0 128
Multiplicand 0.9883 -0.03622 0 0 1536
 Product 0.2902 -0.02877 0 0 768
 Sum 0.5364 -0.06312 0 0 1920

See Also disp, get

quantize

13-309

13quantizePurpose Apply a quantizer to data

Syntax y = quantize(q, x)
[y1,y2,...] = quantize(q,x1,x2,...)

Description y = quantize(q, x) uses the quantizer q to quantize x. When x is a numeric
array, each element of x is quantized. When x is a cell array, each numeric
element of the cell array is quantized. When x is a structure, each numeric field
of x is quantized. Nonnumeric elements or fields of x are left unchanged and
quantize does not issue warnings for nonnumeric values.

[y1,y2,...] = quantize(q,x1,x2,...) is equivalent to
y1 = quantize(q,x1), y2 = quantize(q,x2),...

The quantizer states

 'max' - Maximum value before quantizing
 'min' - Minimum value before quantizing
 'noverflows' - Number of overflows
 'nunderflows' - Number of underflows
'noperations' - Number of quantization operations

are updated during the call to quantize, and running totals are kept until a call
to reset is made.

Examples The following examples demonstrate using quantize to quantize data.

Example 1 - Custom Precision Floating-Point

The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000);
q=quantizer([6 3],'float');
range(q)
 ans =
 -14 14
y=quantize(q,u);
plot(u,y);title(tostring(q))

quantize

13-310

Example 2 - Fixed-Point

The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000);
q=quantizer([6 2],'wrap');
range(q)
 ans =
 -8.0000 7.7500
y=quantize(q,u);
plot(u,y);title(tostring(q))

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
quantizer(’float’, ’floor’, [6 3])

quantize

13-311

See Also quantizer, set

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8
quantizer(’fixed’, ’floor’, ’wrap’, [6 2])

quantizer

13-312

13quantizerPurpose Construct a quantizer

Syntax q = quantizer
q = quantizer('PropertyName1',PropertyValue1, ...)
q = quantizer(PropertyValue1, PropertyValue2, ...)
q = quantizer(a)
q = quantizer(pn,pv)
[qcoefficient,qinput,qoutput,qmultiplicand,qproduct,...

qsum] = quantizer(F)
[q1, q2, ...] = quantizer(F, format1, format2, ...)

Description q = quantizer creates a quantizer with properties set to their default values.

q = quantizer('PropertyName1',PropertyValue1,...) uses property
name/ property value pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a quantizer
with the listed property values. When two values conflict, quantizer sets the
last property value in the list. Property values are unique; you can set the
property names by specifying just the property values in the command.

q = quantizer(a) where a is a structure whose field names are property
names, sets the properties named in each field name with the values contained
in the structure.

q = quantizer(pn,pv) sets the named properties specified in the cell array of
strings pn to the corresponding values in the cell array pv.

These are the quantizer property values, sorted by associated property name:

Property Name Property Value Description

Mode 'double' Double-precision mode. Override
all other parameters.

 'float' Custom-precision floating-point
mode.

 'fixed' Signed fixed-point mode.

quantizer

13-313

The default property values for a quantizer are

mode = 'fixed';
roundmode = 'floor';
overflowmode = 'saturate';
format = [16 15];

Along with the preceding properties, quantizers have read-only properties:
'max', 'min', 'noverflows', 'nunderflows', and 'noperations'. They can
be accessed through quantizer/get or q.max, q.min, q.noverflows,
q.nunderflows, and q.noperations, but they cannot be set. They are updated
during the quantizer/quantize method, and are reset by the
quantizer/reset method.

 'single' Single-precision mode. Override
all other parameters.

'ufixed' Unsigned fixed-point mode.

Roundmode 'ceil' Round towards negative infinity.

 'convergent' Convergent rounding.

 'fix' Round towards zero.

 'floor' Round towards positive infinity.

 'round' Round towards nearest.

Overflowmode
(fixed-point only)

 'saturate' Saturate at max value on
overflow.

 'wrap' Wrap on overflow.

Format [wordlength exponentlength] The format for fixed or ufixed
mode.

[wordlength exponentlength] The format for float mode.

Property Name
 (Continued)

Property Value Description

quantizer

13-314

The following table lists the read-only quantizer properties:

[qcoefficient,qinput,qoutput,qmultilplicand,qproduct,qsum] =
quantizer(F) returns property values associated with the quantized FFT F for
the twiddle factors, input, output, product, and sum quantizers.

[q1, q2,...] = quantizer(F, formatName1, formatName2,...) returns
quantizers q1, q2,..., associated with formatName1,formatName2,..., where
format k is a string that can be one of 'twiddle', 'input', 'output',
'multiplicand', 'product', or 'sum'.

Examples The following example operations are equivalent.

Setting quantizer properties by listing property values only in the command.

q = quantizer('fixed', 'ceil', 'saturate', [5 4])

Using a structure a to set quantizer properties.

a.mode = 'fixed';
a.roundmode = 'ceil';
a.overflowmode = 'saturate';
a.format = [5 4];
q = quantizer(a);

Using property name and property value cell arrays pn and pv to set quantizer
properties.

pn = {'mode', 'roundmode', 'overflowmode', 'format'};
pv = {'fixed', 'ceil', 'saturate', [5 4]};
q = quantizer(pn, pv)

Using property name/property value pairs to configure a quantizer.

Property Name Description

'max' Maximum value before quantizing

'min' Minimum value before quantizing

'noverflows' Number of overflows

'nunderflows' Number of underflows.

'noperations' Number of data points quantized

quantizer

13-315

q = quantizer('mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]);

See Also quantize, set

radix

13-316

13radixPurpose Return the radix of a quantized FFT

Syntax radix(f)

Description radix(f) returns the radix of quantized FFT f.

Examples After you create a default quantized FFT, the radix function returns 2 as the
value of the radix, as shown in this example.

F = qfft;
radix(F)

returns the default 2.

See Also qfft, qfft/get, qfft/set

randquant

13-317

13randquantPurpose Generate a uniformly distributed, quantized random number

Syntax randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

 Description randquant(q,n) uses quantizer q to generate An n by n matrix with random
entries whose values cover the range of q when q is a fixed-point quantizer.
When q is a floating-point quantizer, randquant populates the n by n array
with values covering the range -[square root of realmax(q)] to [square root of
realmax(q)].

randquant(q,m,n) uses quantizer q to generate an m by n matrix with random
entries whose values cover the range of q when q is a fixed-point quantizer.
When q is a floating-point quantizer, randquant populates the m by n array
with values covering the range -[square root of realmax(q)] to [square root of
realmax(q)].

randquant(q,m,n,p,...) uses quantizer q to generate an m by n by p by …
matrix with random entries whose values cover the range of q when q is
fixed-point quantizer. When q is a floating-point quantizer, randquant
populates the matrix with values covering the range -[square root of
realmax(q)] to [square root of realmax(q)].

randquant(q,[m,n]) uses quantizer q to generate an m by n matrix with
random entries whose values cover the range of q when q is a fixed-point
quantizer. When q is a floating-point quantizer, randquant populates the
m by n array with values covering the range -[square root of realmax(q)] to
[square root of realmax(q)].

randquant(q,[m,n,p,...]) uses quantizer q to generate p m by n matrices
containing random entries whose values cover the range of q when q is a
fixed-point quantizer. When q is a floating-point quantizer, randquant
populates the m by n arrays with values covering the range -[square root of
realmax(q)] to [square root of realmax(q)].

randquant

13-318

randquant produces pseudorandom numbers. The number sequence
randquant generates during each call is determined by the state of the
generator. Since MATLAB resets the random number generator state at
start-up, the sequence of random numbers generated by the function remains
the same unless you change the state.

randquant works like rand in most respects, including the generator used, but
it does not support the 'state' and 'seed' options available in rand.

Examples q=quantizer([4 3]);
rand('state',0)
randquant(q,3)

ans =
 0.7500 -0.1250 -0.2500
 -0.6250 0.6250 -1.0000
 0.1250 0.3750 0.5000

See Also quantizer, quantizer/range, quantizer/realmax, rand

range

13-319

13rangePurpose Return the numerical range of quantizers in a quantized FFT, or the range of
a quantizer

Syntax range(F)
rtwiddle = range(F)
[rtwiddle, rinput, routput, rproduct, rsum] = range(F)
[r1, r2, ...] = range(F, formattype1, formattype2, ...)
r = range(q)
[a, b] = range(q)

Description range(F) displays the numerical range of all the quantizers in quantized
FFT F.

rtwiddle = range(F) returns the numerical range of the twiddle factor
quantizer (although twiddle factors always have magnitudes less than 1).

[rtwiddle, rinput, routput, rproduct, rsum] = range(F) returns the
range of each of the quantizers.

[r1, r2,...] = range(F, formattype1, formattype2,...) returns the
range of the quantizers specified by strings formattype i, which may take on
the values 'twiddle', 'input', 'output', 'product', 'sum'.

r = range(q) returns the two-element row vector r = [a b] such that for all
real x, y = quantize(q,x) returns y in the range a ≤ y ≤ b.

[a, b] = range(q) returns the minimum and maximum values of the range
in separate output variables.

Examples q = quantizer('float',[6 3]);
r = range(q)

returns r = [14, 14].

q = quantizer('fixed',[4 2],'floor');
[a,b] = range(q)

returns a = 2, b = 1.75 = 2 eps(q).

Algorithm If q is a floating-point quantizer, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer (mode = 'fixed'),

range

13-320

If q is an unsigned fixed-point quantizer (mode = 'ufixed'),

a = 0

See realmax for more information.

Errors If you use more than two output arguments, MATLAB returns the error
message Too many output arguments and aborts the function.

See Also realmax, realmin, exponentmin, fractionlength

a maxreal–= q() eps– q() 2–
w 1–

2f
------------------=

b maxreal= q() 2w 1– 1–

2f
------------------------=

b maxreal= q() 2w 1–

2f
--------------=

realizemdl

13-321

13realizemdlPurpose Directly realize a Simulink subsystem block for a direct-form quantized filter

Syntax realizemdl(hq)
realizemdl(hq, propertyname1, propertyvalue1,...)

