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What Is Filter Design Toolbox?
Filter Design Toolbox is a collection of tools built on top of the MATLAB® 

computing environment and the Signal Processing Toolbox. The toolbox 
includes a number of advanced filter design techniques that support designing, 
simulating, and analyzing fixed-point and custom floating-point filters for a 
wide range of precisions. 

Note  A preliminary version of Filter Design Toolbox, was released as 
Quantized Filtering Toolbox, Version 1. 
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Related Products List
The MathWorks provides several products that are especially relevant to the 
tasks you perform with Filter Design Toolbox.

For more information about any of these products, refer to either

• The online documentation for that product if it is installed or if you are 
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products” 
section

Note  The toolboxes listed below all include functions that extend the 
capabilities of MATLAB. The blocksets all include blocks that extend the 
capabilities of Simulink.

Product Description

DSP Blockset Design and simulate DSP systems

Fixed-Point Blockset Design and simulate fixed-point systems

Signal Processing 
Toolbox

Perform signal processing, analysis, and 
algorithm development

Simulink Design and simulate continuous- and 
discrete-time systems
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Using This Guide
All users of the toolbox should read this guide. You should be generally familiar 
with basic digital signal processing concepts before you use the toolbox and this 
User’s Guide. The quantization portion of this toolbox assumes some 
familiarity with fixed-point and floating-point arithmetic in the context of 
digital filtering applications.

New Users of This Toolbox
You can use this toolbox to:

• Design filters using advanced design methods

• Design adaptive filters

• Transform filters from one frequency response type to another, such as from 
lowpass to bandstop

• Convert filters to and from coupled-allpass forms

• Convert filters to second-order section form

• Quantize filters and filter data

• Quantize data

• Compute quantized FFTs and IFFTs

This toolbox relies on object-oriented programming techniques using objects for 
quantized filtering and analysis. You do not need to be familiar with these 
techniques to use this toolbox. However, you may want to review the concepts 
of MATLAB structures and cell arrays, as these are used in the syntax for 
several toolbox methods. For more information on MATLAB structures and cell 
arrays, refer to “Programming and Data Types” in your MATLAB 
documentation.

As a new user of this toolbox, read the entire guide. Of particular interest are:

• Chapter 2, “Designing Advanced Filters” for its background information on 
the advanced filter design techniques in this toolbox

• Chapter 5, “Quantization and Quantized Filtering” for its background 
information on fixed-point and floating-point filters

• Chapter 6, “Working with Objects” for an introduction to the object-oriented 
techniques you need for this toolbox
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• Chapter 7, “Working with Quantizers” for information on constructing and 
using quantizers

• Chapter 8, “Working with Quantized Filters” for information on constructing 
and using quantized filters

• Chapter 9, “Working with Quantized FFTs” for information on constructing 
and using quantized FFTs

• “Example — Quantized Filtering of Noisy Speech” on page 10-3 for a detailed 
example of designing and analyzing a fixed-point filter

• “Example — A Quantized Filter Bank” on page 10-17 for an example of 
designing and analyzing a fixed-point polyphase DFT filter bank

• Chapter 11, “Using FDATool with the Filter Design Toolbox” for information 
about using Filter Design and Analysis Tool to quantize filters and 
investigate the effects of quantization on filter performance

• “Quantizer Properties Reference” on page 12-3 for a description of the 
quantizer properties

• “Quantized Filter Properties Reference” on page 12-11 for a description of 
the quantized filter properties

• “Quantized FFT Properties Reference” on page 12-52 for a description of the 
quantized FFT properties

• “Functions—By Category” on page 13-2 for a brief description of every 
function in the toolbox

Experienced Users of This Toolbox
As an experienced user of this toolbox, you may find the following sections to 
be useful reference guides for the toolbox:

• “Quantizer Properties Reference” on page 12-3

• “Quantized Filter Properties Reference” on page 12-11

• “Quantized FFT Properties Reference” on page 12-52

• “Functions—By Category” on page 13-2
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Organization of This Guide
This guide is organized as follows.

Chapter Title Description

“Filter Design Toolbox Overview” Offers an overview of the toolbox and an example to get 
you started using toolbox features and functions

“Designing Advanced Filters” Provides background information on the advanced filter 
design methods in this toolbox

“Designing Adaptive Filters” Introduces adaptive filtering and the functions available 
in the toolbox

“Digital Frequency 
Transformations”

Develops the theory of transforming filters and discusses 
the transformation functions provided

“Quantization and Quantized 
Filtering” 

Introduces:

• The concepts of quantization and filtering

• An example of using, creating, and analyzing quantized 
filters

• Some tutorial information on fixed- and floating-point 
arithmetic

“Working with Objects” Introduces the object-oriented programming techniques 
relevant to this toolbox

“Working with Quantizers” Provides information about constructing and using 
quantizers

“Working with Quantized Filters” Covers quantized-filter specific characteristics and 
analysis techniques

“Working with Quantized FFTs” Introduces constructing and using quantized FFTs

“Quantized Filtering Analysis 
Examples” 

Presents approaches to solving some applied problems 
with this toolbox

“Using FDATool with the Filter 
Design Toolbox”

Presents a detailed reference covering the quantization 
page of the Filter Design and Analysis Tool
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“Property Reference” Provides:

• A summary of the quantized filter properties 

• A detailed quantized filter property reference, including 
descriptions of the filter structures 

“Function Reference” (online only) Provides:

• Tables that include short descriptions of the functions in 
this toolbox

• A detailed alphabetical function reference

“Bibliography” Lists references for quantized filtering

Chapter Title Description (Continued)
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Configuration Information
To determine whether Filter Design Toolbox is installed on your system, type 
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the 
version of MATLAB you are running, including a list of all toolboxes installed 
on your system and their version numbers. 

For information about installing the toolbox, refer to the installation 
documentation for your platform.

Note  For up-to-date information about system requirements, visit the system 
requirements page, available in the products area at the MathWorks Web site 
(www.mathworks.com).
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Technical Conventions
This manual and the functions in Filter Design Toolbox use the following 
technical notations.

Nyquist frequency One-half the sampling frequency. Some Signal 
Processing Toolbox functions normalize this to 1.

x(1) The first element of a data sequence or filter, 
corresponding to zero lag.

w (used in syntax 
examples)

Digital frequency in radians per sample.

f (used in syntax 
examples)

Digital frequency in hertz.

[x, y) The interval from x to y, including x but not 
including y.

... (used in 
syntax examples)

Ellipses in the argument list for a given syntax on a 
function reference page. These indicate that all 
argument options listed prior to the current syntax 
are valid for the function.
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Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A, 
enter

A = 5

Function names, syntax, 
filenames, directory/folder 
names, and user input

Monospace font The cos function finds the 
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax 
descriptions in reference 
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions, 
operators, and constants

This vector represents the 
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options 
menu.

New terms and for 
emphasis

Italics An array is an ordered 
collection of information.

Omitted input arguments (...) ellipsis denotes all of the 
input/output arguments from 
preceding syntaxes. 

[c,ia,ib] = union(...)

String variables (from a 
finite list)

Monospace italics sysc = d2c(sysd,'method')
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examples that design various filters
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When you install Filter Design Toolbox in your MATLAB® environment, you 
can perform digital filter design, fixed- and floating-point filter quantization, 
and filter performance analysis on your desktop computer. But what are 
filtering and quantization and what benefits do they provide?

Designers use filtering and its variant, digital filtering, for many tasks:

• To separate signals that have been combined, such as a musical recording 
and the noise added during the recording process

• To separate signals into their constituent frequencies

• To demodulate signals

• To restore signals that have been degraded by some process, known or 
unknown

You can use analog filters to accomplish these tasks, but digital filters offer 
greater flexibility and accuracy than analog filters. In addition, digital signal 
processing (DSP) depends in large measure on digital filtering to meet the 
needs of its users.

Analog filters can be cheaper, faster, and have greater dynamic range; digital 
filters outstrip their analog cousins in flexibility. The ability to create filters 
that have arbitrary shape frequency response curves, and filters that meet 
performance constraints, such as bandpass width and transition region width, 
is well beyond that of analog filters.

Quantization is a natural outgrowth of digital filtering and digital signal 
processing development. Also, there is a growing need for fixed-point filters 
that meet power, cost, and size restrictions. When you convert a filter from 
floating-point to fixed-point, you use quantization to perform the conversion.

As filter designers began to use digital filters in applications where power 
limitations and size constraints drove the filter design, they moved from 
double-precision, floating-point filters to fixed-point filters. When you have 
enough power to run a floating-point digital signal processor, such as on 

desktop PC or in your car, fixed-point processing and filtering are unnecessary. 
But, when your filter needs to run in a cellular phone, or you want to run a 
hearing aid for hours instead of seconds, fixed-point processing can be essential 
to ensure long battery life and small size.

Filter Design Toolbox provides the functions you need to develop filters that 
meet the needs of fixed-point algorithms and electronics systems. In addition 
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to offering tools for analyzing the effects of quantization on filter performance 
and signal processing performance, the toolbox offers filter structures for you 
to use to develop prototype filter designs. With structures ranging from finite 
impulse response (FIR) filters to infinite impulse response (IIR) filters, you can 
investigate alternative fixed-point realizations of filters that might meet your 
goals. 

This section contains the following subsections introducing filter design:

• “Filter Design Functions in the Toolbox” on page 1-4

• “Quantization Functions in the Toolbox” on page 1-7

• “Comparison to the Signal Processing Toolbox” on page 1-11

• “Getting Started with the Toolbox” on page 1-15

• “Selected Bibliography” on page 1-28
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Filter Design Functions in the Toolbox
In a system that has unlimited power and size, any filter structure that met 
your performance specifications would do. You would design a floating-point 
filter whose frequency response achieved your aims and implement that filter 
in your system.

When you need a fixed-point filter to meet your requirements, the filter 
structure you choose can depend very much on how quantization affects the 
performance of the filter. Filter Design Toolbox offers both FIR and IIR filter 
design tools and structures that let you experiment with multiple filter designs 
to see how each responds to quantization effects.

Filter Structures
The following tables detail some of the quantized FIR and IIR filter structures 
available in the toolbox. For lists of all the architectures available in the 
toolbox, refer to the section “Quantized Filter Properties Reference” on 
page 12-11 in this guide.

Table 1-1:  Finite Impulse Response Filter Structures

FIR Filter Structures Description

'antisymmetricfir  Antisymmetric finite impulse response (FIR)

'fir' Finite impulse response (FIR) 

'firt' Transposed finite impulse response (FIR)

'latticema' Moving average (MA) lattice form

'symmetricfir' Symmetric FIR

Table 1-2:  Infinite Impulse Response Filter Structures

IIR Filter Structures Description

'df1' Direct form I

'df1t' Direct form I transposed

'df2' Direct form II
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Each of the structures supports floating-point or fixed-point realizations, and 
you use the same toolbox function, qfilt, to create each one. To review 
schematics of the filter structures available in this toolbox, perform the 
following steps to run the demo “Quantized Filter Construction” in the Filter 
Design folder in MATLAB demos.

To run the filter construction demo.

1 Enter demo at the MATLAB command line prompt.

The MATLAB Demo window opens on the desktop.

2 Double-click the entry Toolboxes in the left pane. The list of available 
toolboxes appears in the left pane.

3 Click Filter Design.

4 Click Fixed-point Filter Construction.

'df2t' Direct form II transposed

'latticeca' Coupled allpass lattice 

'latticecapc' Power-complementary output coupled 
allpass lattice form

'latticear' Autoregressive (AR) lattice form

'latticearma' Autoregressive, moving average (ARMA) 
lattice form

'statespace' Single-input/single-output state-space

Table 1-2:  Infinite Impulse Response Filter Structures

IIR Filter Structures (Continued) Description



1 Filter Design Toolbox Overview

1-6

5 Click Quantized Filter Construction in the list of demos on the lower right.

6 Click Run this demo to run the demonstration model.

To access these demos directly from the MATLAB command line, enter 
qfiltconstruction at the prompt.
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Quantization Functions in the Toolbox
Designing floating-point filters solves only part of the filter design problem. In 
most cases, floating-point filter realizations are not appropriate for digital 
signal processing applications. Many real-world DSP systems require that 
their filters use minimum power, generate minimum heat, and do not induce 
computational overload in their processors. Meeting these constraints often 
means using fixed-point filters. Unfortunately, converting a floating-point 
filter to fixed-point realization (called quantizing) can result in lost filter 
performance and accuracy. To simulate and determine the effects of 
quantization, and allow you to investigate how switching from floating-point to 
fixed-point arithmetic affects the performance of your filter, the toolbox 
includes quantization functions. You use the toolbox quantization functions for 
constructing, applying, and analyzing quantizers, quantized filters, and 
quantized fast Fourier transforms (FFT).

The following sections introduce the quantization functions in the toolbox. You 
can find details about the functions in these sections:

• “Quantizer Properties Reference” on page 12-3

• “Quantized Filter Properties Reference” on page 12-11

• “Quantized FFT Properties Reference” on page 12-52

As you read the sections about the properties, you will see that quantizers, 
quantized filters, and quantized FFTs share common properties and methods. 
At the lowest level, a quantizer forms the basis of all the quantizers in the 
toolbox. Each property of a quantized object is an instantiation of a data 
quantizer. The relationship between quantizers, quantized filters, quantized 
FFTs, and their underlying quantizer is shown in the following figure.
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Figure 1-1:  Unified Modeling Language Diagram for Filter Design Toolbox 
Objects

Data Quantizers
To determine how quantization affects a signal, you construct quantizers that 
you use to quantize a signal or data set in MATLAB. By adjusting the 
quantization parameters of your quantizer, you can investigate the output 
from various quantization schemes when you apply them to a data set or 
signal. In addition to experimenting with data quantization, quantizers 
determine how quantized filters and quantized FFTs quantize data to which 
they are applied. 

Each quantizer you construct has the following properties that you can set 
when you construct the quantizer:

• format — determines the quantization format properties

• mode — determines the arithmetic data type 

• overflowmode — determines how overflows are handled during arithmetic 
operations

• roundmode — determines the rounding method applied to data values

Quantized Filter Quantized FFT

Data Quantizer

Coefficient
Quantizer

Input
Quantizer

Output
Quantizer

Multiplicand
Quantizer

Product
Quantizer

Sum
Quantizer

Quantized Objects
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When you apply a quantizer, five more properties report the results of the 
operation:

• max — reports the maximum value encountered while quantizing input 
signals

• min — reports the minimum value encountered while quantizing input 
signals

• noperations — reports the total number of quantized operations performed 
while quantizing input signals

• noverflows — reports the total number of overflows, both negative and 
positive, that occurred while quantizing input signals

• nunderflows — reports the number of underflows that occurred while 
quantizing input signals

You cannot set these properties; they are read-only, and reflect the results of 
all the quantization operations that you perform with a given quantizer. Use 
reset to return quantizers to their initial settings.

Quantized Filters
Quantization, or the effect of word length on filter performance, can lead to 
erroneous behavior in filter designs. Finite word lengths can change the 
frequency response of a filter from its desired performance. To help you 
investigate quantization effects that occur during filtering, the toolbox 
provides two ways to construct a quantized filter:

• Use the function qfilt to create a default quantized filter.

• Use qfilt and specify a reference filter to quantize as an input argument.

In both techniques, your quantized filters have the same properties as 
quantizers.

Quantized Fast Fourier Transforms
In developing digital signal processing (DSP) algorithms, the fast Fourier 
transform (FFT) is one of the essential building blocks. It may be the most 
common transform for handling data and signals. To implement an FFT on a 
fixed-point DSP, you must consider the effects of word length on the output of 
the transform, in much the same way that you must consider the quantization 
effects in a digital filter. Filter Design Toolbox includes a quantized FFT (qfft) 
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function that you use to construct and apply quantized FFTs to signals and 
data in MATLAB. To help you investigate quantization effects that occur 
during the FFT, the toolbox provides you two ways to construct quantized 
FFTs:

• Use the function qfft to create a default quantized fast Fourier transform.

• Use qfft and specify a reference filter to quantize as an input argument.

In both techniques, your quantized FFTs have the same properties as 
quantizers and quantized filters.

Quantized FFTs have other properties as well; some you can set and some are 
read-only:

• length — determines the length of the FFT. Must be a power of the radix

• numberofsections — a read-only property reporting the number of sections 
in your quantized FFT

• radix — indicates the form of the FFT to use

• scalevalues — specifies the scaling for the input for each stage of the FFT
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Comparison to the Signal Processing Toolbox
You use Signal Processing Toolbox and Filter Design Toolbox to design and 
analyze filters. Filter Design Toolbox offers advanced filter design methods for 
FIR and IIR filters that enhance the functionality of Signal Processing Toolbox.

Filters in Signal Processing Toolbox 
Signal Processing Toolbox is data-oriented. You create separate variables for 
each parameter required to characterize a given filter type. For instance, to 
specify a state-space realization of a filter, you need four variables: one for each 
of the four parameters that characterize a state-space model. 