Description realizemdl(hq) generates a model of filter hq in a Simulink subsystem block
using sum, gain, and delay blocks from the Fixed-Point Blockset. The
properties and values of hq define the resulting subsystem block parameters.

realizemdl requires either the DSP Blockset or the Fixed-Point Blockset. To
accurately realize models of quantized filters, use the Fixed-Point Blockset.

realizemdl(hq,propertyname1,propertyvalue1,...) generates the model
or hq with the associated propertyname/propertyvalue pairs, and any other
values you set in hq.

Using the optional propertyname/propertyvalue pairs lets you control more
fully the way the block subsystem model gets built, such as where the block
goes, what the name is, or how to optimize the block structure. Valid properties
and values for realizemdl are listed in this table, with the default value noted
and descriptions of what the properties do.

Property Name Property Values Description

BlockType 'fixed-point
blocks' (default) or
'floating-point
blocks'

Specifies the type of blocks to use to realize
the model. fixed-point blocks is the
default. Models that use floating-point
blocks may not match the quantized filter
hq exactly.

Destination 'current' (default)
or 'new'

Specify whether to add the block to your
current Simulink model or create a new
model to contain the block.

Blockname 'filter' (default) Provides the name for the new subsystem
block. By default the block is named
'filter'. To enter a name for the block, use
the propertyvalue set to a string
'blockname'.

realizemdl

13-322

Examples To demonstrate how realizemdl works to create models, these two examples
show the default and optional syntaxes in use. Both examples begin from
a quantized filter designed by butter in the Signal Processing Toolbox.

[b,a] = butter(4,.5);
hq = qfilt('df1',{b,a});

Example 1—Using the default syntax to realize a model of your quantized filter
hq. When you use this syntax, realizemdl uses blocks from the Fixed-Point
Blockset to realize the subsystem in your current Simulink model.

realizemdl(hq);

Look at the figure to see the model as realized by realizemdl.

OverwriteBlock 'off' or 'on' Specify whether to overwrite an existing
block with the same name or create a new
block.

OptimizeZeros 'off' (default) or
'on'

Specify whether to remove zero-gain blocks.

OptimizeOnes 'off' (default) or
'on'

Specify whether to replace unity-gain blocks
with direct connections.

OptimizeNegOnes 'off' (default) or
'on'

Specify whether to replace negative
unity-gain blocks with a sign change at the
nearest sum block.

OptimizeDelayChains 'off' (default) or
'on'

Specify whether to replace cascaded chains
of delay blocks with a single integer delay
block to provide an equivalent delay.

Property Name Property Values Description

realizemdl

13-323

Example 2—Using propertyname/propertyvalue pairs to specify the features of
the subsystem block model created by realizemdl.

realizemdl(hq, 'blocktype', 'fixed-point blocks',...
'optimizezeros', 'on','blockname','newfiltermodel');

1

Output

−K−

b(5)

−K−

b(4)

−K−

b(3)

−K−

b(2)

−K−

b(1)

−K−

a(5)

0

a(4)

−K−

a(3)

0

a(2)

OutIn

z
−1

z
−1

Convert

ConvertConvert Convert

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

−K−

1|a(1)

1

Input

realizemdl

13-324

Since this example uses the optional property name optimizezeros, set to 'on',
the resulting block subsystem is slightly different—the zero-gain blocks for
coefficients a(2) and a(4) are not included in the subsystem.

See Also realizemdl under the methods for dfilt in the Signal Processing Toolbox

1

Output

−K−

b(5)

−K−

b(4)

−K−

b(3)

−K−

b(2)

−K−

b(1)

−K−

a(5)

−K−

a(3)

OutIn

z
−1

z
−1

Convert

ConvertConvert Convert

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

−K−

1|a(1)

1

Input

realmax

13-325

13realmaxPurpose Return the largest positive quantized number

Syntax x = realmax(q)

Description x = realmax(q) is the largest quantized number representable where q is a
quantizer. Anything larger overflows.

Examples q = quantizer('float',[6 3]);
x = realmax(q)

returns x = 14.

Algorithm If q is a floating-point quantizer, the largest positive number, x, is

If q is a signed fixed-point quantizer, the largest positive number, x, is

If q is an unsigned fixed-point quantizer (mode = 'ufixed'), the largest
positive number, x, is

See Also quantizer, realmin, exponentmin, fractionlength

x 2
Emax= 2 eps q()–()⋅

x 2w 1– 1–

2f
---------------------=

x 2w 1–

2f
----------------=

realmin

13-326

13realminPurpose Return the smallest positive normal quantized number

Syntax x = realmin(q)

Description x = realmin(q) is the smallest positive normal quantized number where q is
a quantizer. Anything smaller than x underflows or is an IEEE “denormal”
number.

Examples q = quantizer('float',[6 3]);
realmin(q)

returns the value 0.25.

Algorithm If q is a floating-point quantizer, where is
the minimum exponent.

If q is a signed or unsigned fixed-point quantizer, where f is the
fraction length.

See Also exponentmin, fractionlength

x 2
Emin= Emin exponentmin= q()

x 2 f– ε= =

reset

13-327

13resetPurpose Reset one or more quantizers, quantized filters, or quantized FFTs to their
initial conditions

Syntax reset(q)
reset(q1, q2, ...)
reset(hq)
reset(hq1,hq2,...)
reset(f)
reset(f1,f2,...)

Description reset(q) resets quantizer q to its initial conditions. Works for quantized filters
and quantized FFTs as well by replacing the quantizer with a quantized filter
or quantized FFT in the command syntax.

reset(q1, q2,...) resets the states of the quantizers q1, q2,.... to the states
they were in when you created them — their initial conditions.

The states of a quantizer are

'max' - Maximum value before quantizing.
'min' - Minimum value before quantizing.
'noverflows' - Number of overflows.
'nunderflows' - Number of underflows.
'noperations' - Number of quantization operations performed.

reset(hq1,hq2,...) resets the states of quantized filters hq1, hq2,... to the
states you set when you created them — their initial conditions.

The states of a quantized filter are

'FilterStructure' - Structure of the filter
 'ScaleValues' - Scale values between filter sections
 'NumberOfSections' - Number of filter sections
 'StatesPerSection' - Number of states in each filter section
 'CoefficientFormat' - quantizer
 'InputFormat' - quantizer
 'OutputFormat' - quantizer
'MultiplicandFormat - quantizer
 'ProductFormat' - quantizer

'SumFormat' - quantizer

reset

13-328

reset(f1,f2,...) resets the states of quantized FFTs f1, f2,... to the states
you set when you created them — their initial conditions.

The states of a quantized FFT are

'Radix' - Either 2 or 4
 'Length' - Scalar integer, length of the FFT
 'CoefficientFormat' - quantizer
 'InputFormat' - quantizer
 'OutputFormat' - quantizer
'MultiplicandFormat' - quantizer
 'ProductFormat' - quantizer
 'SumFormat' - quantizer
 'NumberOfSections' - 4
 'ScaleValues' - Vector of the scale values between FFT

sections

Examples q1 = quantizer('fixed','ceil','saturate',[4 3])
q2 = quantizer('double')
y1 = quantize(q1, -1.2:.1:1.2)
y2 = quantize(q2, -1.2:.1:1.2)
q1, q2
reset(q1, q2)
q1, q2

See Also quantizer, set

scalevalues

13-329

13scalevaluesPurpose Return the scalevalues property of a quantized filter

Syntax s = scalevalues(hq)

Description s = scalevalues(hq) returns the scale values of the quantized filter hq. The
scale values for the filter scale the input to each filter section. The value of the
scalevalues property must be a scalar, or a vector of length
numberofsections(hq). For efficient computation, set the scale values to be
powers of 2.

If s is a scalar, the input to the first section of the quantized filter is scaled by s.
When s is a vector, the input to the k-th section of the filter is scaled by s(k),
the k-th element of vector s.

Examples Hq = qfilt;
scalevalues(Hq)
ans =

 1

See Also qfilt, get, set

set

13-330

13setPurpose Set or display property values for quantized filters, quantizers, and quantized
FFTs

Syntax set(Hq)
set(Hq,'prop',value)
set(Hq,'prop1',value1, 'prop2',value2,...)
s = set(Hq)
set(Hq,struct)
set(Hq,{'prop1','prop2',...},{value1,value2,...})
set(q, PropertyValue1, PropertyValue2, ...)
set(q,a)
set(q,pn,pv)
set(q, PropertyName1 ,PropertyValue1, PropertyName2 ,

PropertyValue2,...)
q.PropertyName = Value
set(q)
s = set(q)
set(F,'PropertyName',PropertyValue)
set(F,'PropertyName1',PropertyValue1,'PropertyName2',

PropertyValue2,...)
set(F,a)
set(F,pn,pv)
F.PropertyName = Value
set(F)
s = set(F)

Description set(Hq) displays all of the property names and their possible values for a given
quantized filter Hq. The display indicates the default values for properties in
braces. When the default values for a property cannot be represented by a finite
list, set(Hq) does not display the property’s default values.

set(Hq,'prop',value) sets the values for the property 'prop' of a quantized
filter Hq. You specify the property name by the string 'prop', and the
associated value in value. 'prop' can be any of the properties listed in
Table 12-3, Quick Guide to Quantized Filter Properties, on page 12-10. value
can be a string, a numerical value, or a cell array containing numerical values.
The possible values for each property are described in detail in “Quantized
Filter Properties Reference” on page 12-11.

set

13-331

set(Hq,'prop1',value1,'prop2',value2,...) lets you set multiple
properties in one command.

s = set(Hq) returns all property names and their possible values for a
quantized filter Hq. s is a MATLAB structure whose field names are the
property names of Hq and whose values are cell arrays of possible property
values, except when the possible values for the property cannot be described
with a finite list. In this case the values are empty cell arrays.

set(Hq,struct) sets the properties of the quantized filter Hq according to the
values associated with the field names of the MATLAB structure struct. All
field names for the structure s must be valid quantized filter properties. See
Table 12-3, Quick Guide to Quantized Filter Properties, on page 12-10 for a list
of all property names.

set(Hq,{'prop1','prop2',...},{value1,value2,...}) sets the listed
properties specified in the cell array of a vector of strings
{'prop1','prop2',...} to the corresponding values listed in the cell array
{value1,value2,...} for quantized filter object Hq. The two cell array input
arguments must be the same size, and the values must be valid for the
corresponding properties.

set(q, PropertyValue1, PropertyValue2,...) sets the properties of
quantizer q. If two property values conflict, the last value in the list is the one
that is set.

set(q,a) where a is a structure whose field names are object property names,
sets the properties named in each field name with the values contained in the
structure.

set(q,pn,pv) sets the named properties specified in the cell array of strings
pn to the corresponding values in the cell array pv.

set(q, PropertyName1 ,PropertyValue1, PropertyName2 ,
PropertyValue2,...) sets multiple property values with a single statement.
Note that you can use property name/property value string pairs, structures,
and property name/property value cell array pairs in the same call to set.

q.PropertyName = Value uses the dot notation to set property PropertyName
to Value.

set(q) displays the possible values for all properties of quantizer q.

set

13-332

s = set(q) returns a structure containing the possible values for the
properties of quantizer q.

The states are cleared when you set any value other than WarnIfOverflow.

For a quantizer, these are the possible property values, sorted by property
name.

Property Name Property Value Description

Mode 'double' Double-precision mode. Override
all other parameters.

 'float' Custom-precision floating-point
mode.

 'fixed' Signed fixed-point mode.

 'single' Single-precision mode. Override
all other parameters.

'ufixed' Unsigned fixed-point mode.

Roundmode 'ceil' Round towards negative infinity.

 'convergent' Convergent rounding.

 'fix' Round towards zero.

 'floor' Round towards positive infinity.

 'round' Round towards nearest.

Overflowmode
(fixed-point only)

 'saturate' Saturate at max value on
overflow.

 'wrap' Wrap on overflow.

Format [wordlength exponentlength] The format for fixed or ufixed
mode.

[wordlength exponentlength] The format for float mode.

set

13-333

set(F,'PropertyName',PropertyValue) sets the value of the specified
property for the quantized FFT F.

set(F,'PropertyName1',PropertyValue1,'PropertyName2',PropertyValue
2,...) sets multiple property values with a single statement. Note that you
can use property name/property value string pairs, structures, and property
name/property value cell array pairs in the same call to set.

set(F,a) where a is a structure whose field names are object property names,
sets the properties named in each field name with the values contained in the
structure.

set(F,pn,pv) sets the named properties specified in the cell array of strings
pn to the corresponding values in the cell array pv for all objects specified in H.

F.PropertyName = Value uses the dot notation to set property PropertyName
to Value.

set(F) displays the possible values.

s = set(F) returns a structure with the possible values.

Remarks • Property names are not case sensitive.

• You can abbreviate property names to the shortest uniquely identifying
string.

• You can use direct property referencing to set properties with a
structure-like syntax. The following two statements are equivalent:
- set(Hq,'roundm','convergent');
- Hq.round = 'convergent';

Max Maximum value before quantize.

Min Minimum value before quantize.

NOverflows Number of overflows.

NUnderflows Number of underflows.

Property Name
 (Continued)

Property Value Description

set

13-334

Examples Create a quantized filter and change the values for the
ReferenceCoefficients and InputFormat properties.

Hq = qfilt;
set(Hq,'ref',{[1 .5] [1 .7 .89]},'inp',[16,14])
Hq

Hq =
Quantized direct-form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
+ (1) 0.999969482421875 1.000000000000000000
 (2) 0.500000000000000 0.500000000000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
+ (1) 0.999969482421875 1.000000000000000000
 (2) 0.700012207031250 0.699999999999999960
 (3) 0.890014648437500 0.890000000000000010

 FilterStructure = df2t
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [2]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 14])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
Warning: 2 overflows in coefficients.

You can create a structure to assign the same data format property values to a
set of filters.

s.InputFor = [16,14];
s.Coefficient = [16,14];
s.SumF = [17,15];
s.Prod = [16,15];
s.output = [24,23];

Now assign those property values to the filter in the previous example.

set(Hq,s)
Hq

Hq =

set

13-335

Quantized Direct-form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
 (1) 1.00000000000000 1.000000000000000000
 (2) 0.50000000000000 0.500000000000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
 (1) 1.00000000000000 1.000000000000000000
 (2) 0.70001220703125 0.699999999999999960
 (3) 0.89001464843750 0.890000000000000010

 FilterStructure = df2t
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [2]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 14])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 14])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [24 23])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [17 15])

Notice that you do not have to provide complete property names when you
create the structure fields.

The next example uses property name/property value pairs to set quantizer
properties.

q = quantizer;
set(q, 'mode','fixed', ...
 'roundmode','ceil', ...
 'overflowmode','wrap', ...
 'format',[24 22]);

O you might use dot notation to enter the new property values:

q = quantizer;
q.mode = 'fixed';
q.roundmode = 'ceil';
q.overflowmode = 'wrap';
q.format = [24 22];

With no output arguments and one input argument, set displays the defaults
for the quantizer, quantized filter, or quantized FFT.

q = quantizer;
set(q)

set

13-336

 Mode: [double | float | {fixed} | single | ufixed]
 RoundMode: [ceil | convergent | fix | {floor} | round]
 OverflowMode: [{saturate} | wrap]

 Format: [wordlength fractionlength] - In 'fixed', 'ufixed' mode.
 [wordlength exponentlength] - In 'float' mode.
 [16 15] = default.
 Max: Maximum value before quantize.
 Min: Minimum value before quantize.
 NOverflows: Number of overflows.
 NUnderflows: Number of underflows.

With one output argument and one input argument, set returns a structure.

q = quantizer;
s = set(q)

returns

s =
 Mode: {'double' 'float' 'fixed' 'single' 'ufixed'}
 RoundMode: {'ceil' 'convergent' 'fix' 'floor' 'round'}
 OverflowMode: {'saturate' 'wrap'}
 Format: {}
 Max: {}
 Min: {}
 Overflows: {}
 NUnderflows: {}

See Also get, qfilt, setbits, sos2cell, sos

setbits

13-337

13setbitsPurpose Set all data format property values for quantized filters and quantized FFTs

Syntax setbits(Hq,format)
setbits(F,fmt)

Description When Hq is a floating-point quantized filter, setbits(Hq,format) sets all data
format properties for the quantized filter Hq to the values specified by format.
In this case, format is a two-element vector of integers whose entries are
described as follows:

• The first entry in format sets the word length in bits.

• The second entry in format sets the exponent length in bits.

When Hq is a fixed-point quantized filter, setbits(Hq,format) sets the
properties CoefficientFormat, InputFormat, and OutputFormat to the value
specified by format, whereas the property values SumFormat and
ProductFormat are specified by 2*format. In this case, format is a two-element
vector of integers whose entries are described as follows:

• The first entry in format sets the word length in bits.

• The second entry in format sets the fraction length (the number of bits after
the radix point).

Note When 2*format exceeds the maximum values for the SumFormat and
ProductFormat properties, their maximum values are used instead.

setbits(F,fmt) sets all data format property values for quantized FFT F.

When F is a fixed-point quantized FFT, fmt = [w, f] where w is the word
length and f is the fraction length. The twiddle, input, and output formats are
set to [w, f]. The sum and product formats are set to [2w, 2f].

When F is a floating-point quantized FFT, fmt = [w, e] where w is the word
length and e is the exponent length. All formats are set to [w, e].

If the specified formats exceed the maximum allowed, they are set to the
maximum.

setbits

13-338

Examples Create a quantized filter with default data format property values. Set the
CoefficientFormat, InputFormat, and OutputFormat property values for a
24-bit word length, and a 23-bit fraction length, while setting the SumFormat
and ProductFormat property values to a 48-bit word length and a 46-bit
fraction length.

Hq = qfilt;
setbits(Hq,[24 23])

get(Hq)

Quantized Direct form II transposed filter
Numerator
 QuantizedCoefficients{1} ReferenceCoefficients{1}
+ (1) 0.9999998807907105 1.000000000000000000
 (2) 0.5000000000000000 0.500000000000000000
Denominator
 QuantizedCoefficients{2} ReferenceCoefficients{2}
+ (1) 0.9999998807907105 1.000000000000000000
 (2) 0.7000000476837158 0.699999999999999960
 (3) 0.8899999856948853 0.890000000000000010

 FilterStructure = df2t
 ScaleValues = [1]
 NumberOfSections = 1
 StatesPerSection = [2]
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [24 23])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [24 23])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [24 23])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [24 23])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [48 46])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [48 46])

See Also get, qfilt, set

sos

13-339

13sosPurpose Convert a quantized filter to second-order section form, order, and scale.

Syntax Hq2 = sos(Hq)
Hq2 = sos(Hq, order)
Hq2 = sos(Hq, order, scale)

Description Hq2 = sos(Hq) returns a quantized filter Hq2 that has second-order sections
and the dft2 structure. Use the same optional arguments used in tf2sos.

Hq2 = sos(Hq, order) specifies the order of the sections in Hq2, where order
is either of the following strings:

• 'down' — to order the sections so the first section of Hq2 contains the poles
closest to the unit circle (L∞ norm scaling)

• 'up' — to order the sections so the first section of Hq2 contains the poles
farthest from the unit circle (L2 norm scaling and the default)

Hq2 = sos(Hq, order, scale) also specifies the desired scaling of the gain
and numerator coefficients of all second-order sections, where scale is one of
the following strings:

• 'none' — to apply no scaling (default)

• 'inf' — to apply infinity-norm scaling

• 'two' — to apply 2-norm scaling

Use infinity-norm scaling in conjunction with up-ordering to minimize the
probability of overflow in the filter realization. Consider using 2-norm scaling
in conjunction with down-ordering to minimize the peak round-off noise.

When Hq is a fixed-point filter, the filter coefficients are normalized so that the
magnitude of the maximum coefficient in each section is 1. The gain of the filter
is applied to the first scale value of Hq2.

sos uses the direct form II transposed (dft2) structure to implement second-
order section filters.