Filters you design in Signal Processing Toolbox are in double-precision. You 
cannot design single-precision, custom-precision, or fixed-point filters. The 
filter design methods in Signal Processing Toolbox are listed in the following 
tables. Each table includes brief descriptions of the methods and functions, 
separated into IIR and FIR architectures:

• Table 1-3 — describes IIR filter design methods

• Table 1-4 — describes filter order estimation functions

• Table 1-5 — describes FIR filter design methods 

Table 1-3:  IIR Filter Design Methods in Signal Processing Toolbox

IIR Filter Design—Classical and Direct

besself Bessel analog filter design

butter Butterworth analog and digital filter design

cheby1 Chebyshev type I filter design (passband ripple)

cheby2 Chebyshev type II filter design (stopband ripple)

ellip Elliptic (Cauer) filter design

maxflat Generalized digital Butterworth filter design

yulewalk Recursive digital filter design
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Table 1-4:  Filter Order Estimation Functions in Signal Processing Toolbox

IIR Filter Order Estimation

buttord Calculate the order and cutoff frequency for a 
Butterworth filter

cheb1ord Calculate the order for a Chebyshev type I filter

cheb2ord Calculate the order for a Chebyshev type II filter

ellipord Calculate the minimum order for elliptic filters

remezord Parks-McClellan optimal FIR filter order estimation

Table 1-5:  FIR Filter Design Methods in Signal Processing Toolbox

FIR Filter Design Description

cremez Complex and nonlinear-phase equiripple FIR filter 
design

fir1 Design a window-based finite impulse response filter

fir2 Design a frequency sampling-based finite impulse 
response filter

fircls Constrained least square FIR filter design for 
multiband filters

fircls1 Constrained least square filter design for lowpass and 
highpass linear phase FIR filters

firls Least square linear-phase FIR filter design

firrcos Raised cosine FIR filter design

intfilt Interpolation FIR filter design

kaiserord Estimate parameters for an FIR filter design with 
Kaiser window

remez Compute the Parks-McClellan optimal FIR filter 
design
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Filters in Filter Design Toolbox
To help you create and analyze quantized filters, Filter Design Toolbox is 
object-oriented. You encapsulate the parameters needed to specify your 
quantized filter under one variable name in a quantized filter object. To specify 
the parameters associated with a quantized filter, you set the property values 
for its associated named properties. These properties are assigned to the 
quantized filter object that represents your quantized filter.

You can design a wide range of fixed-point and custom floating-point filters in 
Filter Design Toolbox. You use the double-precision filters you design in Signal 
Processing Toolbox and Filter Design Toolbox as reference filters to create 
quantized filters in this toolbox. To develop a quantized filter, use either 
toolbox to create a double-precision filter that meets your requirements, then 
use the quantization functions in this toolbox to convert the double-precision 
filter to a quantized filter.

Refer to Table 1-6 for a list of the filter design methods in this toolbox. 

remezord Parks-McClellan optimal FIR filter order estimation

sgolay Savitzky-Golay filter design

Table 1-6:  Filter Design Methods in the Toolbox—FIR and IIR

Filter Function Filter Description

firlpnorm Design minimax solution FIR filters using the least-pth 
algorithm

gremez Use the generalized Remez exchange algorithm to 
design optimal solution FIR filters with arbitrary 
response curves

iirgrpdelay Design optimal solution IIR filters where you specify 
the group delay in the passband frequencies

Table 1-5:  FIR Filter Design Methods in Signal Processing Toolbox (Continued)

FIR Filter Design Description
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You can construct these filters as single-precision, double-precision, 
custom-precision floating-point, or fixed-point structures.

iirlpnorm Design minimax solution IIR filters using the least-pth 
algorithm

iirlpnormc Design minimax solution IIR filters using the least-pth 
algorithm. In addition, restrict the filter poles and 
zeros to lie within a fixed radius around the origin of 
the z-plane

Table 1-6:  Filter Design Methods in the Toolbox—FIR and IIR (Continued)

Filter Function Filter Description
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Getting Started with the Toolbox
This section provides an example to get you started using Filter Design 
Toolbox. You can run the code in this example from the Help browser (select 
the code, right-click the selection, and choose Evaluate Selection from the 
context menu) or you can enter the code on the command line. This exercise 
also introduces Filter Design and Analysis Tool (FDATool). You use it to design 
and analyze filters, and to quantize filters.

As you follow the example, you are introduced to some of the basic tasks of 
designing a filter and using FDATool. You will engage some of the quantization 
capabilities of the toolbox, and a few of the filter design architectures provided 
as well.

Before you begin this example, start MATLAB and verify that you have 
installed Signal Processing and Filter Design Toolboxes (type ver at the 
command prompt). You should see Filter Design Toolbox, version 2.0 and 
Signal Processing Toolbox, version 5.0, among others, in the list of installed 
products.

Example - Creating a Quantized IIR Filter

Example Background. Wireless communications technologies, such as cellular 
telephones, need to account for the receiver’s motion relative to the transmitter 
and for path changes between the stations. To model the channel fading and 
frequency shifting that occurs when the receiver is moving, wireless 
communications models apply a lowpass filter to the transmitted signal. With 
a narrow passband of 0 to 40Hz that modifies the transmitted signal, the 
lowpass filter simulates the Doppler shift caused by the motion between the 
transmitter and receiver. As the lowpass filter requires a rather peculiar rising 
shape across the passband and an extremely sharp transition region, designing 
and quantizing the filter presents an interesting study in filter design. In 
Figure 1-2, you see the frequency response curve for the RFC filter. Notice the 
narrow passband with the rising shape and the sharp cutoff transition. Also 
note that the y-axis is a linear scale that dramatizes the shape of the passband.
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Figure 1-2:  Frequency Response of the Filter Used to Simulate the Rayleigh 
Fading Channel Phenomenon

To create a filter with the passband shape in the figure, we define four vectors 
that describe the shape.

Vector Definition

Frequency 
vector

Specifies frequency points along the frequency response 
curve. frequency can be in Hz or normalized. In our 
example, we are using normalized entries.

Edge vector Specifies the edges, in Hz or in normalized values, of the 
passband and stopband for the filter. In our example, we 
are using normalized entries.

Magnitude 
vector

Specifies the filter response magnitude at each frequency 
specified in the frequency vector. These values produce the 
distinctive passband we require.

Weight 
vector

Specifies the weighting for each frequency in the frequency 
vector. 

 40 Hz cutoff frequency 
with sharp transition

Distinctive passband 
shape to match the 
Doppler shift effects
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Most filter designs do not require you to define four vectors to specify the filter 
response. Because the passband of the filter we want is not standard, we are 
going to use the Arbitrary Magnitude filter type in FDATool when we design 
our filter. This type requires four input vectors to specify the filter. You can also 
design filters with more normal passband specifications directly in FDATool. 
You can enter the four vectors in FDATool, but long vectors are easier to enter 
at the command line. If the vectors exist as files, you can use MATLAB 
commands to import the vectors into your MATLAB workspace.

Designing the IIR Filter
Start to design the filter by clearing the MATLAB workspace and defining the 
four required vectors:

1 Clear your MATLAB workspace of all variables and close all your open 
figure windows. Enter

clear; close all;

2 At the MATLAB prompt, enter the following commands to create the four 
vectors that define the desired IIR filter frequency response.

PBfreq = 0:.0005:.0175; % Define the passband frequencies

Now specify the amplitude at each passband frequency. We use the right 
array divide operator (./) to perform element-wise division. 

PBamp = .4845 ./ (1-(PBfreq ./ 0.0179).^2).^0.25;

Use PBfreq and PBamp to generate the final frequency F and amplitude A 
vectors for our IIR filter. While defining these vectors, define edges and W, 
the edge and weight vectors.

F = [PBfreq .02 .0215 .025 1];
edges = [0 .0175 .02 .0215 .025 1];
A = [PBamp 0 0 0 0]; 
W = [ones(1,length(A)-1) 300];

Issuing these commands created four vectors in your MATLAB workspace. 
FDATool uses these vectors to create an IIR lowpass filter with a specified 
magnitude response curve. Vectors F and A each contain 40 elements, and 
vectors W and edges contain 40 and 6 elements. If we were not designing 
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a specific passband shape, you would not have needed to define these 
vectors. 

3 Open FDATool by typing fdatool at the command prompt.

FDATool opens in Design Filter mode.

4 Under Filter Type, select Arbitrary Magnitude from the list.

Although we want a lowpass filter, Lowpass does not let us specify the 
shape of the passband. So we use the Arbitrary Magnitude option to get 
precisely the curve we need. You could plot F and A to see that the curve is 
similar to the response in Figure 1-2. Use the command plot(F,A) to view 
a simple plot of the specified passband shape.

When you select Arbitrary Magnitude from the list, the options under 
Frequency and Magnitude Specifications change to require three vectors: 
Freq. vector, Mag. vector, and Weight vector.

5 Continue your IIR filter design by selecting IIR under Design Method, 
choosing Least Pth-norm from the list. 

A new vector appears under Frequency and Magnitude Specifications — 
Freq. edges.
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6 Under Frequency and Magnitude Specifications, select Normalized (0 
to 1) from the Frequency Units list.

7 Under Frequency and Magnitude Specifications, enter the variable 
names that define the four vectors required to specify the filter response.

Freq. vector, Freq. edges, Mag. vector, and Weight vector: F, edges, A, 
and W.

8 Specify the filter order by entering 8 for the numerator and denominator 
orders under Filter Order.

Required Vector Variable

Freq. vector F

Freq. edges edges

Mag. vector A

Weight vector W
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9 Click Design Filter.

FDATool designs the filter and computes the filter response. In the analysis 
area, you see the magnitude response of the filter displayed on a logarithmic 
scale.

In the upper left corner, the plot shows the region of interest for this filter. 
Click  on the FDATool toolbar and use the zoom feature to inspect the 
filter passband between 0 and 0.05 (as shown in the figure). You see that the 
shape of the passband for the IIR filter generally matches the shape in 
Figure 1-2 (accounting for the shift from a linear to a logarithmic y-axis).

For now, we have an eighth-order, stable filter based on the direct form II 
transposed structure. It consists of one section.

10 To see the poles and zeros for the filter, select Pole/Zero Plot from the 
Analysis menu in FDATool.

For this filter, which is stable, the poles lie on or very close to the unit circle, 
and close to one another. Generally, when roots are close, they can be 
sensitive to coefficient quantization effects. Changes to the positions of the 
poles or zeros could cause the filter to become unstable. This is your first hint 
that quantizing this double-precision filter might be difficult.
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Quantizing the IIR Filter
You used the filter design tools in FDATool to design an IIR filter with a 
passband you defined. To demonstrate the effects of quantization on this filter, 
we can convert the filter to fixed-point arithmetic and quantize its transfer 
function coefficients. So, to complete the design process, we need to quantize 
the IIR filter, keeping its performance intact through the quantization process. 
You use FDATool in quantization mode to accomplish this operation: 

1 In FDATool, click to switch FDATool to quantization mode.

2 To quantize your IIR filter, click  

You have quantized the current filter using the defaults. Under Current 
Filter Information you see the filter is still stable, eighth-order, and consists 
of one section. Notice that Source now reads Designed(Quantized). If you 
import a filter into FDATool, Source changes to read Imported. 

For now the filter uses the default structure — Direct form II transposed.

3 Look at the Magnitude Response in the FDATool analysis area, which now 
shows the response curves for both your original IIR filter (Reference) and 
the quantized version (Quantized).
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While the new filter is stable, quantizing the filter coefficients seriously 
degraded its response. Truncating some of the coefficients, as you did when 
you quantized the filter, caused the coefficients to exceed the limits [-1,1) of 
the fixed data type (called overflow). Those coefficients were truncated to fall 
within the range -1 to 1. Maybe we can scale the transfer function 
coefficients of the reference filter so that quantizing the filter does not do 
such damage.

If you select Filter Coefficients from the Analysis menu in FDATool, you 
can review the coefficients of the reference and quantized filters. When you 
scroll to the bottom of the display in the analysis area, you see that eight 
coefficients overflowed during quantization. In the left column of the 
analysis area, the symbols +,-, and 0 appear to indicate which coefficients 
overflowed or underflowed, and in which direction (toward ±infinity or 
toward zero. The following table summarizes the meaning of the symbols.
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For example, the ninth numerator coefficient underflowed toward zero, and 
eight of the nine denominator coefficients overflowed toward plus or minus 
infinity and were saturated to (1-eps) or -1.0. The following data table shows 
the filter coefficients.

Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
0 (1)       0.000000000000000   0.000006805499528066                  
  (2)      -0.000030517578125  -0.000037137669916463                  
  (3)       0.000091552734375   0.000087218236138384                  
  (4)      -0.000122070312500  -0.000115464066452111                  
  (5)       0.000091552734375   0.000094505093411602                  
  (6)      -0.000061035156250  -0.000048910514376539                  
  (7)       0.000030517578125   0.000015426381218102                  
0 (8)       0.000000000000000  -0.000002610607681069                  
0 (9)       0.000000000000000   0.000000167701400337                  
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
+ (1)       0.999969482421875    1.000000000000000000                 
- (2)      -1.000000000000000   -7.532602606298016000                 
+ (3)       0.999969482421875   24.769238091848504000                 

Symbol Meaning

+ Coefficients marked with this symbol overflowed toward 
positive infinity. FDATool handled the overflow as directed 
by the Overflow mode property value for the Coefficient 
property. In this case the setting is saturate.

- Coefficients marked with this symbol overflowed toward 
negative infinity. FDATool handled the overflow as directed 
by the Overflow mode property value for the Coefficient 
property. In this case the setting is saturate.

0 Coefficients marked with this symbol underflowed to zero. 
FDATool handled the underflow as directed by the round 
mode property value for the Coefficient property. In this 
case the setting is round toward nearest.
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- (4)      -1.000000000000000  -46.426612663362768000                 
+ (5)       0.999969482421875   54.235802381593018000                 
- (6)      -1.000000000000000  -40.420742464796888000                 
+ (7)       0.999969482421875   18.759623438876325000                 
- (8)      -1.000000000000000   -4.954375991471868800                 
  (9)       0.569671630859375    0.569669813719955510                 
                                                                      
Warning: 8 overflows in coefficients.

4 Click Scale transfer-fcn coeffs<=1.

FDATool scales the reference filter coefficients, then quantizes the reference 
filter again. This time, the coefficients do not overflow or underflow and the 
filter response in the stop band appears to closely match the reference filter 
response, as shown in the next figure.

Your quantized filter is now unstable (check FDATool for the Current Filter 
Information). When the reference filter poles and zeros are so close to one 
another, they can be very sensitive to the effects of quantization. In this 
case, quantizing the filter moved some of the poles outside the unit circle. If 
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you switch to the Pole/Zero plot by selecting Pole/Zero from the Analysis 
menu in FDATool, you see the poles and zeros for the quantized filter.

We resolve this problem by converting our filter structure to one that is more 
robust to quantization effects. For example, we could change from direct 
form II transposed to a lattice structure, or we could use second-order 
sections (SOS) to implement our quantized filter. Second-order section form 
offers a strong option because when we convert to SOSs, we reduce the order 
of the polynomials that define the filter, and thus reduce the filter sensitivity 
to quantization.

5 To convert the filter to second-order section form, select Edit->Convert to 
Second-Order Sections.
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In FDATool, you can keep your filter structure the same and convert to SOS 
form. Or you can change your filter structure and adopt SOS form. We want 
to keep the transposed direct form II structure, but use second-order 
sections to implement the filter.

When you convert to second-order sections (SOS), you have the option of 
treating the error between the reference filter magnitude response and the 
quantized filter magnitude response in one of three ways. The Scale option 
determines which method FDATool uses:

- None — ignore scaling when determining the SOS coefficients

- L-2 — use Euclidean norm when determining the SOS coefficients

- L-infininty — use L∞ scaling when determining the SOS coefficients

FDATool optimizes the order of the second-order sections according to the 
scaling option you choose. (The tf2sos function that performs the 
conversion is called with option 'down' for L-2 and 'up' for L-infinity 
scaling.)

Our IIR filter does not need to be scaled to meet our needs, so select None 
from the Scale list and Up from the Direction list.

6 Click OK to close the dialog and convert the filter according to your settings.

7 Select Magnitude Response from the FDATool Analysis menu.

Our quantized second-order section filter now has the magnitude response 
we require, and matches the unquantized filter specifications. In the 
following figure showing the magnitude response curves for both filters, you 
cann distinguish between the reference and quantized filter curves only 
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within the beginning of the passband. To emphasize the match between the 
reference and quantized filters in the passband, use the zoom function to 
look more closely at the passband as shown.

As you followed this example, you created an arbitrary magnitude IIR filter to 
match an ideal filter response. Then you quantized the filter and converted it 
to second-order section form. All of this you accomplished using FDATool, 
although you could have used the command line to perform the same filter 
design and quantization operations. 

To save the filter you created in FDATool, either select File->Save Session to 
save the session and your FDATool interface settings, or choose File->Export 
to export the filter to your MATLAB workspace in transfer function form. 
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The Optimal Filter Design Problem
Filter Design Toolbox provides you with the tools to design optimal filters in 
the finite impulse response (FIR) and infinite impulse response (IIR) domains. 