Examples [A,B,C,D]=butter(8,.5);
Hq = qfilt('StateSpace',{A,B,C,D},'mode','single');
Hq1 = sos(Hq)

sos

13-340

See Also qfilt, qfilt2tf

tf2sos in your Signal Processing Toolbox documentation

tf2ca

13-341

13tf2caPurpose Transfer function to coupled allpass conversion

Syntax [d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a)
[d1,d2,beta] = tf2ca(b,a)

Description [d1,d2] = tf2ca(b,a) where b is a real, symmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, returns real vectors d1 and d2 containing the
denominator coefficients of the allpass filters H1(z) and H2(z) such that

representing a coupled allpass decomposition.

[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, returns real vectors d1 and d2 containing the
denominator coefficients of the allpass filters H1(z) and H2(z) such that

In some cases, the decomposition is not possible with real H1(z) and H2(z). In
those cases a generalized coupled allpass decomposition may be possible,
whose syntax is

[d1,d2,beta] = tf2ca(b,a)

to return complex vectors d1 and d2 containing the denominator coefficients of
the allpass filters H1(z) and H2(z), and a complex scalar beta, satisfying
|beta| = 1, such that

representing the generalized allpass decomposition.

H z() B z()
A z()
------------ 1

2 H1 z() H2 z()+[]
--= =

H z() B z()
A z()

1
2
--- 
  H1 z() H2 z()–[]= =

H z() B z()
A z()

1
2
--- 
  β H1 z()• β H2 z()•+[]= =

tf2ca

13-342

In the above equations, H1(z) and H2(z) are real or complex allpass IIR filters
given by

where D1(z) and D2(z) are polynomials whose coefficients are given by d1 and
d2.

Note A coupled allpass decomposition is not always possible. Nevertheless,
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be
factored in this manner. For details, refer to Signal Processing Toolbox User's
Guide.

Examples [b,a]=cheby1(9,.5,.4);
[d1,d2]=tf2ca(b,a); % TF2CA returns denominators of the allpass.
num = 0.5*conv(fliplr(d1),d2)+0.5*conv(fliplr(d2),d1);
den = conv(d1,d2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2latc

H1 z() fliplr D1 z()()()
D1 z()

--= H2 1() z() fliplr D2 1() z()()()
D2 1() z()

--=,

tf2cl

13-343

13tf2clPurpose Transfer function to coupled allpass lattice conversion

Syntax [k1,k2] = tf2cl(b,a)

[k1,k2] = tf2cl(b,a)

Description [k1,k2] = tf2cl(b,a) where b is a real, symmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, will perform the coupled allpass decomposition

of a stable IIR filter H(z) and convert the allpass transfer functions H1(z) and
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1
and k2.

[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, performs the coupled allpass decomposition

of a stable IIR filter H(z) and converts the allpass transfer functions H1(z) and
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1
and k2.

In some cases, the decomposition is not possible with real H1(z) and H2(z). In
those cases, a generalized coupled allpass decomposition may be possible, using
the command syntax

 [k1,k2,beta] = tf2cl(b,a)

to perform the generalized allpass decomposition of a stable IIR filter H(z) and
convert the complex allpass transfer functions H1(z) and H2(z) to
corresponding lattice allpass filters

where beta is a complex scalar of magnitude equal to 1.

H z() B z()
A z()
------------ 1

2 H1 z() H2 z()+[]
--= =

H z() B z()
A z()

1
2
--- 
  H1 z() H2 z()–[]= =

H z() B z()
A z()

1
2
--- 
  β H1 z()• β H2 z()•+[]= =

tf2cl

13-344

Note Coupled allpass decomposition is not always possible. Nevertheless,
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be
factored in this manner. For details, refer to Signal Processing Toolbox User's
Guide.

Examples [b,a]=cheby1(9,.5,.4);
[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.
[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice
[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.
num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);
den = conv(den1,den2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2ca, tf2latc

tostring

13-345

13tostringPurpose Convert a quantizer, unitquantizer, or quantized FFT to a string

Syntax s = tostring(q)
s = tostring(q)
s = tostring(f)

Description s = tostring(q) converts quantizer q to a string s. After converting q to a
string, the function eval(s) can use s to create a quantizer with the same
properties as q.

s = tostring(q) converts unitquantizer q to a string s. After converting q to
a string, the function eval(s) can use s to create a quantizer with the same
properties as q.

s = tostring(q) converts quantized FFT f to a string s. After converting f to
a string, the function eval(s) can use f to create a quantized FFT with the
same properties as f.

Examples When you use tostring with a quantizer or unitquantizer, you see the
following response.

q = quantizer
q =
Mode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0
 NOperations = 0

s = tostring(q)
s =
quantizer('fixed', 'floor', 'saturate', [16 15])

eval(s)

tostring

13-346

ans =

 Mode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

 Max = reset
 Min = reset
 NOverflows = 0
 NUnderflows = 0
 NOperations = 0

and s is the same as q.

For a quantized FFT, the result is the same.

f = qfft
f =

Radix = 2
 Length = 16
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 NumberOfSections = 4
 ScaleValues = [1]
s=tostring(f)

eval(s)

ans =

 Radix = 2
 Length = 16
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])
 InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
 ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
 SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])

tostring

13-347

 NumberOfSections = 4
 ScaleValues = [1]

See Also quantizer, qfft, unitquantizer

twiddles

13-348

13twiddlesPurpose Return the quantized twiddle factors for quantized FFTs

Syntax w = twiddles(F)

Description w = twiddles(F) returns a vector of the quantized FFT coefficients specified
by quantized FFT F. FFT coefficients are also called twiddle factors.

Examples f = qfft;
w = twiddles(f)
Warning: 4 overflows.
w =

 1.0000
 1.0000
 0 - 1.0000i
 1.0000
 0.7071 - 0.7071i
 0 - 1.0000i
 -0.7071 - 0.7071i
 1.0000
 0.9239 - 0.3827i
 0.7071 - 0.7071i
 0.3827 - 0.9239i
 0 - 1.0000i
 -0.3827 - 0.9239i
 -0.7071 - 0.7071i
 -0.9239 - 0.3827i

See Also qfft

unitquantize

13-349

13unitquantizePurpose Quantize all numbers in a data set except numbers within eps of 1

Syntax unitquantize(q,...)

Description unitquantize(q,...) works the same as quantize except that numbers
within eps(q) of 1 are made exactly equal to 1 (see quantize for a description
of the parameters).

This function is especially useful for quantizing fixed-point coefficients.

Examples [b,a] = ellip(4,3,20,.6);
m = tf2sos(b,a)
m =

 0.2758 0.3883 0.2758 1.0000 -0.0548 0.4731
 1.0000 0.7197 1.0000 1.0000 0.5884 0.9574

m==1

ans =

 0 0 0 1 0 0
 1 0 0 1 0 0

q=quantizer;
m > realmax(q)

ans =

 0 0 0 1 0 0
 1 0 1 1 0 0

It appears that there are four elements that are exactly equal to 1. In fact, there
are only three. Element m(2,3) is greater than realmax(q), but less than 1.
Ordinarily, m(2,3) would be counted as an overflow and be set to realmax(q).
However, the desired behavior would be to force m(2,3) to be equal to 1 without
recording an overflow. This is what unitquantize does, as shown in the
following example.

unitquantize

13-350

m = unitquantize(q,m)
m =

 0.2758 0.3882 0.2758 1.0000 -0.0548 0.4731
 1.0000 0.7197 1.0000 1.0000 0.5884 0.9574
m==1

ans =

0 0 0 1 0 0
1 0 1 1 0 0

By forcing values between eps and 1 to be equal to 1, signal processing
algorithms can avoid multiplication operations that involve these numbers,
saving processing steps and time.

See Also qfft, quantize

unitquantizer

13-351

13unitquantizerPurpose Construct a unit quantizer

For help on this function, enter help unitquantizer at the MATLAB prompt.

Syntax q = unitquantizer(...)

q = unitquantizer(...) constructs a unitquantizer, which is identical to a
quantizer in all respects except that its quantize method quantizes numbers
within eps(q) of 1 to be equal to 1. Refer to quantizer for arguments and
parameters for the unitquantizer function.

Examples u = unitquantizer([4 3]);
quantize(u,1)
ans =

 1

q = quantizer([4 3]);
quantize(q,1)
Warning: 1 overflow.

ans =

 0.8750

See Also quantizer, unitquantize

wordlength

13-352

13wordlengthPurpose Return the word length for a quantizer

Syntax wordlength(q)

Description wordlength(q) returns the word length of quantizer q.

Examples q = quantizer([16 15]);
wordlength(q)

returns 16.

Even though the word length can be read in two stages,

q = quantizer([16 15]);
fmt = q.format;
w = fmt(1);

it is handy to have it available for use in equations. For example, the algorithm
for realmax(q) when q is a signed fixed-point quantizer (q.mode = 'fixed')
is

which can be coded as

q = quantizer('fixed',[8 4]);
r = pow2(wordlength(q) - fractionlength(q) - 1) - eps(q)

See Also fractionlength, exponentlength

r 2w f– 1–
= ε–

zpkbpc2bpc

13-353

13zpkbpc2bpcPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
complex bandpass prototype by applying a first-order complex bandpass to
complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The original lowpass filter is given with zeros, Z,
poles, P, and gain factor, K.

This transformation effectively places two features of an original filter, located
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and
Wt2 respectively. It is assumed that Wt2 is greater than Wt1. In most of the cases
the features selected for the transformation are the band edges of the filter
passbands. In general it is possible to select any feature; e.g., the stopband
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., complex notch filters or resonators can be repositioned at two distinct
desired frequencies at any place around the unit circle; e.g., in the adaptive
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z, p, k, [0.25, 0.75], [-0.75, -0.25]);

zpkbpc2bpc

13-354

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpassbpc2bpc, iirbpc2bpc

zpkftransf

13-355

13zpkftransfPurpose Zero-pole-gain frequency transformation of the digital filter

Syntax [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)

Description [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns zeros,
Z2, poles, P2, and gain factor, K2, of the transformed lowpass digital filter. The
prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K. If
AllpassDen is not specified it will default to 1. If neither AllpassNum nor
AllpassDen is specified, then the function returns the input filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[z2, p2, k2] = zpkftransf(roots(b),roots(a),b(1),AlpNum,AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

zpkftransf

13-356

See Also iirftransf

zpklp2bp

13-357

13zpklp2bpPurpose Zero-pole-gain lowpass to bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a second-order real lowpass to real
bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “DC Mobility,” which
means that the Nyquist feature stays at Nyquist, but the DC feature moves to
a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be easily doubled
and positioned at two distinct, desired frequencies.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

zpklp2bp

13-358

[z2,p2,k2] = zpklp2bp(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2bp, iirlp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

zpklp2bp

13-359

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

zpklp2bpc

13-360

13zpklp2bpcPurpose Zero-pole-gain lowpass to complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to complex
bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandpass filters for radio receivers from the high-quality
prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);

zpklp2bpc

13-361

k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bpc, iirlp2bpc

zpklp2bs

13-362

13zpklp2bsPurpose Zero-pole-gain lowpass to bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a second-order real lowpass to real
bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “Nyquist Mobility,”
which means that the DC feature stays at DC, but the Nyquist feature moves
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

zpklp2bs

13-363

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2bs, iirlp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

zpklp2bs

13-364

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

zpklp2bsc

13-365

13zpklp2bscPurpose Zero-pole-gain lowpass to complex bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to complex
bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. Additionally the transformation swaps passbands with
stopbands in the target filter.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

zpklp2bsc

13-366

[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bsc, iirlp2bsc

zpklp2hp

13-367

13zpklp2hpPurpose Zero-pole-gain lowpass to highpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to real highpass
frequency mapping. This transformation effectively places one feature of an
original filter, located at frequency Wo, at the required target frequency
location, Wt, at the same time rotating the whole frequency response by half of
the sampling frequency. Result is that the DC and Nyquist features swap
places.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and the gain factor, K.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, or the deep
minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

zpklp2hp

13-368

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2hp, iirlp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

zpklp2hp

13-369

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

zpklp2lp

13-370

13zpklp2lpPurpose Zero-pole-gain lowpass to lowpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to real lowpass
frequency mapping. This transformation effectively places one feature of an
original filter, located at frequency Wo, at the required target frequency
location, Wt.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

zpklp2lp

13-371

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2lp, iirlp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

zpklp2lp

13-372

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

zpklp2mb

13-373

13zpklp2mbPurpose Zero-pole-gain lowpass to M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Mth-order real lowpass to real
multibandpass frequency mapping. By default the DC feature is kept at its
original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)
allows you to specify an additional parameter, Pass, which chooses between
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the
Nyquist feature stays at its original location and the DC feature is free to move.
In the second case the DC feature is kept at an original frequency and the
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

zpklp2mb

13-374

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass being the default

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

zpklp2mb

13-375

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2mb, iirlp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering,
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and
frequency transformation problem,” Proceedings 20th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168,
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7,
Reading, Massachussetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm
for frequency transformations, Linear Circuits, Systems and Signal Processing:
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

zpklp2mbc

13-376

13zpklp2mbcPurpose Zero-pole-gain lowpass to complex M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Mth-order real lowpass to complex
multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature, for example, the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., to replicate notch filters and resonators at any required location.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

zpklp2mbc

13-377

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2mbc, iirlp2mbc

zpklp2xc

13-378

13zpklp2xcPurpose Zero-pole-gain lowpass to complex N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Nth-order real lowpass to complex
multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation
effectively places N features of an original filter, located at frequencies
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);

zpklp2xc

13-379

z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also zpkftransf, allpasslp2xc, iirlp2xc

zpklp2xn

13-380

13zpklp2xnPurpose Zero-pole-gain lowpass to N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Nth-order real lowpass to real multipoint
frequency transformation, where N is the number of features being mapped. By
default the DC feature is kept at its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)
allows you to specify an additional parameter, Pass, which chooses between
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the
Nyquist feature stays at its original location and the DC feature is free to move.
In the second case the DC feature is kept at an original frequency and the
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation
effectively places N features of an original filter, located at frequencies
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be

zpklp2xn

13-381

selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass being the default

Z2
Zeros of the target filter

P2
Poles of the target filter

zpklp2xn

13-382

K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2xn, iirlp2xn

References [1] Cain, G.D. , A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

zpkrateup

13-383

13zpkrateupPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N) returns zeros,
Z2, poles, P2, and gain factor, K2, of the target filter being transformed from any
prototype by applying an Nth-order rateup frequency transformation, where N
is the upsample ratio. Transformation creates N equal replicas of the prototype
filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The original lowpass filter is given with zeros, Z,
poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Upsample the prototype filter four times:

[z2,p2,k2] = zpkrateup(z, p, k, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

zpkrateup

13-384

N
Integer upsampling ratio

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also zpkrateup, allpassrateup, iirrateup

zpkshift

13-385

13zpkshiftPurpose Zero-pole-gain real shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a second-order real shift frequency
mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass
mapping filter, AllpassDen. The prototype lowpass filter is given with zeros, Z,
poles, P, and gain factor, K.

This transformation places one selected feature of an original filter, located at
frequency Wo, at the required target frequency location, Wt. This transformation
implements the “DC Mobility,” which means that the Nyquist feature stays at
Nyquist, but the DC feature moves to a location dependent on the selection of
Wo and Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible to
select any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can change their position in a simple way
without the need to design them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkshift(z, p, k, 0.5, 0.25);

zpkshift

13-386

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2

Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpassshift, iirshift

zpkshiftc

13-387

13zpkshiftcPurpose Zero-pole-gain complex shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order complex frequency shift
transformation. This transformation rotates all the features of an original
filter by the same amount specified by the location of the selected feature of the
prototype filter, originally at Wo, placed at Wt in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and the gain factor, K.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5) performs
the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an
original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5) performs
the inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an
original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Example 1: Rotation by -0.25:

[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 2: Hilbert transform:

[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 3: Inverse Hilbert transform:

zpkshiftc

13-388

[z2,p2,k2] = zpkshiftc(z, p, k, 0, -0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpassshiftc, iirshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert
transformers, and half-band low-pass filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

zplane

13-389

13zplanePurpose Compute a zero-pole plot for quantized filters

Syntax zplane(Hq)
zplane(Hq,'plotoption')
zplane(Hq,'plotoption','plotoption2')
[zq,pq,kq] = zplane(Hq)
[zq,pq,kq,zr,pr,kr] = zplane(Hq)

Description This function displays the poles and zeros of quantized filters, as well as the
poles and zeros of the associated unquantized reference filter.

zplane(Hq) plots the zeros and poles of a quantized filter Hq in the current
figure window. The poles and zeros of the quantized and unquantized filters
are plotted by default. The symbol o represents a zero of the unquantized
reference filter, and the symbol x represents a pole of that filter. The symbols

 and + are used to plot the zeros and poles of the quantized filter Hq. The plot
includes the unit circle for reference.

zplane(Hq,'plotoption') plots the poles and zeros associated with the
quantized filter Hq according to one specified plot option. The string
'plotoption' can be either of the following reference filter display options:

• 'on' to display the poles and zeros of both the quantized filter and the
associated reference filter (default)

• 'off' to display the poles and zeros of only the quantized filter

zplane(Hq,'plotoption','plotoption2') plots the poles and zeros
associated with the quantized filter Hq according to two specified plot options.
The string 'plotoption' can be selected from the reference filter display
options listed in the previous syntax. The string 'plotoption2' can be selected
from the section-by-section plotting style options described below:

• 'individual' to display the poles and zeros of each section of the filter in a
separate figure window

• 'overlay' to display the poles and zeros of all sections of the filter on the
same plot

• 'tile' to display the poles and zeros of each section of the filter in a separate
plot in the same figure window

zplane

13-390

[zq,pq,kq] = zplane(Hq) returns the vectors of zeros zq, poles pq, and gains
kq. If Hq has n sections, zq, pq, and kq are returned as 1-by-n cell arrays. If
there are no zeros (or no poles), zq (or pq) is set to the empty matrix [].

[zq,pq,kq,zr,pr,kr] = zplane(Hq) returns the vectors of zeros zr, poles pr,
and gains kr of the reference filter associated with the quantized filter Hq, and
returns the vectors of zeros zq, poles pq, and gains kq for the quantized filter Hq.

Examples Create a quantized filter Hq from a fourth-order digital filter with cutoff
frequency of 0.6. Scale the transfer function parameters to avoid overflows due
to coefficient quantization. Plot the quantized and unquantized poles and zeros
associated with this quantized filter.

[b,a] = ellip(4,.5,20,.6);
Hq = qfilt('df2',{b/2 a/2});
zplane(Hq);

See Also freqz, impz

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

Quantized zeros
Quantized poles
Reference zeros
Reference poles

14

Bibliography

Advanced Filters (p. 14-2) Suggested reading and sources for advanced filter design
topics

Adaptive Filters (p. 14-2) Suggested reading and sources for adaptive filters topics

Frequency Transformations (p. 14-3) Suggested reading and sources for information about
filter frequency transformations

14 Bibliography

14-2

Advanced Filters
[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

[2] Chirlian, P.M., Signals and Filters, Van Nostrand Reinhold, 1994.

[3] [Fliege, N.J., Mulitrate Digital Signal Processing, John Wiley and Sons,
1994.

[4] Jackson, L., Digital Filtering and Signal Processing with MATLAB
Exercises, Third edition, Kluwer Academic Publishers, 1996.

[5] Lapsley, P., J.Bier, A. Sholam, and E.A. Lee, DSP Processor
Fundamentals: Architectures and Features, IEEE Press, 1997.

[6] McClellan, J.H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W. Shafer,
and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using
MATLAB 5, Prentice-Hall, 1998.

[7] Mayer-Baese, U., Digital Signal Processing with Field Programmable
Gate Arrays, Springer, 2001, refer to the BiQuad block diagram on pp. 126
and the IIR Butterworth example on pp. 140.

[8] Moler, C., “Floating points: IEEE Standard unifies arithmetic model,”
Cleve’s Corner, The MathWorks, Inc., 1996. See
http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf.

[9] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

[10] Shajaan, M., J. Sorensen, “Time-Area Efficient Multipier-Free Recursive
Filter Architectures for FPGA Implementation,” IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1996, pp. 3269-3272

Adaptive Filters
[11] Hayes, M.H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, 1996

[12] Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc.,
1996.