Often, filter design techniques and algorithms result in filters that are easy to 
apply and put relatively light demands on computational systems. While these 
filters are acceptable in many instances, they are not optimal solutions to the 
filtering needs of some digital signal processing implementations. Suboptimal 
filter designs can meet the performance specifications for the filter, but 
generally at the expense of increased filter order. This can result in increased 
arithmetic computational load for each input sample and lower operating 
speed than may be possible and necessary. 

You use the functions firlpnorm, gremez, iirlpnorm, and iirlpnormc to 
design optimal filters. The following sections review the optimal filter design 
problem and introduce the filter design functions included in the toolbox:

• “Optimal Filter Design Theory” on page 2-2

• “Optimal Filter Design Solutions” on page 2-5

• “Advanced FIR Filter Designs” on page 2-7

• “Examples—Using gremez to Design FIR Filters” on page 2-9

• “Advanced IIR Filter Designs” on page 2-42

• “Examples — Using Filter Design Toolbox Functions to Design IIR Filters” 
on page 2-43

Optimal Filter Design Theory
How do you design a filter that meets your performance needs, such as having 
the required passbands, stopbands, or transition regions, and is also the 
optimal solution? (The optimal solution filter minimizes a measure of the error 
between your desired frequency response and the actual filter response.)
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Consider two filter frequency response curves:

• D(ω) — the response of your ideal filter, as defined by your signal processing 
needs and specifications

• H(ω) — the frequency response of the filter implementation you select

In the following figure you see the response curves for D(ω) and H(ω), both 
lowpass filters.

Figure 2-1:  Response Curves for Ideal and Actual Lowpass Filters

Optimal filter design theory seeks to make H(ω) match D(ω) as closely as 
possible by a given measure of closeness. 
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More precisely, if we define a weighted error 

where E(ω) is the error between the ideal and actual filter response values and 
W(ω) is the weighting factor, the optimal filter design problem is to determine 
an H(ω) that minimizes some measure or norm of E(ω) given a particular 
weighting function W(ω) and a desired response D(ω).

W(ω), the weighting function, lets you determine which portions of the actual 
filter response curve are most important to your filter performance, whether 
passband response or attenuation in the stopband.

Usually, developers use the Lp norm to measure the error. This norm is given 
by

and this is the quantity we minimize.

In practice, the two most commonly used norms are L2 and L∞, meaning that 
p equals 2 and p equals infinity.

Filter designs that minimize the L∞ are attractive because they lead to 
equiripple solutions. Their equiripple characteristics tend to produce the 
lowest order filter that satisfies some prescribed specification.

When p goes to infinity, L∞ norm simplifies to

max|E(ω)|
ωεΩ

meaning that when p equals ∞, the optimal design minimizes the maximum 
magnitude of the weighted error. Hence, it yields a minimax solution.

Notice that the Lp norm is computed over a region Ω that uses a subset of the 
positive Nyquist interval [0,π]. Ω covers the positive Nyquist interval except 
for certain frequency bands deemed to be “don’t care” regions or transition 
bands that are not included in the optimization.

E ω( ) W ω( ) H ω( ) D ω( )–[ ]=

E ω[ ][ ]
p

Ω
∫
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Optimal Filter Design Solutions
We have stated that the optimal filter design problem is to find the filter whose 
magnitude response, |H(ω)|, minimizes

for a given Ω, p, W(ω) and D(ω). You can use both FIR and IIR filters to meet 
this requirement.

For the FIR case, with p equal to ∞, and the additional constraint that the filter 
must have linear phase, you can use a very efficient design method, based on 
the Remez exchange algorithm to determine the optimal solution. 

Function gremez in the toolbox implements this method. Additionally, gremez 
provides optional calling syntaxes that enable variations and enhancements to 
the filter design problem.

To design optimal FIR solutions in the general case where p is not necessarily 
equal to infinity, the toolbox includes the function firlpnorm. You may find 
this useful in cases where minimax solutions lead to abrupt time-domain 
responses. firlpnorm does not use the Remez exchange algorithm and 
generally takes longer to design a filter than gremez and other filter design 
functions. Moreover, firlpnorm is not constrained to linear phase filters.

Note that Signal Processing Toolbox provides the function firls, an efficient 
FIR linear phase solution to the optimal filter design problem in the 
least-squares sense, that is, when p equals 2.

IIR solutions to the optimal filter design problem are more involved than their 
FIR counterparts. Filter Design Toolbox offers two functions that design IIR 
filters that are optimal in the least-p norm sense: iirlpnorm and iirlpnormc.

iirplnorm uses a somewhat faster, unconstrained algorithm, while 
iirplnormc uses a constrained algorithm that designs an optimal filter that 
meets the specifications while restricting the maximum radius of its poles to a 
specified value less than one. 

Elliptic filters, such as those you use the function ellip (in Signal Processing 
Toolbox) to design, are optimal IIR filters for the case p equals infinity, when 
the desired magnitude response is piecewise constant, and the filter numerator 
and denominator orders are the same.

W w( ) H w( ) D w( )–( )[ ] p wd
ω
∫
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The Parks-McClellan method, which implements the Remez exchange 
algorithm, produces a filter design that just meets your design requirements, 
but does not exceed them. In many instances, when you use the window method 
to design a filter, the result is a filter that performs too well in the stopband. 
This wastes performance and taxes computational power by using more filter 
coefficients than necessary. When you use a rectangular window in the window 
design method, the resulting filter can be shown to be the optimal, unweighted 
least squares solution to the filter design problem. In summary, the optimal 
solution is not always a good solution to the filter design problem.

Filters designed using the Parks-McClellan method have equal ripple in their 
passbands and stopbands. For this reason, they are often called equiripple 
filters. They represent the most efficient filter designs for a given specification, 
meeting your frequency response specification with the lowest order filter.
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Advanced FIR Filter Designs
Filter Design Toolbox includes a function, gremez, for designing FIR filters that 
represent the optimal solutions to filter design requirements. gremez provides 
a minimax filter design algorithm that you use to design the following real FIR 
filters:

• Types 1 through 4 linear phase 

• Minimum phase

• Maximum phase

• Minimum order, even or odd

• Extra-ripple

• Maximal-ripple

• Constrained-ripple

• Single-point band 

• Forced gain

• Arbitrarily shaped frequency response

For examples of filters that use gremez design features, refer to “gremez 
Examples” on page 2-8.

gremez implements the Shpak-Antoniou algorithm described in "A generalized 
Remez method for the design of FIR digital filters," D.J. Shpak and A. 
Antoniou, published in IEEE Trans. Circuits and Systems, pp. 161-174, Feb. 
1990.

FIR filters, when implemented nonrecursively, do not use feedback in their 
architectures. This limits the filter design so that you include current inputs to 
the filter, as opposed to including past outputs (feedback) to calculate the 
current output of the filter. In this toolbox, you use the function gremez to 
design FIR filters. Among other features, gremez lets you:

• Define filters that have arbitrary shape frequency response curves

• Set a range of performance limits for a filter

• Set the weighting for the error between the desired response and the actual 
response in each band of interest in a filter

remez and gremez respond the same way to the same input and output 
arguments, where the input arguments are valid for both functions. gremez 
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extends the remez algorithm to support the new filter designs by adding new 
input argument options. 

Note  To provide improved FIR filter design optimization, gremez uses a 
generalized Remez algorithm that is not identical to the Remez algorithm 
used by remez. Specifically, gremez uses a higher density frequency grid in 
filter transition regions, such as at the cutoff points. Thus the frequency grid 
is not constant, but changes density across the frequency spectrum, letting the 
algorithm more closely optimize filter performance in those areas. 

For more straightforward filter designs, remez and gremez generate the same 
filter coefficients and the same design. As the filter gets more complex, such as 
higher order or more bands or steeper transition regions, the filter designs 
may diverge. Generally, gremez provides better optimized filter designs in 
these cases.

Using gremez to design filters places the following restrictions on your designs:

• Design must be FIR.

• You can select the number of filter coefficients.

• The frequency response curve must be divided into a series of passbands and 
stopbands separated by transition or “don’t care” bands.

• Within each passband and stopband, you specify your desired amplitude 
response as a piecewise constant function.

• You cannot constrain the amplitude response in transition bands.

With these considerations in place, gremez designs equiripple, or minimax, 
filters to meet your specifications.

gremez Examples
Each of these examples uses one or more features provided in the function 
gremez. Review each example to get an overview of the capabilities of the 
function.
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Examples—Using gremez to Design FIR Filters
gremez provides a wide range of new capabilities for FIR filter design. Because 
of the comprehensive nature of the generalized Remez algorithm, the best way 
to learn what you can do with the new function is by example. This section 
presents a series of examples that investigate the filters you can design 
through gremez. You can view these examples as a demonstration program in 
MATLAB by opening the MATLAB demos and selecting Filter Design from 
Toolboxes. Listed there you see a number of demonstration programs. Select 
Minimax FIR Filter Design to see function gremez used to create many filters, 
from a lowpass filter to a constrained stopband design to a minimum phase, 
lowpass filter with a constrained stopband. 

To open the FIR filter design demo.

Follow these steps to open the FIR filter design demo in MATLAB.

1 Start MATLAB.

2 At the MATLAB prompt, enter demos.

The MATLAB Demo Window dialog opens.

3 On the left-hand list, double-click Toolboxes to expand the directory tree.

You see a list of the toolbox demonstration programs available in MATLAB.

4 Select Filter Design.

5 From the right-hand list, select Minimax FIR Filter Design.

A few examples include comparisons to other filter designs and some include 
analysis notes. For details about using function gremez, refer to Chapter 13, 
“Function Reference.” While this set of examples covers some of the options for 
gremez, many options exist that do not appear in these examples. Examples 
cover common or interesting gremez options to demonstrate some of the 
capabilities.
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In each of the examples in this section, we use the output argument res to 
return the structure res that contains information about the filter.

Structure res 
Element

Contents

res.order Filter order.

res.fgrid Vector containing the frequency grid used in the filter 
design optimization.

res.H Actual frequency response on the grid in fgrid.

res.error Error at each point on the frequency grid (desired 
response- actual response).

res.des Desired response at each point on fgrid.

res.wt Weights at each point on fgrid.

res.iextr Vector of indices into fgrid of extremal frequencies.

res.fextr Vector of extremal frequencies.

res.iterations Number of Remez iterations for the optimization.

res.evals Number of function evaluations for the optimization.

res.edgeCheck Results of the transition-region anomaly check. 
Computed when the 'check' option is specified. One 
element returned per band edge. Returned values can 
be:

• 1 = OK

• 0 = Probable transition-region anomaly

• -1 = Edge not checked. In the normalized frequency 
domain, the edges at f=0 and f=1 cannot have 
anomalies and are not checked.
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Example—Designing a Minimax Filter
To use gremez to design an equiripple or minimax filter, we use the following 
statement.

[b,err,res] = gremez(22,[0 0.4 0.5 1],[1 1 0 0],[1,5]);

If you use the same statement, replacing gremez with remez, you get the same 
filter. You can reproduce any filter that remez generates by replacing remez 
with gremez in the statement. gremez retains full compatibility with remez.

Here’s a plot of the magnitude response of the minimax filter as created by 
gremez. The following code creates this figure.

[h,w]=freqz(b); plot(w,abs(h))

Our filter ends up as a 22nd-order filter with magnitude response that has 
ripples about 1 in the passband and ripples about 0 in the stopband. Using the 
weight vector, we chose to emphasize meeting the stopband performance five 
times as much as meeting the passband performance. Hence the reduced ripple 
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in the stopband relative to the passband. In the next figure, we switch the 
weighting to emphasize the passband, and see that the passband ripple is 
much smaller than the stopband ripple.

[b,err,res] = gremez(22,...,[5,1]);
plot(res.fgrid,abs(res.H))

Example—Designing a Minimax Filter, Odd-Order, Antisymmetric
In this example, gremez designs a filter that remez cannot. When you evaluate 
the following code in MATLAB, the result is a minimax FIR filter, this time 
having odd-order and antisymmetric structure, known as type 4. You can see 
from the figure that the magnitude response now represents a high pass filter. 
In this example, we specify the filter as type 4 ('4' in the statement) to get the 
odd-order, antisymmetric design we want.

[b,err,res]=gremez(21,[0 0.4 0.5 1], [0 0 1 1],[2 1],'4');
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
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We have weighted the stopband more heavily than the passband ([2 1]) in the 
function syntax. The 2 and 1 tell gremez that we care about meeting the 
stopband specification twice as much as the passband specification. Notice that 
the weighting is relative, not absolute. Our weights say that the stopband is 
twice as important as the passband. They do not specify the weighting in 
absolute terms.

Example—Designing a “Least Squares-Like” Filter
gremez lets you design filters that resemble least squares design. In this 
example, we design a 53rd-order filter and use the user-supplied file 
taperedresp.m to specify a frequency response weighting function to perform 
the error weighting for the design. So you can reproduce this example, the file 
taperedresp.m is in the matlabroot\toolbox\filterdesign\filtdesdemos 
folder. taperedresp.m contains the following code to specify the weighting.
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% Example for a user-supplied frequency-response function
% taperedresp.m

function [des,wt] = taperedresp(order, ff, grid, wtx, aa)
nbands = length(ff)/2;
% Create output vectors of the appropriate size
des=grid;
wt=grid;

for i=1:nbands
   k = find(grid >= ff(2*i-1) & grid <= ff(2*i));
   npoints = length(k); t = 0:npoints-1;
   des(k) = linspace(aa(2*i-1), aa(2*i), npoints);
   if i == 1 
      wt(k) = wtx(i) * (1.5 + cos((t)*pi/(npoints-1)));
   elseif i == nbands
      wt(k) = wtx(i) * (1.5 + cos(pi+(t)*pi/(npoints-1)));
   else
      wt(k) = wtx(i) * (1.5 - cos((t)*2*pi/(npoints-1)));
   end
end

To generate the least-squares-like filter, use the following code.

[b,err,res]=gremez(53, [0 0.3 0.33 0.77 0.8 1],... 
{'taperedresp',[0 0 1 1 0 0]}, [2 2 1]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

When you issue these statements at the MATLAB prompt, you get the 
following plot for the filter magnitude response.
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Example—Designing a Constrained Lowpass Filter
With gremez, you can both apply weighting to the passband and apply a limit 
or constraint to the error in the stopband, called constraining. Limiting the 
stopband error can be useful in circumstances where your filter must meet a 
specified stopband requirement. To create a lowpass filter with a constrained 
stopband and weighted passband response, we use gremez with the 'w' 
optional input argument to weight the passband. The optional input argument 
'c' constrains the filter stopband error not to exceed 0.2. Note that to use the 
constraining and weighting options, your filter must have at least one 
unconstrained band. That is, cell array c must contain at least one 'w' entry. 
In our example, c is {'w' 'c'}.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
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The next figure shows the lowpass filter with the constraints applied.

When you use constraining values in your gremez filter design, check to see 
that your filter actually touches the constraining value in the stopband. If it 
does not, increase the error weighting ('w') for your unconstrained bands. This 
change causes the constrained errors to approach the constraint value more 
quickly. Notice that the plot shows our filter just touches the desired constraint 
of 0.2.

Example—Designing a Constrained Bandstop Filter
Continuing with the concept of using weighting in gremez, we design a 
bandstop filter whose passband ripple we constrain not to exceed 0.05 and 0.1. 
In this instance, cell array c is {'c' 'w' 'c'} to constrain the passbands and 
we use the optional input vector W=[0.05 1 0.1] to constrain the passband 
ripple not to exceed 0.05 and 0.1.
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[b,err,res]=gremez(22,[0 0.4 0.5 0.7 0.8 1], [1 1 0 0 1 1],... 
[0.05 1 0.1], {'c' 'w' 'c'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

As expected the magnitude response shows different peak ripple values in the 
passbands — 0.05 for the low frequency band and 0.1 for the high frequency 
band.
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Example—Designing a Single-Point Band Filter
The following statements

[b,err,res]=gremez(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],...
[1 1 0 1 1 0 1 1], {'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

generate an interesting filter that you cannot design when you use functions in 
Signal Processing Toolbox: a multiple stopband filter where the stop bands are 
defined by single points. In the gremez command in this example, the syntax is 
b=gremez(N,F,A,S). The input vectors F, A, and S, each containing eight 
values, define the response curve for the filter.

From the next figure, you see that the filter has just the response we defined, 
with zeros at F = 0.25 and F = 0.55.

Input Vector Use

F=[0 0.2 0.25 0.3 0.5 0.55 0.6 1] Defines the points of interest in the frequency 
response. In this case, you are working with 
frequencies normalized between 0 and 1.

A=[1 1 0 1 1 0 1 1] Set the gain at each frequency point.

S={'n' 'n' 's' 'n' 'n' 's' 'n' 'n'} Specifies whether the frequency points represent 
normal or single-point bands. By comparing the 
frequency and type vector entries, we see that 
F=0.25 and F=0.55 are single point bands (marked 
by s), and the gain at those points is 0. The other 
bands are normal bands (marked with n) with 
gain =1.
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Example—Designing a Filter with a Specified In-band Value
In some filter design tasks, you want a filter whose inband value you determine 
exactly. For example, you might want a 60 Hz noise rejection filter to have zero 
gain at F = 0.06 (F = 60 Hz in real frequency). For this example, the sampling 
frequency is 2 KHz, so 60 Hz is F = 0.06 when we normalize the frequency. We 
use the following code example to design such a filter.

[b,err,res]=gremez(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],... 
{'n' 'i' 'f' 'n' 'n' 'n'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

At F = 0.06, we require the gain of the filter response to be exactly 0.0. So we 
force the gain at F = 0.06 to zero by adding the 'f' input option to the S vector. 
As shown in the plot, the filter response is zero at F = 0.06, and the resulting 
filter rejects 60 Hz noise quite effectively.
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You might have noticed in the gremez statement that the S vector includes an 
'i' option. Entries in the S vector have any of the following values.

For our noise rejecting filter, the sampling frequency is 2 KHz, so 60 Hz is 
f=0.06 in normalized frequency.

Vector Symbol Meaning

n Represents a normal frequency point

s Represents a single-point band frequency

f Forces the gain at this frequency to a fixed value, as 
specified in the weighting vector W

i Represents an indeterminate frequency point. Usually 
used when the band should abut the next band
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Example—Designing Extra-Ripple and Maximal-Ripple Filters
Extra-ripple and maximal-ripple filters have some interesting properties:

• They have locally minimum transition region widths

• They tend to converge very quickly

gremez lets you use multiple independent approximation errors to directly 
design extra- and maximal ripple filters. In this example, we use independent 
errors to design two filters, then we revisit our 60 Hz noise rejection filter to 
compare these two different approaches to designing the same filter.

Example of an Extra-Ripple Lowpass Filter
The code to design our extra-ripple filter is

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 1],...
{'e1' 'e2'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

The last entries in the command, [1 1] and {'e1' 'e2'}, are the vectors W and 
E that determine the weights and independent approximation errors for filters 
with special properties. 'e1' is applied to the passband and 'e2' applied to the 
stopband. Where the gremez algorithm usually results in equiripple filters, 
using the approximations lets gremez adjust the ripple in each band 
separately, as we have done in this design.
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Example of an Extra-Ripple Bandstop Filter With Two Independent 
Approximation Errors
Now we extend the extra-ripple concept by using two independent error 
approximations. The two passbands share the first approximation error 'e1'. 
The stopband uses 'e2'. So you can see the effectiveness of this design 
approach, also create and plot a single approximation error filter for 
comparison.

[b,err,res]=gremez(28,[0 0.4 0.5 0.7 0.8 1], [1 1 0 0 1 1],...
[1 1 2], {'e1' 'e2' 'e1'}); % Extra-rippple filter design
[b2,err2,res2]=gremez(28,[0 0.4 0.5 0.7 0.8 1],...
[1 1 0 0 1 1],[1 1 2]); % Weighted-Chebyshev design
[H,W]=freqz(b,1,1024);[H2,W]=freqz(b2,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot([H H2],W,S);
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In the figure, the responses are similar for the two designs, but the extra-ripple 
design shows less ripple in the passbands and slightly more in the stopband. If 
you evaluate the example code in MATLAB to create the plot, you can select 
Zoom in from the Tools menu in the figure window to examine the curves more 
closely.

For this design, we let gremez use the same error approximation for the 
passbands and a different one in the stopband. The result is a filter that has 
minimum total error in the passbands, and minimum error in the stopband.

Example—Comparing Two 60 Hz Noise Rejection Filters
With the extra-ripple filter design technique available in gremez, we can use 
two different design techniques to redo our 60 Hz noise rejection filter. We use 
three independent error approximations in this design, one for each band, as 
shown in the following code.
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[b,err,res]=gremez(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],... 
{'n' 'i' 'f' 'n' 'n' 'n'},[10 1 1],{'e1' 'e2' 'e3'}); % New filter
[b2,err,res]=gremez(82,[0 0.055 0.06 0.1 0.15 1],...
[0 0 0 0 1 1], {'n' 'i' 'f' 'n' 'n' 'n'}); % Original filter
[H,W]=freqz(b,1,1024);
[H2,W]=freqz(b2,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot([H H2],W,S);

We have included the second gremez statement in this example to reproduce 
the earlier noise rejection filter for comparison. We plot them on the same 
figure for easy reference. In the stopband, the original design has lower ripple; 
the new, independent error design has less ripple in the passband. Also, the 
new filter has slightly steeper transition region performance.

Using independent approximation errors, as we did in this filter when we 
specified 'e1', 'e2', and 'e3', can result in better filter performance. The strings 
'e1', 'e2', and so on direct gremez to consider the associated band alone, or with 
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other bands that use the same error approximation. By assigning independent 
errors to each band, we let the generalized Remez algorithm used by gremez 
minimize the error in each band without considering the error in the other 
bands. If we do not use independent errors, the algorithm minimizes the total 
error in all bands at once. 

At times, you need to use independent approximation errors to get designs that 
use forced inband values to converge. Error approximations are needed where 
the polynomial used to approximate the filter becomes undetermined when you 
try to force the inband values to converge.

Example—Checking for Transition-Region Anomalies
To allow you to check your filter designs for anomalies, gremez provides an 
input option called 'check'. With the check option included in the command, 
gremez reports anomalies in the response curve for the filter. An anomaly in 
gremez is defined as out-of-the-ordinary response behavior in a transition, or 
“don’t care,” region of the filter response.

To demonstrate anomaly checking, we use gremez to design a filter with an 
anomaly, and include the 'check' optional input argument.

[b,err,res]=gremez(44,[0 0.3 0.4 0.6 0.8 1],...
[1 1 0 0 1 1],'check');
[H,W]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

With the 'check' option, gremez returns the results vector res.edgeCheck in 
the structure res. Each zero-valued entry in this vector represents the location 
of a probable anomaly in the filter response. Entries that are not checked, such 
as the edges at f=1 and f=0, have -1 entries in res.edgeCheck.

To check for anomalies, the following command returns the vector containing 
the edge check results.
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res.edgeCheck

ans =

    -1
     1
     1
     0
     0
    -1

There are anomalies between the f=0.6 and f=0.8 edges, as shown clearly in the 
figure. This represents a transition region for our filter. Notice that the edges 
at f=0 and f=1 were not checked.
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In our example, the anomalous behavior happened because of the width of the 
transition region. When we define a narrower transition band, the anomaly 
disappears. Generally, reducing the transition region width eliminates 
anomalies in the filter response.

Example—Using Automatic Minimum Filter Order Determination
Rather than entering the filter order N in the gremez command, you can let the 
generalized Remez algorithm determine the minimum order for your filter. 
You set the specifications for the filter and the generalized Remez algorithm 
repeatedly designs the filter until the design just meets your specifications. 

You have three options for setting the minimum order option for the filter:

• 'minorder' directs the Remez algorithm to iterate over the filter design 
until it finds a design that just fulfills your design specifications and is the 
lowest possible order. Using this option directs gremez to use remezord to get 
an initial estimate of the filter order.

• 'mineven' directs the Remez algorithm to iterate over the filter design until 
it finds a design that just fulfills your design specifications and is the lowest 
possible even order. 

• 'minodd' directs the Remez algorithm to iterate over the filter design until it 
finds a design that just fulfills your design specifications and is the lowest 
possible odd order.

Note  When you use the minimum order option 'minorder', gremez treats the 
weights in the W vector as maximum error values for the associated 
frequencies in the frequency vector F. Also, constraints become absolute limits; 
gremez designs a filter that does not exceed the constraints.

For this example, we let the Remez algorithm find a minimum order filter that 
implements a lowpass filter with a transition band between f=0.4 and f=0.5.

[b,err,res]=gremez('minorder',[0 0.4 0.5 1], [1 1 0 0],...
[0.1 0.02]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
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Our filter, shown in the figure, demonstrates the desired ripple in the 
passbands and stopbands, 0.1 and 0.02; the transition region meets our 
specifications; and the filter order (found from res.order) is 22.

When you use the minimum order feature, you can specify the initial order 
(your best guess) in the gremez statement. When you estimate the order, 
gremez does not use remezord to make an estimate of the filter order. This is 
important when remezord does not support your desired filter type, such as 
differentiators and Hilbert transformers, as well as for filters that use 
frequency response functions that you supply. For the following filter example, 
we provide an initial estimate of 18 for the filter order, and we specify that we 
want our filter to have the minimum even order possible by adding the 
'mineven' option.

[b,err,res]=gremez({'mineven',18},[0 0.4 0.5 1], [1 1 0 0],...
[0.1 0.02]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
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freqzplot(H,W,S);

Though we provided an initial estimate of 18 for the order, the final order for 
our filter is again 22. If we had specified 'minodd', the result would be a 
23rd-order filter. 

Example — Designing an Interpolation Filter
Now let us design an interpolation filter. These are usually used to upsample 
a band-limited signal by an integer factor, for example after the signal has been 
decimated by downsampling. Upsampling is often used while designing 
multirate filters to reduce the computational load required to use a filter. In 
Signal Processing Toolbox, you can use the function intfilt to design an 
interpolation filter. While intfilt provides a way to design the filter, it does 
not provide the control that gremez offers. Input options for gremez let you 
define the filter response and errors in each passband and stopband, and the 
weighting of the band responses in the filter design.

[b,err,res]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
[H,W]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'db';
freqzplot(H,W,S);

We specify a 30th-order filter with edges at 0.1, 0.4, 0.6, and 0.9, and weight 
them as [1 100 100]. The resulting design has stopbands between f=0.4 and 
f=0.6, and f=0.9 and f=1.0. 

The next figure shows a filter designed by gremez.
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Example—Comparing Filters Designed by gremez and intfilt
Now, to see that gremez lets you develop a better interpolation filter than 
intfilt, we compare filters designed by both functions. We need three sets of 
code to display the filters for our comparison — the first set generates the detail 
plot of the first stopband, the second set displays the second stopband in detail, 
and the third plot focuses on the stopband ripple. To keep the frequency 
response displays consistent, we use the MATLAB plot function to ensure that 
the axes and labels are the same for both filters. freqzplot does not provide 
enough control of the plotting functions.
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Code to display the first stopband.
[b,err]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0.4, 0.6)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
plot(w/pi,20*log10(abs([h' h2']))); ylabel('Stopband #1 (dB)');
v=axis; v=[0.4 0.6 -100 v(4)]; axis(v);

Code set to display the second stopband.
[b,err]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0.9, 1)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
plot(w/pi,20*log10(abs([h' h2'])));  ylabel('Stopband #2 (dB)');
v=axis; v=[0.9 1 -100 v(4)]; axis(v);

Code set to display the passband ripple.
[b,err]=gremez(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0, .1)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
plot(w/pi,20*log10(abs([h' h2'])));  ylabel('Passband (dB)');

In the next figure, showing the first stopband in detail, you see that using the 
weighting function in gremez improved the minimum stopband attenuation by 
almost 20 dB over the intfilt design. 
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If we switch to a plot of the second stopband, shown in the next figure, you see 
that the equiripple attenuation throughout the band is about 6 dB larger for 
the gremez-generated filter than the minimum stopband attenuation of the 
filter designed by intfilt.
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Finally, let’s look at the passbands of the two filters, shown in the next figure. 
Here, the ripple in the gremez-designed filter is slightly larger than the 
passband ripple for the intfilt design. Still, both are very small, less than 
0.014 dB peak-to-peak. 
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Example—Designing a Minimum Phase Lowpass Filter with a Constrained 
Stopband
With gremez you can determine whether the FIR filter you design is minimum 
phase, maximum phase, or linear phase. Through this example we show a 
minimum phase filter and look at the roots of the filter transfer function to see 
that no roots lie outside the unit circle in the z-plane. First, we create the 
minimum phase filter by using gremez with the 'minphase' optional input 
argument.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0],[1 0.1],...
{'w' 'c'},{64},'minphase');

gremez generates a lowpass filter with constrained stopband magnitude equal 
to 0.1, and the filter is minimum phase as well. We could have specified a 
maximum phase design by replacing the 'minphase' option with 'maxphase'. In 
the gremez statement, you might have noticed the cell array {64} entry. The 
cell array entries define the grid density for points across the frequency 
spectrum. 
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Now, plot the filter to view the frequency response.

[H,W]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);

We have a lowpass filter with stopband ripple not exceeding 0.1, as desired.

In the next figure, viewing our filter roots on the z-plane plot shows us that the 
roots lie in or on the unit circle. The zeros of a minimum phase delay FIR filter 
lie on or inside the unit circle. Maximum phase delay filters have zeros that lie 
on or outside the unit circle.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0],[1 0.1],...
{'w' 'c'},{64},'minphase');
[H,W]=freqz(b,1,1024);
zplane(roots(b));
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Notice that the filter, with eight zeros on the unit circle, could be very sensitive 
to quantization. You could use FDATool to investigate the effects of quantizing 
this filter, and to convert the filter to second order sections or make other 
changes the reduce the sensitivity to quantization.

firlpnorm Examples
Review the following examples for an overview of the capabilities of the 
function—each example uses one or more features provided by firlpnorm and 
the least-Pth unconstrained optimization algorithm. Among the filter designs 
you can create are filters with arbitrarily defined magnitude response or 
minimum phase.

Example—Design a Lowpass Filter With pmin = 4 and pmax = 12 
With the filter specifications in this example, the result is a quasi-equiripple 
response lowpass filter. You can see from the plot that follows the code the 
shape of the magnitude response.
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b=firlpnorm(30,[0 0.4 0.45 1],[0 0.4 0.45 1],[1 1 0 0],...
[1 1 10 10],[4 12]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag';
fvtool(b);

Example—Design a Lowpass Least-Squares Filter With a “Peak” In The 
Passband
Using the appropriate set of input arguments, you can add a slight peak in the 
passband of the filter. The following code creates a lowpass filter that 
demonstrates just such tweaking of its passband to add gain. Notice the set of 
inputs for a (the specification of the passband response) [1 1.2 1 0 0] in the 
calling syntax. The 1.2 raises the passband response at the 0.15 normalized 
frequency point defined in f.
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b=firlpnorm(15, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.2 1 0 0],[2 2 2 1 1], [2 2]);
fvtool(b)

    

Example—Create a Low-order Filter With One Band
By using the weighting input arguments and the pmin and pmax options, this 
example creates a low order, n = 5, FIR filter with one band. When you define 
pmin and pmax as 2 and 16, the optimization algorithm starts at pmin = 2 and 
continues to optimize in the filter in the pmax sense. By default, pmin and pmax 
are 2 and 128, achieving the L-infinity or Chebyshev norms.

b=firlpnorm(5, [0 .2 .6  1], [0 1], [0 .4 .2  1], [1 1 1 1],...
[2 16]); 
fvtool(b)
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Reviewing the figure from FVTool shows the single band nature of the filter 
response.

Example—Return a Minimum Phase Bandstop Filter
To generate a minimum phase filter, firlpnorm uses the 'minphase' optional 
input argument. For this example of creating a bandstop filter, p = [2 4] and 
the filter order is set to 21. Notice that weight vector w emphasizes the error in 
the stopband region by using [1 1 5 5 1 1]. Combined with the a vector of 
[1 1 0 0 1 1], the result is a bandstop filter, as shown in the figure that 
follows the code for designing the filter.

b=firlpnorm(21, [0 .25 .35 .7 .8 1], [0 .25 .35 .7 .8 1],...
[1 1 0 0 1 1], [1 1 5 5 1 1], [2 4], 'minphase');
fvtool(b)
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Plotting the zeros on the unit circle shows the minimum phase nature of the 
filter.
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Advanced IIR Filter Designs
Many digital filters use both input values and previous output values from the 
filter to calculate the current output value. FIR filters can be implemented with 
feedback, although this is unusual. Cascaded integrated comb filters are one 
example.

For IIR filters, the transfer function is a ratio of polynomials:

• The numerator of the transfer function. When this expression falls to zero, 
the value of the transfer function is zero as well. Called a zero of the function.

• The denominator of the transfer function. When this expression goes to zero 
(division by zero), the value of the transfer function tends to infinity; called 
a pole of the function or filter.

Filter Design Toolbox introduces three functions: iirlpnorm, iirlpnormc, and 
iirgrpdelay for designing IIR filters that design optimal solutions to your 
filter requirements. With these new filter functions, you can design filters to 
meet your specifications that you could not design using the IIR filter design 
functions in Signal Processing Toolbox.

Function iirlpnorm uses a least-pth norm unconstrained optimization 
algorithm to design IIR filters that have arbitrary shape magnitude response 
curves. iirlpnormc uses a least-pth norm optimization algorithm as well, only 
this version is constrained to let you restrict the radius of the poles of the IIR 
filter.

To let you design allpass IIR filters that meet a prescribed group delay 
specification, iirgrpdelay uses a least-pth constrained optimization 
algorithm. For basic information about the least-pth algorithms used in the IIR 
filter design functions, refer to Digital Filters by Antoniou [1].