14-3

Frequency Transformations
[13] Constantinides, A.G., “Spectral Transformations for Digital Filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[14] Nowrouzian, B. and A.G. Constantinides, “Prototype Reference Transfer
Function Parameters in the Discrete-Time Frequency Transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[15] Feyh, G., J.C. Franchitti and C.T. Mullis, “Allpass Filter Interpolation
and Frequency Transformation Problem,” Proceedings 20th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, California, pp.
164-168, November 1986.

[16] Krukowski A., G.D. Cain and I. Kale, “Custom Designed High-Order
Frequency Transformations for IIR Filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

14 Bibliography

14-4

I-1

Index

A
abbreviating property names 6-6
accessing properties 6-5
addition, format for

quantized FFTs 12-55
quantized filters 12-50

advanced FIR filter design 2-7
advanced IIR filter design 2-42
algorithm,gremez 2-7
antisymmetricfir 12-16
arithmetic

quantized filtering, effects on 10-23

B
basic filter properties

quantized filters 8-6, 9-6
quantizers 7-4

bias 5-20
bibliography 14-2
binary

coding 5-3
data types 5-3

binary point 5-17
bits

definition 5-16
setting, quantized FFTs 9-8
setting, quantized filters 8-11

brackets, indicating closed interval xxi

C
cell arrays

indexing into cell arrays of cell arrays 6-15
indexing into cell arrays of matrices 6-14

cell arrays, quantized filter coefficients 12-11

changing quantized filter properties in FDATool
11-11

coefficient overflow indicator 11-25
coefficient quantization, controlling 11-20
coefficient underflow indicator 11-25
CoefficientFormat property

setting 12-4
command line help 6-12
constructing objects 6-3
context-sensitive help 11-49
controls, FDATool 11-5
convert structure dialog 11-17
converting filter structures in FDATool 11-16
copying objects 6-4
custom floating-point 5-22

D
data formats

operands, quantized FFTs 12-53
operands, quantized filters 12-38
outputs, quantized FFTs 12-54
outputs, quantized filters 12-39
properties 13-337
quantized FFTs, setting all 9-8
quantized filters 5-5, 8-11, 9-8
quantized filters, setting all 8-10
setting 12-4

data types
binary 5-3
quantized filters 8-9, 9-7

denormalized numbers 5-24
designing advanced FIR filters 2-7
designing advanced IIR filters 2-42
df1 12-18
df1t 12-20

Index

I-2

df2 12-22
df2t 12-24
digital filters

fixed-point 5-3
floating-point 5-4

digital frequency xxi
direct form I 12-18

transposed 12-20
direct form II 12-22

transposed 12-24
direct property referencing 13-333
dot notation 13-333
double-precision 5-21
DSP processors 5-4
dynamic range

fixed-point 5-17
floating-point 5-22

E
ellipses, in syntax xxi
entering transfer function scale values in

FDATool 11-26
envelope delay. See group delay
equiripple filters 2-6
errmean 13-5
error, Lp norm 2-4
errors, quantization 2-64
errpdf 13-5
errvar 13-5
exceptional arithmetic 5-24
exponents 5-3

length 5-19, 12-4
exporting filters 11-31
exporting quantized filters in FDATool 11-31

F
FDATool

about importing and exporting filters 11-29
apply option 11-5
changing quantized filter properties 11-11
convert structure dialog 11-17
convert structure option 11-16
converting filter structures 11-16
entering transfer function scale values 11-26
exporting quantized filters 11-31
getting help 11-49
import filter dialog 11-30
importable filter structures 11-29
importing filters 11-30
quantized filter properties 11-7
quantizer property lists 11-6
quantizing filters 11-7
quantizing reference filters 11-10
scaling transfer function coefficients 11-24
scaling transfer function coefficients manually

11-26
set quantization mode 11-5
set quantization parameters dialog 11-7
setting properties 11-7
to transform filters,transform filters in FDATool

11-40
turn quantization on option 11-5
user options 11-5
using input/output scaling 11-26
viewing filter structure schematics 11-17

fdatool
frequency point to transform 11-38
original filter type 11-35
specify desired frequency location 11-39
transformed filter type 11-39

fdatool

about 11-2

Index

I-3

about quantization mode 11-4
context-sensitive help 11-49
switching to quantization mode 11-4

FFTs
computing quantized 9-10

filter 13-141
filter banks

quantized 10-17
filter conversions 12-47
Filter Design and Analysis Tool. See fdatool
filter design GUI

context-sensitive help 11-49
help on 11-49

filter design methods
firlpnorm 2-5
gremez 2-7
gremez design examples 2-8
IIR filter design examples 2-43
iirgrpdelay 2-42
iirlpnorm 2-42
iirlpnorm design examples 2-45
iirlpnormc 2-42
iirlpnormc design examples 2-50

filter design, advanced FIR 2-7
filter design, advanced IIR 2-42
filter design, minimax 2-4
filter design, optimal 2-2
filter sections

specifying 12-47
filter structures 8-8

direct form FIR 12-26
direct form I 12-18
direct form I transposed 12-20
direct form II 12-22
direct form II transposed 12-24
direct form symmetric FIR 12-36
FIR transposed 12-27

lattice allpass 12-28
lattice AR 12-32
lattice ARMA 12-34
lattice coupled-allpass 12-42
lattice coupled-allpass power complementary

12-42
lattice MA minimum phase 12-33
lattice moving average maximum phase 12-29
state-space 12-35

filtering data
function for 13-141
logs of overflows 13-144
logs of underflows 13-144
obtaining states 13-144

filters
about equiripple 2-6
direct form 12-12
estimating frequency response with nlm 13-3
export to workspace 11-31
exporting as MAT-file 11-32
exporting as text file 11-32
exporting from FDATool 11-31
FIR 12-12
getting filter coefficients after exporting 11-32
importing and exporting 11-29
lattice 12-12
state-space 12-12
test if filter coefficients are real 13-2
testing for allpass structure 13-3
testing for FIR structure 13-3
testing for limitcycles in quantized 13-3
testing for linear phase sections 13-3
testing for maximum phase design 13-3
testing for minimum phase design 13-3
testing for purely real coefficients 13-3
testing for second-order sections 13-3
testing for stability 13-3

Index

I-4

filters, importing into FDATool 11-30
filters, low-sensitivity 2-64
filters, robust 2-64
FilterStructure property 12-12
finite impulse response

antisymmetric 12-16
symmetric 12-36

fir 12-26
FIR filters 12-12
firlpnorm design method 2-5
firt 12-27
fixed-point 5-16

data formats 5-5
filters 5-4
fraction length 5-3
ranges 5-3
sign bit 5-16
word length 5-3

fixed-point numbers
scaling 5-18

floating-point 5-19
bias 5-20
custom 5-22
double precision 5-21
dynamic range 5-22
exponents 5-20
filters 5-4
fractions 5-20
IEEE format 5-20
mantissa 5-3
precision 5-23
ranges 5-3
sign bits 5-20
single precision 5-21
word length 5-19

fractions 5-20
determining length 5-3

limitations on length 12-4
frequency

digital xxi
Nyquist xxi

frequency point to transform 11-38
frequency response 13-164

noise loading method 5-13
frequency response plots 5-12
freqz 13-164
function for opening FDATool 11-4
functions, overloading 6-11

G
get 13-168
getting filter coefficients after exporting 11-32
getting properties 6-8

command for 13-168
getting started 1-15
getting started example 1-15
gremez 2-7
gremez algorithm 2-7
gremez design examples 2-8
group delay, about 2-56
group delay, prescribed 2-42

H
help

command line 6-12

I
IEEE

format 5-20
nonstandard format 5-22

iirgrpdelay 2-42

Index

I-5

iirgrpdelay design examples 2-56
iirlpnorm 2-42
iirlpnorm design examples 2-43
iirlpnorm filter design examples 2-43
iirlpnormc 2-42
iirlpnormc design examples 2-43
import filter dialog in FDATool 11-30
import filter dialog options 11-30

frequency units 11-30
quantized filter 11-30

import/export filters in FDATool 11-29
importing filters 11-30
importing quantized filters in FDATool 11-30
impulse response 13-232
impulse response plots 5-11
impz 13-232
indexing

cell arrays of cell arrays 6-15
cell arrays of matrices 6-14
vectors xxi

indicator, overflow 11-25
indicator, underflow 11-25
InputFormat property 12-4
interval notation xxi
inverse FFTs

computing quantized 9-10
isallpass 13-3
isfir 13-3
isfixed,quantizers

testing for fixed point 13-5
isfloat,quantizers

testing for floating point 13-5
islinphase 13-3
ismaxphase 13-3
isminphase 13-3
isnone,quantizers

testing for none 13-5

isreal 13-2, 13-264
issos 13-3
isstable 13-3

L
latcallpass 12-28
latcmax 12-29
lattice filters

allpass 12-28
AR 12-32
ARMA 12-34
autoregressive 12-32
coupled-allpass 12-30
coupled-allpass power complementary 12-31
MA 12-33
moving average maximum phase 12-29
moving average minimum phase 12-33

latticear 12-32
latticearma 12-34
latticeca 12-28, 12-29, 12-30
latticecapc 12-31
latticema 12-33
leading denominator coefficient not equal to 1,

about 12-14
least significant bit 5-17
limit cycles in quantized filters 5-14
limitcycle 13-3
low-sensitivity filters 2-64
Lp norm 2-4
LSB 5-17