This section uses examples to introduce the IIR filter design functions in the 
toolbox. As you review these examples, you may notice that the IIR design 
functions use the same syntax, input, and output arguments. Because the 
design functions use very similar algorithms, common input and output 
arguments apply. Arguments are used in the same way, and carry the same 
defaults and restrictions. That said, if an example of one IIR function uses a 
syntax that does not appear under another IIR design function, chances are 
you can use the first syntax in the other design function as well.
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Examples — Using Filter Design Toolbox Functions to Design IIR Filters
Filter Design Toolbox provides new capabilities for IIR filter design. Because 
of the comprehensive nature of the new IIR design functions, learning by 
example is the best way to discover what you can do with them. This section 
presents a series of examples that investigate the filters you can implement 
through IIR filter design in Filter Design Toolbox. You can view these examples 
as a demonstration program in MATLAB by opening the MATLAB demos and 
selecting Filter Design from Toolboxes. Listed there you see a number of 
demonstration programs. Select one of the following demos to see the IIR filter 
design functions being used to design a variety of filters:

• Least P-norm Optimal IIR Filter Design demonstrates IIR filter design 
function iirlpnorm. Examples include:

- “Example — Using iirlpnorm to Design a Lowpass Filter” on page 2-45

- “Example — Using iirlpnorm to Design a Low Order Filter” on page 2-46

- “Example — Using iirlpnorm to Design a Bandstop Filter” on page 2-47

- “Example — Using iirlpnorm to Design a Noise-Shaping Filter” on 
page 2-49

• Constrained Least P-norm IIR Filter Design demonstrates IIR filter design 
function iirlpnormc. This set of examples includes:

- “Example — Using iirlpnormc to Design a Lowpass Filter” on page 2-50

- “Example — Using iirlpnormc to Design a Bandstop Filter with a 
Constrained Pole Radius” on page 2-52

- “Example — Using iirlpnormc to Design a High-Order Notch Filter” on 
page 2-53

- “Example — Using iirlpnormc to Change an Elliptic Filter to a 
Constrained Lowpass Filter” on page 2-54

• IIR Filter Design Given a Prescribed Group Delay demonstrates IIR 
filter design function iirgrpdelay. These examples include:

- “Example — Using iirgrpdelay to Design a Filter with a User-Specified 
Group Delay Contour” on page 2-57

- “Example — Using iirgrpdelay to Design a Lowpass Elliptic Filter with 
Equalized Group Delay” on page 2-59
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To Open the IIR Filter Design Demos
Follow these steps to open the IIR filter design demos:

1 Start MATLAB.

2 At the MATLAB prompt, enter demos.

The MATLAB Demo Window dialog opens.

3 On the list on the left, double-click Toolboxes to expand the directory tree.

You see a list of the toolbox demonstration programs available in MATLAB.

4 Select Filter Design.

5 From the list on the right, select one of the following demonstration 
programs:

- Least P-norm Optimal IIR Filter Design

- Constrained Least P-norm IIR Filter Design

- IIR Filter Design Given a Prescribed Group Delay

A few examples include comparisons to other filter design functions and 
analysis notes. For details about using the IIR design functions iirlpnorm, 
iirlpnormc, and iirgrpdelay, refer to Chapter 13, “Function Reference.” 
While this set of examples covers many of the options for the functions, more 
options exist that do not appear in these examples. Examples cover common or 
interesting IIR design options to highlight some of the capabilities of the design 
functions.

In these examples, you can see that iirlpnorm, iirlpnormc, and iirgrpdelay 
use many of the input arguments used by gremez, plus others such as the 
denominator order. At the most basic level, each IIR filter design function uses 
the input arguments N, D, F, Edges, and A — the filter order for the numerator 
and denominator (so you can specify different order numerators and 
denominators), the vector containing the filter cutoff frequencies, the band 
edge frequencies, and the filter response at each frequency point. F and A must 
have matching numbers of elements; they can exceed the number of elements 
in Edges. You use this feature to specify a gain contour within a band defined 
by the entries in Edges. Every frequency that appears in Edges must also be an 
element of F. Also, the first band edge must equal the first frequency and the 
last band edge must equal the last frequency in F.
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iirlpnorm Examples
Each of these examples uses one or more feature provided in the function 
iirlpnorm. The examples build on one another, although they can be run 
separately. Review each example to get an overview of the capabilities of the 
function.

Example — Using iirlpnorm to Design a Lowpass Filter
To design a lowpass filter with maximum gain of 1.6 in the passband, we use 
the syntax iirlpnorm(n,d,f,edges,a,w). To duplicate the filter in the figure, 
use this code.

[b,a]=iirlpnorm(3, 11, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.6 1 0 0], [1 1 1 100 100]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 0.15 0.4 0.5 1], [1 1.6 1 0 0], 'r'); hold off;

When you look at the magnitude response curve, notice the response reaches 
1.6 in the passband. 
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s

Example — Using iirlpnorm to Design a Low Order Filter
The curves in the next figure show the results of using iirlpnorm to design a 
low-order filter with a single band. For this design, we introduce a new 
two-element vector P=[Pmin,Pmax] that defines the minimum and maximum 
values of P in the least-pth norm algorithm. If you do not specify P, the default 
values are [2 128], resulting in the L∞ or Chebyshev norm. Specify Pmin and 
Pmax to be even numbers. To view the placement of the poles and zeros for your 
filter before the optimization takes place, replace [Pmin Pmax] with the string 
'inspect'. With the option 'inspect' in use, the algorithm does not optimize 
the filter design.
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We specified a lowpass filter with third-order numerator and denominator, and 
used the P vector to limit the optimization range, by using the function syntax 
iirlpnorm(n,d,f,edges,a,w,p).

[b,a]=iirlpnorm(3, 3, [0 .2 .6 .8 1], [0 1], [0 .4 .2 0 1],...
[1 1 1 1 1], [2 64]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .2 .6 .8 1], [0 .4 .2 0 1], 'r'); hold off;

Setting W=[1 1 1 1 1] is the same as not setting weight values.

Example — Using iirlpnorm to Design a Bandstop Filter
Designing IIR bandstop filters is straightforward. Enter the frequency, 
magnitude, edges, and weight vectors using the syntax 
iirlpnorm(n,d,f,edges,a,w) as shown here. To ensure that the stopband 
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rejects undesired frequencies aggressively, we weight the magnitude response 
in the stopband more heavily by entering the weight vector [1 1 5 5 1 1], 
telling the optimization algorithm that meeting the inband response 
specification is five times as important as meeting the out-of-band response.

[b,a]=iirlpnorm(10, 7, [0 .25 .35 .7 .8 1],...
[0 .25 .35 .7 .8 1], [1 1 0 0 1 1], [1 1 5 5 1 1]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .25 .35 .7 .8 1], [1 1 0 0 1 1], 'r'); hold off;

As you can see from the following figure, the filter meets our design needs quite 
closely.
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Example — Using iirlpnorm to Design a Noise-Shaping Filter
In this example, we create a lowpass filter with a rising magnitude in the 
passband. Communications designers use the filter when they simulate the 
effects of motion between a transmitter and receiver, such as you find in 
cellular telephone networks. Here, we use iirlpnorm to design the same filter. 
Because of the complex shape of the passband, we define the vectors f, a, w, and 
edges in the workspace, then use the vector names in the iirlpnorm 
statement.

f = 0:0.01:0.4;
a = 1.0 ./ (1 - (f./0.42).^2).^0.25;
f = [f 0.45 1];
a = [a 0 0];
edges = [0 0.4 0.45 1];
w = ones(1, length(a));
[b,a]=iirlpnorm(4, 6, f, edges, a, w);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot(F,A, 'r'); hold off;

When you compare the figure below to the filter design in “Getting Started with 
the Toolbox” on page 1-15, you see they match very well.
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iirlpnormc Examples
Each of these examples uses one or more feature provided in the function 
iirlpnormc. Review each example to get an overview of the capabilities of the 
function.

Example — Using iirlpnormc to Design a Lowpass Filter
Just as you use iirlpnorm to design lowpass filters, you can use iirlpnormc to 
design them as well. iirlpnormc lets you limit the radius of the filter poles 
when you specify the filter in the function. By restricting the poles to be less 
than a certain distance from the origin of the unit circle in the z-plane, the filter 
remains stable, while possibly improving the robustness of the filter to 
quantization effects. In this lowpass filter example, we restrict the pole radius 
not to exceed 0.95, using the function syntax 
iirlpnormc(n,d,f,edges,a,w,radius).
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[b,a]=iirlpnormc(3, 11, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.6 1 0 0], [1 1 1 100 100], 0.95);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 0.15 0.4 0.5 1], [1 1.6 1 0 0], 'r'); hold off;

radius takes values between 0 and 1.

Compared to the unconstrained iirlpnorm lowpass filter example (refer to 
“iirlpnorm Examples” on page 2-45), you see that the filter performance is 
about the same, although the ripple in the passband is slightly greater, and the 
transition somewhat sharper. The difference between these two designs is the 
constraint applied to the poles when you use iirlpnormc with a radius value. 
Both filters demonstrate peaks in their passband. 
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Example — Using iirlpnormc to Design a Bandstop Filter with a 
Constrained Pole Radius
Here we use iirlpnormc to design a bandstop filter. Notice that we specify 
different orders for the numerator (n=10) and denominator (d=7) and the 
frequency and edges vectors are the same. With radius=.91, none of the 11 
filter poles lies farther than 0.91 away from the origin, as you can see in the 
zero-pole plot. 

f = [0 .25 .35 .7 .8 1];
[b,a]=iirlpnormc(10, 7, f, f, [1 1 0 0 1 1], [1 1 5 5 1 1], .91);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .25 .35 .7 .8 1], [1 1 0 0 1 1], 'r'); hold off;

To generate the zero-pole plot, use zplane(b,a) at the MATLAB prompt.

When we plot the magnitude response curve, the emphasis we placed on 
reducing the error in the stopband is clear — note the close match between the 
desired and calculated responses. (We weighted the magnitude response 
w=[1 1 5 5 1 1] to minimize the error in the vicinity of the stopband 
frequency points.)
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Example — Using iirlpnormc to Design a High-Order Notch Filter
To create an optimized design for an IIR high-order notch filter, use 
iirlpnormc to design the filter. The following code results in the optimal 
solution to creating a filter with different numerator and denominator orders, 
and with a maximum pole radius of 0.92. 

f = [0 0.37 0.399 0.401 0.43 1];
[b,a]=iirlpnormc(2, 17, f, f, [1 1 0 0 1 1], [1 1 2 2 1 1], 0.92);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; 
plot([0 0.37 0.399 0.401 0.43 1], [1 1 0 0 1 1], 'r'); hold off;

Note the frequency vector entries 0.37, 0.399, 0.401, and 0.43. These 
represent the cutoff points for the filter stopband, a fairly narrow filter. 
Looking at the filter response plot, you see it is similar to the single-point filter 
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example we designed with the gremez function (refer to “Example—Designing 
a Single-Point Band Filter” on page 2-18). This filter has two pairs of 
constrained poles.

Example — Using iirlpnormc to Change an Elliptic Filter to a Constrained 
Lowpass Filter
Using an elliptic filter design as the initial conditions, with a maximum pole 
radius of 0.96, we reduce the pole radius to 0.95 when we use iirlpnormc to 
create an optimal filter solution. The result is a filter with the same band edge 
frequencies, and a gain in the passband greater than one. The following code 
uses the function ellip from Signal Processing Toolbox to create an elliptical 
filter. Then we use the function iirlpnormc with the syntax 
iirlpnormc(n,d,f,edges,a,w,radius,p, dens,initnum,initden). initnum 
and initden are the initial estimates of the filter numerator and denominator 
coefficients. We use be and ae from our elliptic filter as the vectors Initnum and 
initden.
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[be,ae]=ellip(4,1,20,0.3);
f = [0 0.3 0.323 1];
[b,a]=iirlpnormc(4, 4, f, f, [1 1 0 0], [1 1 1 1], .95,...
[128 128], 20, be, ae);
[h,w,s]=freqz(b,a,1024);
he=freqz(be,ae,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot([h he],w,s);

A few points to think about when you use iirlpnormc. These hints can help you 
converge on a good filter design:

• iirlpnormc implements a weighted, least-pth optimization algorithm.

• Check the location and radii of the designed filter poles and zeros.

• If the zeros are on the unit circle and the poles are well inside the circle, try 
increasing the numerator order N, or reducing the error weighting (W) in the 
stopband.
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• If several poles have large radii, and the zeros are well inside the unit circle, 
try increasing D, the denominator order, or reducing the error weighting in 
the passband.

• As you reduce the pole radius, you may need to increase the denominator 
order.

iirgrpdelay Examples
Filter Design Toolbox provides a new filter design function iirgrpdelay for 
designing allpass IIR filters that have group delay characteristics that meet 
your needs. When you cascade these allpass filters with other IIR filters, they 
act as compensating elements. They produce equalized or specified group delay 
across the combined filter frequency response while maintaining the IIR filter 
pass and stop bands. For more information about group delay in filters, refer 
to “Signal Processing Basics” in Signal Processing Toolbox User’s Guide.

Note  iirgrpdelay creates allpass filters you use to compensate for the phase 
changes caused by other filters. You cannot use iirgrpdelay to create filters 
that both filter input signals and compensate for phase changes in output 
signals.

In this section, we introduce the function iirgrpdelay through a series of 
examples. Each of these examples uses one or more feature provided in the 
function. The examples build on one another, although they can be run 
separately. By reviewing each example you get an overview of the capabilities 
of the design function.

In much the same way that you use other IIR filter design functions to create 
filters with arbitrary magnitude response curves, you use iirgrpdelay to 
create filters that have arbitrary group delay curves in the filter passband and 
stopband. (In most cases, specifying the group delay in the stopband is not 
useful; the filter rejects those frequencies by design. Nonetheless, you can 
specify the group delay for frequencies that fall within filter stopbands.) 

To specify a filter that approximates a given relative group delay, use 
iirgrpdelay with the following input argument syntax

iirgrpdelay(N,F,Edges,Gd)
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where N is the filter order, F is a vector containing frequencies between 0 and 
1, Gd is a vector whose elements are the desired group delay at the frequencies 
specified in F, and Edges specifies the band edges. Filter order N must be an 
even number, and the vectors F and Gd must have the same number of 
elements. To let you specify the shape of the group delay within a band or 
bands, vectors F and Gd can contain more elements than Edges.

Considering the following ideas can help you design your group delay 
compensator:

• After you use iirgrpdelay to design a filter, use freqz, grpdelay, and 
zplane to check your design for undesirable features.

• Remember that allpass filters have positive group delay. You cannot develop 
allpass filters that have negative group delay characteristics.

• For some difficult filter optimization problems, use the iirgrpdelay syntax
iirgrpdelay(n,d,edgees,a,w,radius,p,dens,initden)

where initden is a vector containing your estimates of the transfer function 
coefficients for the denominator. You can use the Pole-Zero editor in Signal 
Processing Toolbox to generate values for initden.

• If the poles and zeros of your filter design cluster together, you may need to 
increase the filter order or relax the pole radius restriction (if you used one).

Example — Using iirgrpdelay to Design a Filter with a User-Specified 
Group Delay Contour
To show the ability to create an arbitrary shape group delay contour in the 
passband of an IIR filter, we use iirgrpdelay and specify the group delay we 
desire. Notice that we also specify the maximum pole radius of 0.99. We plot 
the ideal group delay contour on the figure as well to compare the desired result 
to the designed filter.

[b,a,tau] = iirgrpdelay(8, [0 0.1 1], [0 1], [2 3 1],...
[1 1 1], 0.99);
[G,F] = grpdelay(b,a, 0:0.001:1, 2);
plot(F, G); hold on; plot([0 0.1 1], [2 3 1]+tau, 'r'); hold off;
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The straight lines represent the desired group delay contour, the wavy line the 
designed contour. The desired group delay, [2 3 1], is relative. Note that the 
actual group delay approximates [8 9 7]. If we increase the filter order, to 10 
for example, the approximation improves, but the absolute group delay 
increases.

One of the output arguments for iirgrpdelay is tau, the resulting group delay 
offset. In all cases, filters created by iirgrpdelay have a group delay that 
approximates (gd + tau) where gd is the specified relative group delay of the 
filter.

When you look at the zero-pole plot for our filter (use the function zplane), you 
can see that the poles stay well within the radius constraint. Optimizing the 
filter may not result in poles that are near the constraint. Pole constraints 
come into play only when needed to limit the optimization. In this example, our 
design did not require the constraint to stay within the bounds of the unit 
circle.
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You can verify that this is an allpass filter by plotting the magnitude response 
curve for the design. Use freqz(b,a) to plot the curve.

In general, you determine the contour to use for the group delay equalization 
of an IIR filter by subtracting the filter group delay from the filter maximum 
group delay. In the next example, we use this process to create our lowpass 
filter.

Example — Using iirgrpdelay to Design a Lowpass Elliptic Filter with 
Equalized Group Delay
The following code designs a pair of filters that together create a lowpass filter 
with equalized group delay.