M
mantissa 5-3
minimax filter designs 2-4
Mode property 12-5

Index

I-6

most significant bit 5-17
MSB 5-17
multiple sections

specifying 12-47
MultiplicandFormat property

quantized FFTs 12-53
quantized filter 12-38

N
new users, tips for xvi
nlm 5-13, 13-3
noise loading method 5-13, 13-3
nonstandard IEEE format 5-22
NOperations property 12-6
normalize 5-18
normalize 13-279
normalize coefficients 11-21
normalizing quantized filters 8-12
NumberOfSections property

quantized filters 12-38
NumberOfStages property

quantized FFTs 12-53
NUnderflows property 12-7
Nyquist frequency xxi

O
object properties 1-13
objects

constructing 6-3
copying 6-4

objects in this toolbox 1-13
opening FDATool, function for 11-4
optimal filter design

problem statement 2-2
solutions 2-5

theory 2-2
options, FDATool 11-5
original filter type 11-35
OutputFormat property

quantized FFTs 12-54
quantized filters 12-38, 12-39
setting 12-4

overflow 5-23
overflow indicator 11-25
overflow mode property

saturate 11-10
wrap 11-10

overflow, checking for 11-25
OverflowMode property 12-6
overflows

addressing, function for 13-279
overloading 6-11

P
parentheses, indicating open interval xxi
Parks-McClellan method 2-6
plots

frequency response 5-12
impulse response 5-11
impulse response, command for 13-232
noise loading method 5-13
pole/zero 5-10
zero-pole, command for 13-389

pole/zero plots 5-10
pole-zero plots 13-389
precision

fixed-point 5-17
floating-point 5-23

prescribed group delay 2-42
properties 1-13

abbreviating names 6-6

Index

I-7

accessing, command for 13-168
data formats

quantized filters 8-11, 9-8
setting 13-337

FilterStructure 12-12
Mode 12-5
MultiplicandFormat, quantized FFT 12-53
MultiplicandFormat, quantized filter 12-38
NumberOfSections, quantized filters 12-38
NumberOfStages, quantized FFTs 12-53
OutputFormat, quantized FFTs 12-54
OutputFormat, quantized filters 12-39
OverflowMode 12-6
QuantizedCoefficients 12-40
Radix 12-54
ReferenceCoefficients 8-7, 12-40
referencing directly 6-9
retrieving 6-5

function for 6-8
retrieving by direct property referencing 6-9
RoundMode 12-8
ScaleValues 12-48
setting 6-5
setting, function for 13-330
StatesPerSection 12-50
SumFormat, quantized FFTs 12-55
SumFormat, quantized filters 12-50

property values
abbreviating 6-8
quantized FFTs 9-6
quantized filters 8-6
quantizers 7-4

Q
QFFT objects 9-2
qfilt 13-299

Qfilt objects 1-13
See also quantized filters

quantization
precision, quantized FFTs 9-8
precision, quantized filters 8-11

quantization errors 2-64
quantization level 5-24
quantization mode in FDATool 11-4
quantization optimization

controlling coefficient quantization 11-20
denominators 11-21
normalize coeffients 11-21
numerators 11-21

quantization, errors during 2-64
quantized FFT properties

CoefficientFormat 12-52
InputFormat 12-52
MultiplicandFormat 12-53
NumberOfStages 12-53
OutputFormat 12-54
ProductFormat 12-54
Radix 12-54
ScaleValues 12-54
SumFormat 12-55

quantized FFTs 9-2
addition 12-55
basic properties 9-6
computing 9-10
constructing 9-3
data formats 9-7
input formats 12-52
multiplicand formats 12-53
output formats 12-54
product formats 12-54
properties 12-52
property values 9-6
scaling 12-54

Index

I-8

stages, number of 12-53
quantized filter formats

inputs 12-38
operands 12-38
outputs 12-39
products 12-40
sums 12-50, 12-55

quantized filter properties
CoefficientFormat 12-11
FilterStructure 12-12
InputFormat 12-38
NumberOfSections 12-38
OperandFormat 12-38
OutputFormat 12-39
ProductFormat 12-40
QuantizedCoefficients 12-40
ReferenceCoefficients 12-40
setting 6-9
setting, command for 13-330

quantized filter properties, changing in FDATool
11-11

quantized filters
accessing properties 13-168
addition 12-50
analysis with 10-1
applications 10-1
architecture 12-12
arithmetic effects 10-23
basic properties 8-6
cascaded sections 12-44
coefficients, accessing for multiple sections

6-15
coefficients, accessing for single section 6-14
coefficients, overflows 13-279
coefficients, quantized 12-40
coefficients, reference 12-40
constructing 8-3

function for 13-299
data formats 8-9, 8-11, 9-8
data formats, setting all 8-10, 9-8
defining 6-3
direct form FIR 12-26
direct form FIR transposed 12-27
direct form symmetric FIR 12-36
examples 6-14
exponent length 12-4
filter banks 10-17
filter types 5-7
filtering data 8-14, 13-141
finite impulse response 12-26, 12-27
floating point 12-4
fraction length 12-4
frequency response 13-164

noise loading method 5-13
getting properties 6-8
impulse response 13-232
lattice allpass 12-28
lattice AR 12-32
lattice ARMA 12-34
lattice coupled-allpass 12-28, 12-30
lattice coupled-allpass power complementary

12-31
lattice MA maximum phase 12-29
lattice MA minimum phase 12-33
limit cycles 5-14
multiple sections, specifying coefficients 12-47

table 12-44
normalizing 13-279
objects 6-3
overflow handling 12-6
overflows, logging 8-14
precision, setting 13-337
property values 8-6
Qfilt objects 1-13

Index

I-9

real coefficients 13-264
reference coefficients 8-7
reference filter 12-40
rounding, property for 12-8
scaling 12-48
second-order sections 8-4
sections, number of 12-38
setting data formats 13-337
specifying 12-40
state vectors 13-144
states 12-50
structures 12-12
symmetric FIR 12-16
topology 8-8
word length 12-4
zero-pole plots 13-389

quantized filters properties
getting 6-9
ScaleValues 12-48
specifying, command for 13-299
StatesPerSection 12-50
SumFormat 12-50

quantized inverse FFTs
computing 9-10

QuantizedCoefficients property 12-40
quantizers

calculating pdf 13-5
constructing 7-3
construction

shortcuts 7-5
data types

property for 12-5
properties

Format 12-3
Max 12-5
Min 12-5
Mode 12-5

NOperations 12-6
NOverflows 12-6
NUnderflows 12-7
OverflowMode 12-7
property names, leaving out 7-5
RoundMode 12-8
settable 7-4

property values 7-4
testing accuracy 13-5
testing error variance 13-5
unit 7-2
unity 7-3

quantizing filters in FDATool 11-10

R
Radix 12-54
radix point 5-3

interpretation 5-17
range

fixed-point 5-17
floating-point 5-22

range notation xxi
reference coefficients

specifying 12-40
reference filters

quantized filters, specifying from 8-4
specifying 8-7

ReferenceCoefficients property 12-40
Remez exchange algorithm 2-6
robust filters 2-64
rounding

property for 12-8
RoundMode property 12-8

Index

I-10

S
saturate property value 11-10
ScaleValues property 12-48

interpreting 12-49
scaling

2 norm 2-4
implementing for quantized filters 12-49
infinity norm 2-4
Lp norm 2-4
quantized filters 12-48

scientific notation 5-19
second-order sections

normalizing 12-48
set 13-330
set quantization parameters dialog 11-7
setbits 13-337
setting filter properties in FDATool 11-7
setting properties 6-5

 set function 13-330
dot notation 13-333

sign bits 5-20
single precision 5-21
solution, minimax 2-4
specify desired frequency location 11-39
starting FDATool 11-4
state vectors 13-144
state-space filters 12-35
StatesPerSection property 12-50
structure-like referencing 6-9
SumFormat property

quantized FFTs 12-55
quantized filters 12-50

sums, data format for
quantized FFTs 12-55
quantized filters 12-50

symmetricfir 12-36
syntax, ellipses (...) xxi

T
toolbox

getting started 1-15
topology 8-8
transform filter

frequency point to transform 11-38
original filter type 11-35
specify desired frequency location 11-39
transformed filter type 11-39

transformed filter type 11-39
twiddle factors 12-52
two’s complement arithmetic 5-16
typographical conventions (table) xxii

U
underflow indicator 11-25
underflow, checking for 11-25
underflows 5-23
unit quantizers 7-2
unity quantizers 7-3

V
vectors, indexing of xxi

W
word length

fixed-point 5-3
floating-point 5-19
limitations 12-4
setting 12-4

all formats 13-337
wrap property value 11-10

Index

I-11

Z
zero-pole plots 13-389
zplane 13-389

plotting options 13-389

	Preface
	What Is Filter Design Toolbox?
	Related Products List
	Using This Guide
	New Users of This Toolbox
	Experienced Users of This Toolbox
	Organization of This Guide

	Configuration Information
	Technical Conventions
	Typographical Conventions

	Filter Design Toolbox Overview
	Filter Design Functions in the Toolbox
	Quantization Functions in the Toolbox
	Data Quantizers
	Quantized Filters
	Quantized Fast Fourier Transforms

	Comparison to the Signal Processing Toolbox
	Filters in Signal Processing Toolbox
	Filters in Filter Design Toolbox

	Getting Started with the Toolbox
	Example - Creating a Quantized IIR Filter
	Designing the IIR Filter
	Quantizing the IIR Filter

	Selected Bibliography

	Designing Advanced Filters
	The Optimal Filter Design Problem
	Optimal Filter Design Theory
	Optimal Filter Design Solutions

	Advanced FIR Filter Designs
	gremez Examples
	firlpnorm Examples

	Advanced IIR Filter Designs
	iirlpnorm Examples
	iirlpnormc Examples
	iirgrpdelay Examples

	Robust Filter Architectures
	Filter Design Example That Includes Quantization

	Selected Bibliography

	Designing Adaptive Filters
	Overview of Adaptive Filters and Applications
	Choosing an Adaptive Filter
	System Identification
	Inverse System Identification
	Noise Cancellation (or Interference Cancellation)
	Prediction

	Adaptive Filters in the Filter Design Toolbox
	Examples of Adaptive Filters That Use LMS Algorithms
	adaptlms Example — System Identification
	adaptnlms Example — System Identification
	adaptsd Example — Noise Cancellation
	adaptse Example — Noise Cancellation
	adaptss Example — Noise Cancellation

	Example of Adaptive Filter That Uses RLS Algorithm
	adaptrls Example — Inverse System Identification

	Examples of Adaptive Kalman Filters
	adaptkalman Example — System Identification

	Selected Bibliography

	Digital Frequency Transformations
	Introduction
	Definition of the Problem
	Selecting Features Subject to Transformation
	Mapping from Prototype Filter to Target Filter
	Summary of Frequency Transformations