[be,ae] = ellip(4,1,40,0.2); % Lowpass filter
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2);
g1 = max(g)-g;
[b,a,tau] = iirgrpdelay(8, f, [0 0.2], g1); % Phase compensator
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;

Cascading the filters is the same as adding the group delay for each filter 
frequency-point by frequency-point (g+gd in the plot function input 
arguments). In the figure, the lower curve is the group delay for the elliptic 
filter. The compensated, or equalized, group delay is the upper curve — an 
essentially flat group delay across the passband from 0 to 0.2. Since this 
example used the lowpass elliptic filter from our earlier iirlpnorm examples, 
you can see that combining these filters results in a lowpass filter with 
equalized group delay. Note that the group delay of the combination is twice 
the maximum group delay of the reference filter. When you use an allpass filter 
to equalize the group delay of a reference filter, the final group delay is the sum 
of the group delays of the reference and allpass filters. 
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To determine the group delay contour necessary to compensate for the phase 
effects of our elliptic filter, we use the elliptic filter group delay as a reference.

In the example, we used grpdelay to return vector g containing the group delay 
value at many frequencies across the elliptic filter passband. After determining 
the maximum group delay in the elliptic filter passband (returned by max(g) in 
the example code), we subtract each individual group delay from the maximum 
group delay (g1=max(g)-g). The result is vector g1 containing values that 
define a curve that is the mirror image of the group delay contour of our elliptic 
filter. Then we use g1 as the input group delay values to iirgrpdelay, and the 
resulting allpass filter has a group delay contour that equalizes the group delay 
of our lowpass elliptic filter, as shown in the figure. 

Example — Demonstrating Passband Equalization for a Bandpass 
Chebyshev Filter
You can use iirgrpdelay to create filters that compensate for the group delay 
of many kinds of filters. In this example, we create an allpass filter that 
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equalizes the group delay of a bandpass filter. In the figure, the lower curve is 
the group delay of the bandpass filter and the upper curve is the equalized 
group delay for the combination of the bandpass filter and the allpass filter. 
Group delay variation across the passband is less than 0.2.

[bc,ac] = cheby1(2,1,[0.3 0.4]); % Bandpass filter design
f = 0.3:0.001:0.4;
g = grpdelay(bc,ac,f,2);
g1 = max(g)-g;
wt = ones(1, length(f));
[b,a,tau] = iirgrpdelay(8, f, [0.3 0.4], g1, wt, 0.95);
f = 0:0.001:1;
g = grpdelay(bc,ac,f,2);
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;
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Example — Demonstrating Passband Equalization for a Bandstop 
Chebyshev Filter
Our final example shows how to equalize the group delay in the passband of a 
bandstop filter. Since this filter has two passbands, we equalize the group 
delay in each band according to the needs of each band. Vectors g1 and g2 in 
the example code contain the group delays within each passband of the 
bandpass filter. We ignore the stopband group delay for this case. To determine 
the group delay contour across both passbands, we concatenate g1 and g2 
(using the command g = [g1; g2]), then use the vector g as the basis for the 
group delay input argument gx to iirgrpdelay.

[bc,ac] = cheby2(3,1,[0.3 0.8], 'stop'); % Bandstop filter
f1 = 0.0:0.001:0.3;
g1 = grpdelay(bc,ac,f1,2);
f2 = 0.8:0.001:1;
g2 = grpdelay(bc,ac,f2,2);
f = [f1 f2]; g = [g1; g2]; % Concatenate the passband group delays
gx = max(g)-g;
wt = ones(1, length(f));
[b,a,tau] = iirgrpdelay(14, f, [0 0.3 0.8 1], gx, wt, 0.95);
f = 0:0.001:1;
g = grpdelay(bc,ac,f,2);
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;

The figure shows that our approach works. You see that the group delay in the 
passbands is well-equalized (illustrated by the upper curve; the lower curve 
presents the nonequalized group delay). The stop band is unaffected, and the 
overall equalized group delay variation in the passbands is close to a constant. 
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Robust Filter Architectures
We have been considering FIR and IIR filters whose transfer function is 
represented by constant coefficients and where the input signals and 
coefficients can be any double-precision value from -∞ to +∞. These systems 
are in the discrete time domain, with infinite precision values for the 
dependent variable, often magnitude.

When you represent filters in software, or in general purpose or special purpose 
computing hardware, the inputs to the filters and the filter coefficients can be 
represented only by discrete values. The process of converting the infinite 
precision variables to discrete values is called quantization and represents a 
source of error when you implement digital filters. 

Converting to the discrete domain produces three sources of errors:

• Error caused by the discrete representation of infinitely precise information, 
such as filter transfer function coefficients or signal amplitude values. Real 
systems create error when they quantize amplitude values.

• Analog-to-digital conversion error in the input signal.

• Arithmetic round off errors caused by the limited word length available to 
represent the data in the arithmetic process.

Transfer Function Coefficient Quantization Error
To illustrate the effects of converting from continuous to discrete 
representations, and to show error sources resulting from quantization, 
consider the following first-order IIR filter.

The constant coefficient difference equation that defines this filter is

a

Z-1

Xx[n] y[n]

v[n]

y n[ ] α y n 1–[ ] x n[ ]+=
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where y[n] and x[n] are the output and input signal variables. In transfer 
function form, the following equation describes our IIR filter.

When you implement this filter form in hardware, the filter coefficient 
α assumes discrete values that approximate the design value. Therefore, the 
actual transfer function that you implement is

where and  are the close approximations to the original H and α in the 
filter design. Notice that this transfer function differs from the theoretical 
function H(z). As a result, the actual filter response can differ substantially 
from the ideal response. 

The main effect of transfer function coefficient quantization is to move the 
poles and zeros to different locations in the z-plane, away from their desired, or 
designed locations (the locations for the ideal, nonquantized coefficient filter). 
Moving the poles or zeros can have two effects:

• Changing the frequency response of the quantized filter so it is not the same 
as the ideal or designed filter.

• Moving poles from inside to outside the unit circle, causing the quantized IIR 
filter to be unstable. Applies only to IIR filters.

Input Sampling Error (A/D Error)
Given the difference equation for our IIR filter, from earlier

where x[n] is the sampled output from an analog to digital converter. Sampling 
the continuous signal xa(t) results in x[n]. Then the sampled input to the filter 
from the A/D convertor, , is

and e[n] is the error in the A/D conversion process. Our discrete input to the 
filter no longer matches the continuous signal xa(t). Discrete-time input xa(t) 
does not match x[n] because analog-to-digital conversion made the input 
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discrete in time. Similarly, quantized input  does not match x[n] because 
it has been convert to discrete data in amplitude.

Arithmetic Quantization Error
Quantization in arithmetic operations causes another error. For our first-order 
filter example, the output from our multiplier v[n] is generated by multiplying 
the signal, y[n-1] with the transfer function coefficients, α

and storing the result. When we quantize the result to fit it into a storage 
register, we generate a quantized value that we write as

where eα[n] is the error sequence resulting from the product quantization 
process.

Limitcycles and Arithmetic Quantization
There is another source of errors in digital filter implementation, caused by the 
nonlinearity of quantized arithmetic operations. These errors are apparent in 
an effect called limit cycling that occurs at the filter output. Limit cycles 
usually appear when there is no input to the filter, or the input to the filter is 
constant or sinusoidal. For more information on limit cycles and the function 
limitcycle, refer to the limitcycle reference page in the online 
documentation. To learn more about quantization, refer to Chapter 5, 
“Quantization and Quantized Filtering.”

Low Sensitivity Filter Architectures
Quantizing filter coefficients can have serious effects on the performance of 
digital filters. As a result of coefficient quantization, the frequency response of 
the filter with quantized coefficients can be significantly different from the 
desired filter without quantized coefficients. In some cases, the performance of 
the quantized filter can make it unsuitable for your application.

Low sensitivity filter architectures, or robust architectures as they are 
sometimes called, are interesting because they can reduce the effects of 
coefficient quantization. By being inherently less sensitive to coefficient 
quantization, these filter architectures withstand the quantization process and 
result in filters that retain the performance of the original filter.

x̂ n[ ]

v n[ ] α y n 1–[ ]=

v̂ n[ ]
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Approaches to Designing Low Sensitivity Filters
Consider either of two approaches to designing low sensitivity filters:

• Convert low sensitivity analog filters composed of inductors, capacitors, and 
resistors to digital architectures by replacing the analog components and 
connections with their digital equivalents so the digital filter approximates 
the analog version.

• Develop digital filter implementations that respond directly to the conditions 
that create low coefficient sensitivity in a digital filter designs.

Filter Design Toolbox uses the latter approach to provide low sensitivity filter 
architectures.

Generally, filter architecture sensitivity ranges from high for direct forms to 
very low for coupled allpass forms. For reference, the following list ranks the 
filter forms in the toolbox by their sensitivity to coefficient quantization, from 
high sensitivity to low:

1 Direct forms—often very sensitive to quantization

2 Lattice forms—moderately sensitive to quantization

3 Allpass forms—quite robust under quantization

Quantization sensitivity is also a function of the locations of the poles and zeros 
for a filter, so use this list for guidance only.

Within the forms 

• FIR filters tend to be less sensitive than IIR filters

• For the direct forms, second-order section implementations are often less 
sensitive to coefficient quantization

Filter Design Example That Includes Quantization
To demonstrate the effects of coefficient quantization on the performance of a 
filter, this example creates a 5th-order, lowpass elliptic IIR filter. We choose a 
cutoff frequency of 0.4π radians (normalized frequency from 0 to 1), passband 
ripple less than 0.5 dB, and stopband attenuation of at least 40 dB. In the 
figure you see the filter response. We used the Filter Design and Analysis tool 
(FDATool) to design the filter. Notice that we used the default filter structure 
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df2t, or Direct form 2 transposed. When we want to compare the quantized 
version of the filter to the floating-point filter, FDATool lets us quantize the 
filter and display the filter response curves together.

We could have used the function ellip from Signal Processing Toolbox to 
create the filter.

[b,a] = ellip(5,0.5,40,0.4);

The results are identical because FDATool uses the same function to design the 
lowpass filter.

We quantize the filter by selecting Turn quantization on. FDATool quantizes 
our elliptic filter and displays the magnitude response for both the original (or 
reference) filter and the quantized filter. For this quantization process we use 
the default coefficient format settings in FDATool. Later in this example we 
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change the coefficient format to illustrate the effects of changing the word 
length used to represent the filter coefficients.

Quantizing the coefficients has damaged our filter magnitude response. Our 
quantized filter transition band starts much earlier and is much shallower, and 
the stopband attenuation has been reduced. When we look at the zero-pole plot 
for the unquantized and quantized versions of our filter, we see that 
quantization has moved the poles from their designed locations. Coefficient 
overflow, rather than sensitivity to quantization, caused the terrible quantized 
response in this filter. Coefficient quantization changes filter coefficients by at 
most one quantization level. Overflow can change the coefficients by an 
arbitrarily large amount. In this case, quantization changed the largest 
magnitude coefficient from 2.49 to saturation at 1.0. You can see this from the 
coefficient view by selecting Analysis -> View Filter Coefficients. Thus we see 
how sensitive this direct form IIR filter is to coefficient quantization.
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To continue this example, we look at the effects of changing the coefficient 
format from fixed-point, 16-bits to fixed-point, 8-bits. After we make the 
desired change, we see the response curves shown in this figure.
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When you inspect the entries in the Set Quantization Parameters dialog, you 
see that we changed the coefficient format to [8 7], meaning we are using 
eight-bit wordlength and seven-bit fraction length to represent each filter 
coefficient. Changing the coefficient format to 8-bit, fixed point representation 
causes the effects shown in the figure — the passband rolls off early, the 
transition is less sharp, and the cutoff frequency lies beyond our 0.4 
specification. 

In FDATool, select Analysis->Pole/Zero Plot to view the poles and zeros for 
the 8-bit filter plotted on the unit circle. Or you might select Analysis->View 
Filter Coefficients to see the coefficient numerical values for the filter.

One more experiment in this example. We try changing the Direct form II 
transposed (df2t) filter structure to use second-order sections, which tend to 
be resistant to quantization effects. As we see in the figure, the elliptic filter 



2 Designing Advanced Filters

2-72

that uses second-order sections, even with the 8-bit coefficient format, 
performs identically to our reference filter.

In the Quantization Parameters options, you may note that the Input/output 
scaling changed when we converted our filter to second-order sections. 
Although we did not explicitly change the scaling by using the Scale 
transfer-fcn <=1 option, converting the filter structure required that the gain 
for the new sections be changed to maintain the same overall gain for the filter. 
Thus our converted filter, which now has three sections, has unique scale 
factors for each section. The vector entries [0.0625 1 2 1] represent the scale 
factors applied to each section. 0.0625 is the scale factor applied to the input, 
1 and 2 are the factors applied to the inputs of the second and third sections, 
and 1 is applied to the output from the third section. The resulting filter has 
the same gain as the original filter.
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Applications (p. 3-4)

Read a short section about adaptive filters and their uses

Adaptive Filters in the Filter Design 
Toolbox (p. 3-11)

Learn about the adaptive filters provided in the toolbox

Examples of Adaptive Filters That Use 
LMS Algorithms (p. 3-12)

Presents examples of adaptive filters that use LMS 
algorithms to determine filter coefficients

Example of Adaptive Filter That Uses 
RLS Algorithm (p. 3-33)
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algorithms to determine filter coefficients

Examples of Adaptive Kalman Filters 
(p. 3-38)

Offers necessarily brief set of examples of adaptive 
Kalman filters

Selected Bibliography (p. 3-41) Lists a few books that cover adaptive filters in both detail 
and with broad scope
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Over the past three decades, digital signal processors have made great 
advances in increasing speed and complexity, and reducing power 
consumption. As a direct result, real-time adaptive filtering is quickly 
becoming an enabling technology for the future of communications, both wired 
and wireless. In the following sections, this guide presents an overview of 
adaptive filtering; discussions of some of the common applications for adaptive 
filters; and details about the adaptive filters available in the toolbox.

Listed below are the sections that cover adaptive filters in this guide. Within 
each section, examples and a short discussion of the theory of the filters 
introduces the adaptive filter concepts.

• “Overview of Adaptive Filters and Applications” on page 3-4 — presents 
a general discussion of adaptive filters and their applications.

- “System Identification” on page 3-7 — talks using adaptive filters to 
identify the response of an unknown system such as a communications 
channel or a telephone line.

- “Inverse System Identification” on page 3-8 — talks about using adaptive 
filters to develop a filter which has a response that is the inverse of an 
unknown system. You can overcome echoes in modem connections and 
local telephone lines by inserting an inverse adaptive filter and using it to 
compensate for the induced noise on the lines.

- “Noise Cancellation (or Interference Cancellation)” on page 3-9 — useful 
for performing active noise cancellation where the filter adapts in 
real-time to keep the error small. Compare this to system identification 
where the filter adapts once and stays fixed thereafter.

- “Prediction” on page 3-9 — describes using adaptive filters to predict a 
signals future values.

• “Adaptive Filters in the Filter Design Toolbox” on page 3-11 lists the 
adaptive filters included in the toolbox.

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 3-12 
presents a discussion of using LMS techniques to perform the filter 
adaptation process.

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 3-33 
discusses adaptive filters based on the RMS techniques for minimizing the 
total error between the known and unknown systems.
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• “Examples of Adaptive Kalman Filters” on page 3-38 presents an example of 
as adaptive filter that uses the Kalman algorithm to determine filter 
coefficients.

For more detailed information about adaptive filters and adaptive filter theory, 
refer to the books listed in “Selected Bibliography” on page 3-41.
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Overview of Adaptive Filters and Applications
Adaptive filters self learn. As the signal into the filter continues, the adaptive 
filter coefficients adjust themselves to achieve the desired result, such as 
identifying an unknown filter or cancelling noise in the input signal. In 
Figure 3-1, the shaded box represents the adaptive filter, comprising the 
adaptive filter and the adaptive RLS algorithm. For the general adaptive 
algorithm block diagram, look at Figure 3-2. 

Figure 3-1:  Block Diagram That Defines the Inputs and Output of a Generic 
RLS Adaptive Filter

text
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Figure 3-2:  Block Diagram Defining General Adaptive Filter Algorithm Inputs 
and Outputs

An adaptive FIR or IIR filter designs itself based on the characteristics of the 
input signal to the filter and a signal which represent the desired behavior of 
the filter on its input. Designing the filter does not require any other frequency 
response information or specification. To define the self learning process the 
filter uses, you select the adaptive algorithm used to reduce the error between 
the output signal y(k) and the desired signal d(k). When the LMS performance 
criteria for e(k) has achieved its minimum value through the iterations of the 
adapting algorithm, the adaptive filter is finished and its coefficients have 
converged to a solution. Now the output from the adaptive filter matches 
closely the desired signal d(k). When you change the input data characteristics, 
sometimes called the filter environment, the filter adapts to the new 
environment by generating a new set of coefficients for the new data. Notice 
that when e(k) goes to zero and remains there you achieve perfect adaptation; 
the ideal result but not likely in the real world. 

The adaptive filter functions in this toolbox implement the shaded portion of 
Figure 3-1, replacing the adaptive algorithm with an appropriate technique. 
Therefore, to use one of the functions you provide the input signal or signals 
and the initial values for the filter. A later section in this User’s Guide, 
“Adaptive Filters in the Filter Design Toolbox” offers details about the 
algorithms available and the inputs required to use them in MATLAB.
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Choosing an Adaptive Filter
With many adaptive filters to choose from, selecting the one that best meets 
your needs requires careful consideration. An exhaustive discussion of the 
criteria for selecting your approach is beyond the scope of this User’s Guide. 
However, a few guidelines can help you make your choice.

Two main considerations frame the decision — the filter job to do and the filter 
algorithm to use.

When you begin to develop an adaptive filter for your needs, most likely the 
primary concern is whether using an adaptive filter is a cost-competitive 
approach to solving your filtering needs. Generally many areas determine the 
suitability of adaptive filters (these areas are common to most filtering and 
signal processing applications). Four such areas are:

• Filter consistency — does your filter performance degrade when the filter 
coefficients change slightly as a result of quantization, or you switch to 
fixed-point arithmetic? Will excessive noise in the signal hurt the 
performance of your filter? 

• Filter performance — does your adaptive filter provide sufficient 
identification accuracy or fidelity, or does the filter provide sufficient signal 
discrimination or noise cancellation to meet your requirements?

• Tools — do tools exist that make your filter development process easier? 
Better tools can make it practical to use more complex adaptive algorithms.

• DSP requirements — can your filter perform its job within the constraints of 
your application. Does your processor have sufficient memory, throughput, 
and time to use your proposed adaptive filtering approach? Can you trade 
memory for throughput: use more memory to reduce the throughput 
requirements or use a faster signal processor?

Of the preceding considerations, characterizing filter consistency or robustness 
may be the most difficult. 

Using the simulations in the Filter Design Toolbox offers a good first step in 
developing and studying these issues. Often, beginning your study using one of 
the least mean squares (LMS) algorithm filters provides both a relatively 
straightforward filter to implement and a sufficiently powerful tool for 
evaluating whether adaptive filtering can be useful for your problem.
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Additionally, starting with an LMS approach can form a solid baseline against 
which you can study and compare the more complex adaptive filters available 
in the toolbox. Finally, your development process should, at some time, test 
your algorithm and adaptive filter with real data. For truly testing the value of 
your work there is no substitute for actual data.

With these considerations in mind, here are some applications that commonly 
use adaptive filters.

System Identification
One common application is to use adaptive filters to identify an unknown 
system, such as the response of an unknown communications channel or the 
frequency response of an auditorium, to pick fairly divergent applications. 
Other applications include echo cancellation and channel identification. 

In the figure, the unknown system is placed in parallel with the adaptive filter.

Figure 3-3:  Using an Adaptive Filter to Identify an Unknown System

Clearly, when e(k) is very small, the adaptive filter response is close to the 
response of the unknown system. In this case the same input feeds both the 
adaptive filter and the unknown. When the unknown system is a modem, the 
input often represents white noise, and is the sound you hear from your modem 
when you log in to your Internet service provider.

text

Unknown System
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Inverse System Identification
By placing the unknown system in series with your adaptive filter, your filter 
becomes the inverse of the unknown system when e(k) gets very small. As 
shown in the figure the process requires a delay inserted in the desired signal 
d(k) path to keep the data at the summation synchronized. Adding the delay 
keeps the system causal.

Figure 3-4:  Determining an Inverse Response to an Unknown System

Without the delay element, the adaptive filter algorithm tries to match the 
output from the adaptive filter (y(k)) to input data (x(k)) that has not yet 
reached the adaptive elements because it is passing through the unknown 
system. In essence, the filter ends up trying to look ahead in time. As hard as 
it tries, the filter can never adapt: e(k) never reaches a very small value and 
your adaptive filter never compensates for the unknown system response. And 
it never provides a true inverse response to the unknown system. Including 
a delay equal to the delay caused by the unknown system prevents this 
condition.

Plain old telephone systems (POTS) commonly use inverse system 
identification to compensate for the copper transmission medium. When you 
send data or voice over telephone lines, the copper wires behave like a filter, 
having a response that rolls off at higher frequencies (or data rates) and 
possibly having other anomalies as well. Adding an adaptive filter which has a 
response that is the inverse of the wire response, adapting in real time, 
removes the rolloff and the anomalies, increasing the available frequency 
range and data rate for the telephone system. 

Adaptive FilterUnknown System SUM
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+
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Noise Cancellation (or Interference Cancellation)
In noise cancellation, adaptive filters let you remove noise from a signal in real 
time. Here, the desired signal, the one to clean up, combines noise and desired 
information. To remove the noise, feed a signal, n'(k) to the adaptive filter that 
represents noise that is correlated to the noise to remove from our desired 
signal. 

Figure 3-5:  Using an Adaptive Filter to Remove Noise from an Unknown 
System

So long as the input noise to the filter remains correlated to the unwanted noise 
accompanying the desired signal, the adaptive filter adjusts its coefficients to 
reduce the value of the difference between y(k) and d(k), removing the noise 
and resulting in a clean signal in e(k). Notice that in this application, the error 
signal actually converges to the input data signal, rather than converging to 
zero.

Prediction
Predicting signals may seem to be an impossible task, without some limiting 
assumptions. Assume that the signal is either steady or slowly varying over 
time, and periodic over time as well. 

Adaptive Filter SUMn'(k)

d(k)

y(k) e(k)
+

_

s(k) + n(k)
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Figure 3-6:  Predicting Future Values of a Periodic Signal

Accepting these assumptions, the adaptive filter must predict the future values 
of the desired signal based on past values. When s(k) is periodic and the filter 
is long enough to remember previous values, this structure with the delay in 
the input signal, can perform the prediction. You might use this structure to 
remove a periodic signal from stochastic noise signals. 

Finally, notice that most systems of interest contain elements of more than one 
of the four adaptive filter structures. Carefully reviewing the real structure 
may be required to determine what the adaptive filter is adapting to. Also, for 
clarity in the figures, the analog-to-digital (A/D) and digital-to-analog (D/A) 
components do not appear. Since the adaptive filters are assumed to be digital 
in nature, and many of the problems produce analog data, converting the input 
signals to and from the analog domain is probably necessary.

Adaptive Filter SUM
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+

_
x(k)

Delay



Adaptive Filters in the Filter Design Toolbox

3-11

Adaptive Filters in the Filter Design Toolbox
Filter Design Toolbox contains more than a half-dozen functions for applying 
adaptive filters to data. As you see in Table 3-1, the functions use various 
algorithms to determine the weights for the filter coefficients of the adapting 
filter. While the algorithms differ in their detail implementations, the LMS and 
RLS share a common operational approach — minimizing the error between 
the filter output and the desired signal; the Kalman algorithm function is 
somewhat different in how it determines the filter coefficients.

Presenting a detailed derivation of the Wiener-Hopf equation and determining 
solutions to it is beyond the scope of this User’s Guide. Full descriptions of the 
theory appear in the adaptive filter references provided in the “Selected 
Bibliography” on page 3-41.

Table 3-1:  Adaptive Filter Functions in the Toolbox

Function Description

adaptkalman Use a Kalman algorithm to determine the coefficients for 
a filter to model an unknown system.

adaptlms Use a least mean squares (LMS) algorithm to determine 
the coefficients for a filter to model an unknown system.

adaptnlms Use a normalized least mean squares algorithm to 
determine the coefficients for a filter to model an 
unknown system.

adaptrls Use a recursive least squares algorithm to determine the 
coefficients for a filter to model an unknown system.

adaptsd Use a sign-data LMS algorithm to determine the 
coefficients for a filter to model an unknown system.

adaptse Use a sign-error LMS algorithm to determine the 
coefficients for a filter to model an unknown system.

adaptss Use a sign-sign LMS algorithm to determine the 
coefficients for a filter to model an unknown system.
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Examples of Adaptive Filters That Use LMS Algorithms
This section provides introductory examples using each of the least mean 
squares (LMS) adaptive filter functions in the toolbox. 

The Filter Design Toolbox provides five adaptive filter design functions that 
use the LMS algorithms to search for the optimal solution to the adaptive filter:

• adaptlms — implement the LMS algorithm to solve the Weiner-Hopf 
equation and find the filter coefficients for an adaptive filter.

• adaptnlms — implement the normalized variation of the LMS algorithm to 
solve the Weiner-Hopf equation and determine the filter coefficients of an 
adaptive filter.

• adaptsd — implement the sign-data variation of the LMS algorithm to solve 
the Weiner-Hopf equation and determine the filter coefficients of an adaptive 
filter. The correction to the filter weights at each iteration depends on the 
sign of the input x(k).

• adaptse — implement the sign-error variation of the LMS algorithm to solve 
the Weiner-Hopf equation and determine the filter coefficients of an adaptive 
filter. The correction applied to the current filter weights for each successive 
iteration depends on the sign of the error, e(k).

• adaptss — implement the sign-sign variation of the LMS algorithm to solve 
the Weiner-Hopf equation and determine the filter coefficients of an adaptive 
filter. The correction applied to the current filter weights for each successive 
iteration depends on both the sign of x(k) and the sign of e(k).

To demonstrate the differences and similarities between the various LMS 
algorithms supplied in the toolbox, the LMS and NLMS adaptive filter 
examples use the same filter for the unknown system. In this case, the 
unknown filter is one of the filters used in the examples from “gremez 
Examples” on page 2-8 — the constrained lowpass filter.

[b,err,res]=gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

From the figure you see that the filter is indeed lowpass and constrained to 0.2 
ripple in the stopband. With this as the baseline, the adaptive LMS filter 
examples use the adaptive LMS algorithms and their initialization functions, 
to identify this filter in a system identification role. To review the general 
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model for system ID mode, look at “System Identification” on page 3-7 for the 
layout.

For the sign variations of the LMS algorithm, the examples use noise 
cancellation as the demonstration application, as opposed to the system 
identification application used in the LMS examples. 

adaptlms Example — System Identification
To use the adaptive filter functions in the toolbox you need to provide three 
things:

• An unknown system or process to adapt to. In this example, the filter 
designed by gremez is the unknown system.

• Appropriate input data to exercise the adaptation process. In terms of the 
generic LMS model, these are the desired signal d(k) and the input signal 
x(k).
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• Both the adaptive LMS function to use and the matching initialization 
function to set up the adapting algorithm. Here we use adaptlms and 
initlms.

Start by defining an input signal x.

x = 0.1*randn(1,500);

The input is broadband noise. For the unknown system filter, use gremez to 
create a twelfth-order lowpass filter:

[b,err,res] = gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

Although you do not need them here, include the err and res output 
arguments.

Now filter the signal through the unknown system to get the desired signal. 

d = filter(b,1,x);

With the unknown filter designed and the desired signal in place you can apply 
the adaptive LMS filter to identify the unknown.

Preparing the adaptive filter algorithm requires that you provide starting 
values for estimates of the filter coefficients and the LMS step size in a single 
structure s. We use initlms to populate the structure. You could start with 
estimated coefficients of some set of nonzero values; this example uses zeros for 
the 12 initial filter weights. For the step size, 0.8 is a reasonable value — a good 
compromise between being large enough to converge well within the 500 
iterations (500 input sample points) and small enough to create an accurate 
copy of the unknown filter.

w0 = zeros(1,13);
mu = 0.8;
s = initlms(w0,mu);
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Structure s now comprises the following fields. 

Structure 
Element

Element Contents initlms 
Element

s.coeffs LMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

wo

s.step  Sets the LMS algorithm step size. Determines 
both how quickly and how closely the adative 
filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use adaptlms 
in a loop structure, use this element to specify 
the initial filter states for the adapting FIR 
filter.

zi

 s.leakage Specifies the LMS leakage parameter. Allows 
you to implement a leaky LMS algorithm. 
Including a leakage factor can improve the 
results of the algorithm by forcing the LMS 
algorithm to continue to adapt even after it 
reaches a minimum value. Ranges between 0 
and 1. This is an optional field. Defaults to one 
if omitted (specifying no leakage) or set to 
empty, [ ].

lf

s.iter Total number of iterations in the adaptive filter 
run. Although you can set this in s, you should 
not. Consider it a read-only value.
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Finally, using the desired signal, d, the input to the filter, x, and the structure 
that contains the algorithm initialization settings, s, we run the adaptive filter 
to determine the unknown system and plot the results, comparing the actual 
coefficients from gremez to the coefficients found by adaptlms.

[y,e,s] = adaptlms(x,d,s);
stem([b.' s.coeffs.'])

In the stem plot the actual and estimated filter weights are the same. As an 
experiment, try changing the step size to 0.2. Repeating the example with 
mu = 0.2 results in the following stem plot. The estimated weights fail to 
approximate the actual weights closely. 
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Since this may be because we did not iterate over the LMS algorithm enough 
times, try using 1000 samples. With 1000 samples, the stem plot, shown in the 
next figure, looks much better, albeit at the expense of much more 
computation. Clearly you should take care to select the step size with both the 
computation required and the fidelity of the estimated filter in mind. 
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adaptnlms Example — System Identification
To improve the convergence performance of the LMS algorithm, the 
normalized variant uses an adaptive step size based on the signal power. As the 
input signal power changes, the algorithm calculates the input power and 
adjusts the step size to maintain an appropriate value. Thus the step size 
changes with time. As a result, the normalized algorithm converges more 
quickly with fewer samples in many cases. For input signals that change slowly 
over time, the normalized LMS can represent a more efficient LMS approach. 

In the adaptlms example, we used gremez to create the filter that we would 
identify. So you can compare the results, we use the same filter, and replace 
adaptlms with adaptnlms, to use the normalized LMS algorithm variation. You 
should see better convergence with similar fidelity.
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First, generate the input signal and the unknown filter.

x = 0.1*randn(1,500);
[b,err,res] = gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});
d = filter(b,1,x);

Again d represents the desired signal d(x) as we defined it in Figure 3-1 and 
b contains the filter coefficients for our unknown filter. 

w0 = zeros(1,13);
mu = 0.8;
s = initnlms(w0,mu);

We use the preceding code to initialize the normalized LMS algorithm, just as 
we used initlms to prepare the LMS algorithm in the adaptlms example. You 
can see the input arguments are identical in this case. While there are optional 
input arguments that you use to refine the normalized algorithm, such as 
offset and leakage factor, to maintain the comparison to our LMS example 
we use the same set of input arguments used earlier. For more information 
about the optional input arguments, refer to initnlms in the reference section 
of this User’s Guide.

Running the system identification process is a matter of using adaptnlms with 
the desired signal, the input signal, and the initial filter coefficients and 
conditions specified in s as input arguments. Then plot the results to compare 
the adapted filter to the actual filter.

[y,e,s] = adaptnlms(x,d,s);
stem([b.' s.coeffs.'])

As shown in the following stem plot (a convenient way to compare the 
estimated and actual filter coefficients), the two are close to identical. 
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If we compare the convergence performance of the regular LMS algorithm to 
the normalized LMS variant, you see the normalized version adapts in far 
fewer iterations to a result almost as good as the nonnormalized version.
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adaptsd Example — Noise Cancellation
When the amount of computation required to derive an adaptive filter drives 
your development process, the sign-data variant of the LMS (SDLS) algorithm 
may be a very good choice. Fortunately, the current state of digital signal 
processor (DSP) design has relaxed the need to minimize the operations count 
by making DSPs whose multiply and shift operations are as fast as add 
operations. Thus some of the impetus for the sign-data algorithm (and the 
sign-error and sign-sign variations) has been lost to DSP technology 
improvements.

In the standard and normalized variations of the LMS adaptive filter, 
coefficients for the adapting filter arise from the mean square error between 
the desired signal and the output signal from the unknown system. Using the 
sign-data algorithm changes the mean square error calculation by using the 
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sign of the input data to change the filter coefficients. When the error is 
positive, the new coefficients are the previous coefficients plus the error 
multiplied by the step size µ. If the error is negative, the new coefficients are 
again the previous coefficients minus the error multiplied by µ — note the sign 
change. When the input is zero, the new coefficients are the same as the 
previous set.

In vector form, the sign-data LMS algorithm is

,  

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SDLMS algorithm seeks to 
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the SDLMS error falls more 
slowly. Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following 
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computing.

Note  How you set the initial conditions of the sign-data algorithm profoundly 
influences the effectiveness of the adaptation. Because the algorithm 
essentially quantizes the input signal, the algorithm can become unstable 
easily. A series of large input values, coupled with the quantization process 
may result in the error growing beyond all bounds. You restrain the tendency 
of the sign-data algorithm to get out of control by choosing a small step size 
(µ<< 1) and setting the initial conditions for the algorithm to nonzero positive 
and negative values.
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In this noise cancellation example, adaptsd requires two input data sets:

• Data containing a signal corrupted by noise. In Figure 3-5, this is d(k), the 
desired signal. The noise cancellation process removes the noise, leaving the 
signal.