	Frequency Transformations for Real Filters
	Real Frequency Shift
	Real Lowpass to Real Lowpass
	Real Lowpass to Real Highpass
	Real Lowpass to Real Bandpass
	Real Lowpass to Real Bandstop
	Real Lowpass to Real Multiband
	Real Lowpass to Real Multipoint

	Frequency Transformations for Complex Filters
	Complex Frequency Shift
	Real Lowpass to Complex Bandpass
	Real Lowpass to Complex Bandstop
	Real Lowpass to Complex Multiband
	Real Lowpass to Complex Multipoint
	Complex Bandpass to Complex Bandpass

	Quantization and Quantized Filtering
	Binary Data Types
	Digital Filters
	Quantized Filter Types
	Quantized Filter Structures
	Data Format for Quantized Filters
	Quantized FFTs and Quantized Inverse FFTs

	Introductory Quantized Filter Example
	Constructing an Eight-Bit Quantized Filter
	Analyzing Poles and Zeros with zplane
	Analyzing the Impulse Response with impz
	Analyzing the Frequency Response with freqz
	Noise Loading Frequency Response Analysis: nlm
	Analyzing Limit Cycles with limitcycle

	Fixed-Point Arithmetic
	Radix Point Interpretation
	Dynamic Range and Precision
	Overflows and Scaling

	Floating-Point Arithmetic
	Scientific Notation
	The IEEE Format
	The Exponent
	The Fraction
	The Sign Bit
	Single-Precision Format
	Double-Precision Format
	Custom Floating-Point Data Types
	Dynamic Range
	Exceptional Arithmetic

	Working with Objects
	Objects for Quantized Filtering
	Constructing Objects
	Copying Objects to Inherit Properties

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Setting Property Values with the set Command
	Retrieving Properties with the get Command
	Direct Property Referencing to Set and Get Values

	Functions Acting on Objects
	Using Command Line Help
	Command Line Help For Nonoverloaded Functions
	Command Line Help For Overloaded Functions

	Using Cell Arrays
	Indexing into a Cell Array of Vectors or Matrices
	Indexing into a Cell Array of Cell Arrays

	Working with Quantizers
	Quantizers and Unit Quantizers
	Constructing Quantizers
	Constructor for Quantizers

	Quantizer Properties
	Properties and Property Values
	Settable Quantizer Properties
	Setting Quantizer Properties Without Naming Them
	Read-Only Quantizer Properties

	Quantizing Data with Quantizers
	Example — Data-Related Quantizer Information

	Transformations for Quantized Data
	Quantizer Data Functions

	Working with Quantized Filters
	Constructing Quantized Filters
	Constructor for Quantized Filters
	Constructing a Quantized Filter from a Reference
	Copying Filters to Inherit Properties
	Changing Filter Property Values After Construction

	Quantized Filter Properties
	Properties and Property Values
	Basic Filter Properties
	Specifying the Filter Reference Coefficients
	Specifying the Quantized Filter Structure
	Specifying the Data Formats
	Specifying All Data Format Properties at Once
	Specifying the Format Parameters with setbits
	Using normalize to Scale Coefficients

	Filtering Data with Quantized Filters
	Transformation Functions for Quantized Filter Coefficients

	Working with Quantized FFTs
	Constructing Quantized FFTs
	Constructor for Quantized FFTs
	Copying Quantized FFTs to Inherit Properties

	Quantized FFT Properties
	Properties and Property Values
	Basic Quantized FFT Properties
	Specifying the Data Formats
	Specifying All Data Format Properties at Once
	Specifying the Format Parameters with setbits

	Computing a Quantized FFT or Inverse FFT of Data

	Quantized Filtering Analysis Examples
	Example — Quantized Filtering of Noisy Speech
	Loading a Speech Signal
	Analyzing the Frequency Content of the Speech
	Adding Noise to the Speech
	Creating a Filter to Extract the 3000Hz Noise
	Quantizing the Filter as a Fixed-Point Filter
	Normalizing the Quantized Filter Coefficients
	Analyzing the Filter Poles and Zeros Using zplane
	Creating a Filter with Second-Order Sections
	Quantized Filter Frequency Response Analysis
	Filtering with Quantized Filters
	Analyzing the filter Function Logged Results

	Example — A Quantized Filter Bank
	Filtering Data with the Filter Bank
	Creating a DFT Polyphase FIR Quantized Filter Bank

	Example — Effects of Quantized Arithmetic
	Creating a Quantizer for Data
	Creating a Fixed-Point Filter from a Quantized Reference
	Creating a Double-Precision Quantized Filter
	Quantizing a Data Set
	Filtering the Quantized Data with Both Filters
	Comparing the Results

	Using FDATool with the Filter Design Toolbox
	Switching FDATool to Quantization Mode
	Quantizing Filters in the Filter Design and Analysis Tool
	To Quantize Reference Filters
	To Change the Quantization Properties of Quantized Filters

	Analyzing Filters with the Noise Loading Method
	Using the Noise Loading Method
	Comparing the NLM and Theoretical Magnitude Responses
	Choosing Your Quantized Filter Structure
	Converting the Structure of a Quantized Filter
	To Convert Your Filter to Second-Order Sections Form

	Optimizing the Quantization Process For Your Filter
	Control Coefficient Quantization
	Limit Coefficient Overflow By Fraction Length Changes
	Normalizing Transfer Function Coefficients
	Scaling Transfer Function Coefficients
	To Scale Transfer Function Coefficients
	Scaling Inputs and Outputs of Quantized Filters
	To Enter Scale Values for Quantized Filters

	Importing and Exporting Quantized Filters
	To Import Quantized Filters
	To Export Quantized Filters

	Transforming Filters
	Original Filter Type
	Frequency Point To Transform
	Transformed Filter Type
	Specify Desired Frequency Location
	To Transform Filters

	Realizing Filters as Simulink Subsystem Blocks
	About the Realize Model Panel in FDATool
	To Realize a Filter Using FDATool

	Getting Help for FDATool
	Context-Sensitive Help—The What’s This? Option
	Additional Help for FDATool

	Property Reference
	A Quick Guide to Quantizer Properties
	Quantizer Properties Reference
	Format
	Max
	Min
	Mode
	NOperations
	NOverflows
	NUnderflows
	OverflowMode
	RoundMode

	A Quick Guide to Quantized Filter Properties
	Quantized Filter Properties Reference
	CoefficientFormat
	FilterStructure
	InputFormat
	NumberOfSections
	MultiplicandFormat
	OutputFormat
	ProductFormat
	QuantizedCoefficients
	ReferenceCoefficients
	ScaleValues
	StatesPerSection
	SumFormat

	A Quick Guide to Quantized FFT Properties
	Quantized FFT Properties Reference
	CoefficientFormat
	InputFormat
	Length
	NumberOfSections
	MultiplicandFormat
	OutputFormat
	ProductFormat
	Radix
	ScaleValues
	SumFormat

	Function Reference
	Functions—By Category
	Quantized Filter Construction and Property Functions
	Quantized Filter Analysis Functions�
	Second-Order Sections Conversion Functions
	Quantizer Construction and Property Functions�
	Quantizer Analysis Functions
	Quantized FFT Construction and Property Functions
	Quantized FFT Analysis Functions
	Filter Design Functions
	Filter Conversion Functions
	Adaptive Filter Design Functions and Their Initialization Functions

	Functions Operating on Quantized Filters
	Functions Operating on Quantizers
	Functions Operating on Quantized FFTs
	Functions for Designing Digital Filters
	Functions—Alphabetical List
	adaptkalman
	adaptlms
	adaptnlms
	adaptrls
	adaptsd
	adaptse
	adaptss
	allpassbpc2bpc
	allpasslp2bp
	allpasslp2bpc
	allpasslp2bs
	allpasslp2bsc
	allpasslp2hp
	allpasslp2lp
	allpasslp2mb
	allpasslp2mbc
	allpasslp2xc
	allpasslp2xn
	allpassrateup
	allpassshift
	allpassshiftc
	bin2num
	ca2tf
	cell2sos
	cicdecimate
	cicinterpolate
	cl2tf
	coeread
	coewrite
	convergent
	convert
	copyobj
	denormalmax
	denormalmin
	dfilt.calattice
	dfilt.calatticepc
	disp
	eps
	errmean
	errpdf
	errvar
	exponentbias
	exponentlength
	exponentmax
	exponentmin
	fdatool
	fft
	filter
	firceqrip
	firhalfband
	firlp2lp
	firlp2hp
	firlpnorm
	firminphase
	firnyquist
	fractionlength
	freqz
	get
	gremez
	hex2num
	ifft
	ifir
	iirbpc2bpc
	iircomb
	iirftransf
	iirgrpdelay
	iirlp2bp
	iirlp2bpc
	iirlp2bs
	iirlp2bsc
	iirlp2hp
	iirlp2lp
	iirlp2mb
	iirlp2mbc
	iirlp2xc
	iirlp2xn
	iirlpnorm
	iirlpnormc
	iirnotch
	iirpeak
	iirpowcomp
	iirrateup
	iirshift
	iirshiftc
	impz
	initkalman
	initlms
	initnlms
	initrls
	initsd
	initse
	initss
	isallpass
	isfir
	isfixed
	isfloat
	isnone
	islinphase
	ismaxphase
	isminphase
	isreal
	issos
	isstable
	length
	limitcycle
	max
	min
	nlm
	noperations
	normalize
	noverflows
	num2bin
	num2hex
	num2int
	numberofsections
	nunderflows
	optimizeunitygains
	order
	qfft
	qfilt
	qfilt2tf
	qreport
	quantize
	quantizer
	radix
	randquant
	range
	realizemdl
	realmax
	realmin
	reset
	scalevalues
	set
	setbits
	sos
	tf2ca
	tf2cl
	tostring
	twiddles
	unitquantize
	unitquantizer
	wordlength
	zpkbpc2bpc
	zpkftransf
	zpklp2bp
	zpklp2bpc
	zpklp2bs
	zpklp2bsc
	zpklp2hp
	zpklp2lp
	zpklp2mb
	zpklp2mbc
	zpklp2xc
	zpklp2xn
	zpkrateup
	zpkshift
	zpkshiftc
	zplane

	Bibliography
	Advanced Filters
	Adaptive Filters
	Frequency Transformations

	Index