• Data containing random noise (x(k) in Figure 3-5) that is correlated with the 
noise that corrupts the signal data. Without the correlation between the 
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is 
correlated, pass the noise through a lowpass FIR filter, then add the filtered 
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data 
algorithm.

To prepare the algorithm for processing, set the input conditions w0 and mu in 
structure s. As noted earlier in this section, the values you set for w0 and mu 
determine whether the adaptive filter can remove the noise from the signal 
path. In “adaptlms Example — System Identification” on page 3-13, you set w0, 
the filter coefficients, to zeros. Except in rare cases, that approach does not 
work for the sign-data algorithm. The closer you set your initial filter 
coefficients to the expected values, the more likely it is that the algorithm 
remains well behaved and converges to a filter solution that removes the noise 
effectively. For this example, we start with the coefficients in the filter we used 
to filter the noise (nfilt), and modify them slightly so the algorithm has to 
adapt.

w0 = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the set size for algorithm updating.
s=initsd(w0,mu); % Initialize the input structure for adaptsd.
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With the required input arguments for adaptsd prepared, run the adaptation 
and view the results.

[y,e,s] = adaptsd(noise,d,s);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptsd runs, it uses far fewer multiply operations than either of the 
LMS algorithms. Also, performing the sign-data adaptation requires only bit 
shifting multiplys when the step size is a power of two. Although the 
performance of the sign-data algorithm as shown in the next figure is quite 
good, the sign-data algorithm is much less stable than the standard LMS 
variations. In this noise cancellation example, the signal after processing is a 
very good match to the input signal, but the algorithm could very easily grow 
without bound rather than achieve good performance. Changing w0, mu, or even 
the lowpass filter you used to create the correlated noise can cause noise 
cancellation to fail and the algorithm to become useless.
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adaptse Example — Noise Cancellation
In some cases, the sign-error variant of the LMS algorithm may be a very good 
choice for an adaptive filter application. In the standard and normalized 
variations of the LMS adaptive filter, the coefficients for the adapting filter 
arise from calculating the mean square error between the desired signal and 
the output signal from the unknown system, and applying the result to the 
current filter coefficients. Using the sign-error algorithm replaces the mean 
square error calculation by using the sign of the error to modify the filter 
coefficients. When the error is positive, the new coefficients are the previous 
coefficients plus the error multiplied by the step size µ. If the error is negative, 
the new coefficients are again the previous coefficients minus the error 
multiplied by µ — note the sign change. When the input is zero, the new 
coefficients are the same as the previous set. 

In vector form, the sign-error LMS algorithm is

,  

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SELMS algorithm seeks to 
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the SELMS error falls more 
slowly. Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following   
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computation.

w k 1+( ) w k( ) µ e k( )[ ]sgn x k( )[ ]+= sgn e k( )[ ]
 1  e k( ), 0>

   0  e k( ), 0=

1–  e k( ), 0<





=

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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Note  How you set the initial conditions of the sign-data algorithm profoundly 
influences the effectiveness of the adaptation. Because the algorithm 
essentially quantizes the error signal, the algorithm can become unstable 
easily. A series of large error values, coupled with the quantization process 
may result in the error growing beyond all bounds. You restrain the tendency 
of the sign-error algorithm to get out of control by choosing a small step size 
(µ<< 1) and setting the initial conditions for the algorithm to nonzero positive 
and negative values.

In this noise cancellation example, adaptse requires two input data sets:

• Data containing a signal corrupted by noise. In Figure 3-5, this is d(k), the 
desired signal. The noise cancellation process removes the noise, leaving the 
signal.

• Data containing random noise (x(k) in Figure 3-5) that is correlated with the 
noise that corrupts the signal data. Without the correlation between the 
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is 
correlated, pass the noise through a lowpass FIR filter, then add the filtered 
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter.
fnoise=filter(nfilt,1,noise); % Correlated noise data.
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data 
algorithm.

To prepare the SSLMS algorithm for processing, set the input conditions in 
structure s. As noted earlier in this section, the values you set for w0 and mu 
determine whether the adaptive filter can remove the noise from the signal 
path. In the LMS tutorial, you set w0, the filter coefficients, to zeros. Except in 
rare cases, that approach does not work for the sign-data algorithm. The closer 
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you set your initial filter coefficients to the expected values, the more likely it 
is that the algorithm remains well-behaved and converges to a filter solution 
that removes the noise effectively. For this example, we start with the 
coefficients of the filter we used to filter the noise (nfilt), and modify them 
slightly so the algorithm has to adapt.

w0 = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the set size for algorithm updating.
s=initse(w0,mu); % Initialize the input structure for adaptse.

With the required input arguments for adaptse prepared, run the adaptation 
and view the results.

[y,e,s] = adaptse(noise,d,s);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptse runs, it uses far fewer multiply operations than either of the 
LMS algorithms. Also, performing the sign-error adaptation requires only bit 
shifting multiplys when the step size is a power of two. Although the 
performance of the sign-data algorithm as shown in the next figure is quite 
good, the sign-data algorithm is much less stable than the standard LMS 
variations. In this noise cancellation example, the signal after processing is 
a very good match to the input signal, but the algorithm could very easily 
become unstable rather than achieve good performance. Changing w0, mu, or 
even the lowpass filter you used to create the correlated noise can cause noise 
cancellation to fail and the algorithm to become useless.
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adaptss Example — Noise Cancellation
The final variation of the LMS algorithm in the toolbox is the sign-sign variant 
(SSLMS). The rationale for this version matches those for the sign-data and 
sign-error algorithms presented in preceding sections. For more details, refer 
to “adaptsd Example — Noise Cancellation” on page 3-21.

The sign-sign algorithm (SSLMS) replaces the mean square error calculation 
to using the sign of the input data to change the filter coefficients. When the 
error is positive, the new coefficients are the previous coefficients plus the error 
multiplied by the step size µ. If the error is negative, the new coefficients are 
again the previous coefficients minus the error multiplied by µ — note the sign 
change. When the input is zero, the new coefficients are the same as the 
previous set. In essence, the algorithm quantizes both the error and the input 
by applying the sign operator to them.
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In vector form, the sign-sign LMS algorithm is

,

where

Vector w contains the weights applied to the filter coefficients and vector 
x contains the input data. e(k) ( = desired signal - filtered signal) is the error at 
time k and is the quantity the SSLMS algorithm seeks to minimize. µ (mu) is 
the step size. As you specify mu smaller, the correction to the filter weights gets 
smaller for each sample and the SSLMS error falls more slowly. Larger mu 
changes the weights more for each step so the error falls more rapidly, but the 
resulting error does not approach the ideal solution as closely. To ensure good 
convergence rate and stability, select mu within the following practical bounds

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computation.

Note  How you set the initial conditions of the sign-sign algorithm profoundly 
influences the effectiveness of the adaptation. Because the algorithm 
essentially quantizes the input signal and the error signal, the algorithm can 
become unstable easily. A series of large error values, coupled with the 
quantization process may result in the error growing beyond all bounds. You 
restrain the tendency of the sign-sign algorithm to get out of control by 
choosing a small step size (µ<< 1) and setting the initial conditions for the 
algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptss requires two input data sets:

w k 1+( ) w k( ) µ e k( )[ ]sgn x k( )[ ]sgn+= sgn z k( )[ ]
 1  z k( ), 0>

   0  z k( ), 0=

1–  z k( ), 0<





=

z k( ) e k( )[ ] x k( )[ ]sgn=

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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• Data containing a signal corrupted by noise. In Figure 3-5, this is d(k), the 
desired signal. The noise cancellation process removes the noise, leaving the 
cleaned signal as the content of the error signal.

• Data containing random noise (x(k) in Figure 3-5) that is correlated with the 
noise that corrupts the signal data, called. Without the correlation between 
the noise data, the adapting algorithm cannot remove the noise from the 
signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is 
correlated, pass the noise through a lowpass FIR filter, then add the filtered 
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data 
algorithm.

To prepare the algorithm for processing, set w0 and mu — the input conditions 
in structure s. As noted earlier in this section, the values you set for w0 and mu 
determine whether the adaptive filter can remove the noise from the signal 
path. In the LMS tutorial, you set w0, the filter coefficients, to zeros. Except in 
rare cases, that approach does not work for the sign-sign algorithm. The closer 
you set your initial filter coefficients to the expected values, the more likely it 
is that the algorithm remains well-behaved and converges to a filter solution 
that removes the noise effectively. For this example, we start with the 
coefficients in the filter we used to filter the noise (nfilt), and modify them 
slightly so the algorithm has to adapt.

w0 = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the set size for algorithm updating.
s=initss(w0,mu); % Initialize the input structure for adaptss.

With the required input arguments for adaptsd prepared, run the adaptation 
and view the results.
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[y,e,s] = adaptss(noise,d,s);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptss runs, it uses far fewer multiply operations than either of the 
LMS algorithms. Also, performing the sign-sign adaptation requires only bit 
shifting multiplys when the step size is a power of two. Although the 
performance of the sign-sign algorithm as shown in the next figure is quite 
good, the sign-sign algorithm is much less stable than the standard LMS 
variations. In this noise cancellation example, the signal after processing is a 
very good match to the input signal. The algorithm could very easily fail to 
converge rather than achieve good performance if the quantization process 
produces very small or large changes. Changing w0, mu, or even the lowpass 
filter you used to create the correlated noise can cause noise cancellation to fail 
and the algorithm to become useless.
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As an aside, the sign-sign LMS algorithm is part of the international CCITT 
standard for 32 Kb/s ADPCM telephony.



Example of Adaptive Filter That Uses RLS Algorithm

3-33

Example of Adaptive Filter That Uses RLS Algorithm
This section provides an introductory example that uses the RLS adaptive 
filter function adaptrls. 

If LMS algorithms represent the simplest and most easily applied adaptive 
algorithms, the recursive least squares (RLS) algorithms represents increased 
complexity, computational cost, and fidelity. In performance, RLS approaches 
the Kalman filter (adaptkalman) in adaptive filtering applications, at 
somewhat reduced required throughput in the signal processor. Compared to 
the LMS algorithm, the RLS approach offers faster convergence and smaller 
error with respect to the unknown system, at the expense of requiring more 
computations.

In contrast to the least mean squares algorithm, from which it can be derived, 
the RLS adaptive algorithm minimizes the total squared error between the 
desired signal and the output from the unknown system. Referring to 
Figure 3-2, you see the signal flow graph (or model) for the RLS adaptive filter 
system. Note that the signal paths and identifications are the same whether 
the filter uses RLS or LMS. The difference lies in the adapting portion. Within 
limits, you can use any of the adaptive filter algorithms to solve an adaptive 
filter problem by replacing the adaptive portion of the application with a new 
algorithm. Examples of the sign variants of the LMS algorithms demonstrated 
this feature to demonstrate the differences between the sign-data, sign-error, 
and sign-sign variations of the LMS algorithm.

One interesting input option that applies to RLS algorithms is not present in 
the LMS processes — a forgetting factor, λ, that determines how the algorithm 
treats past data input to the algorithm. When the LMS algorithm looks at the 
error to minimize, it considers only the current error value. In the RLS method, 
the error considered is the total error from the beginning to the current data 
point. Said another way, the RLS algorithm has infinite memory — all error 
data is given the same consideration in the total error. In cases where the error 
value might come from a spurious input data point or points, the forgetting 
factor lets the RLS algorithm reduce the value of older error data by 
multiplying the old data by the forgetting factor. Since 0 ≤ λ < 1, applying the 
factor is equivalent to weighting the older error. When λ = 1, all previous error 
is considered of equal weight in the total error. As λ approaches zero, the past 
errors play a smaller role in the total. For example, when λ = 0.9, the RLS 
algorithm multiplies an error value from 50 samples in the past by an 
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attenuation factor of 0.950 = 5.15 x 10-3, considerably deemphasizing the 
influence of the past error on the current total error. 

adaptrls Example — Inverse System Identification
Rather than use a system identification application, or a noise cancellation 
model, this example use the inverse system identification model shown in 
Figure 3-4. Cascading the adaptive filter with the unknown filter causes the 
adaptive filter to converge to a solution that is the inverse of the unknown 
system. If the transfer function of the unknown is H(z) and the adaptive filter 
transfer function is G(z), the error measured between the desired signal and 
the signal from the cascaded system reaches its minimum when the product of 
H(z) and G(z) is 1, G(z)*H(z) = 1. For this relation to be true, G(z) must equal 
-H(z), the inverse of the transfer function of the unknown system.

To demonstrate that this is true, create a signal to input to the cascaded filter 
pair.

x = randn(1,3000);

In the cascaded filters case, like this one, the unknown filter results in a delay 
in the signal arriving at the summation point after both filters. To prevent the 
adaptive filter from trying to adapt to a signal it has not yet seen (equivalent 
to predicting the future), delay the desired signal by 32 samples, the order of 
the unknown system. Generally, you do not know the order of the system you 
are trying to identify. In that case, delay the desired signal by about the 
number of samples that is equal to half the order of the adaptive filter. 
Delaying the input requires prepending 12 zero-values samples to x.

delay = zeros(1,12);
d = [delay x(1:2988)]; %Concatenate the delay and the signal.

You have to keep the desired signal vector d the same length as x, hence adjust 
the signal element count to allow for the delay samples. Although it is not 
generally true, for this example you know the order of the unknown filter, so 
you add a delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

ufilt = fir1(12,0.55,'low');

Filtering x provides the input data signal for the adaptive algorithm function.

xdata = filter(ufilt,1,x);
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Use initrls to set the initial conditions for the algorithm. initrls produces 
the structure s, one of the input arguments to adaptrls. You can set the initial 
conditions without using initrls by including each input argument to 
adaptrls on its own — w0, p0, lambda, zi, and alg. For more about initrls and 
the input conditions to prepare the RLS algorithm, refer to initrls and 
adaptrls in the reference section of this User’s Guide.

w0 = zeros(13,1);
p0 = 2*eye(13);
lambda = 0.99;
s = initrls(w0,p0,lambda);

Most of the process to this point is the same as the preceding examples. 
However, since this example is looking to develop an inverse solution, you need 
to be careful about which signal carries the data and which is the desired 
signal. Earlier examples of adaptive filters use the filtered noise as the desired 
signal. In this case, the filtered noise (xdata) carries the unknown system 
information. With Gaussian distribution and variance of 1, the unfiltered 
noise d is the desired signal. The code to run this adaptive filter example is

[y,e,s] = adaptrls(xdata,d,s);

where y returns the coefficients of the adapted filter and e contains the error 
signal as the filter adapts to find the inverse of the unknown system. You can 
review the returned elements of the adapted filter in s.

Figure 3-7 presents the results of the adaptation. In the figure, we present the 
magnitude response curves for the unknown and adapted filters. As a 
reminder, the unknown filter was a lowpass filter with cutoff at 0.55, on the 
normalized frequency scale from 0 to 1.
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Figure 3-7:  Comparing the Results of the RLS Inverse System Identification

Viewed alone in Figure 3-8, the inverse system looks like a fair compensator for 
the unknown lowpass filter — a high pass filter with linear phase.
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Figure 3-8:  After Adapting, the RLS Algorithm Produces a Highpass Filter
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Examples of Adaptive Kalman Filters
Without going into details because the specifics are beyond the scope of this 
User’s Guide, the adaptive filter functions in the toolbox represent variations 
of Kalman filtering. Thus, Kalman filters are the basis of all the other 
functions, and perhaps the most effective and efficient since each succeeding 
filter update in the Kalman algorithm depends only on the most recent input 
data.

adaptkalman shares many input arguments with the LMS and RLS adaptive 
functions. To completely specify the Kalman algorithm requires a few 
additional inputs — k0, qm, and qp as listed in the following table.

Structure 
Element

Element Description initkalman 
Argument

s.coeffs Kalman adaptive filter coefficients. Should be 
initialized with the initial values for the FIR 
filter coefficients. Updated coefficients are 
returned when you use s as an output 
argument.

w0

s.errcov The state error covariance matrix. Initialize 
this element with the initial error state 
covariance matrix. An updated matrix is 
returned when you use s as an output 
argument.

k0

s.measvar Contains the measurement noise variance 
matrix. 

qm

s.procov Contains the process noise covariance matrix. qp

s.states Returns the states of the FIR filter. This is an 
optional element. If omitted, it defaults to a 
zero vector of length equal to the filter order.

zi
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Befitting the nature of the Kalman approach to adaptive filtering, arguments 
k0, qm, and qp are matrices that define the known parameters for the algorithm 
— the initial conditions. Often you do not know the initial state of the update 
process equation that defines each filter update. To overcome this fact, we use 
mean and correlation matrices of the initial state to define the equation. 

adaptkalman Example — System Identification

x  = 0.1*randn(1,500);
b  = fir1(31,0.5);
d  = filter(b,1,x);
w0 = zeros(1,32);
k0 = 0.5*eye(32);
qm = 2; 
qp = 0.1*eye(32);
s = initkalman(w0,k0,qm,qp);
[y,e,s] = adaptkalman(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR Filter via Kalman Filter');
grid on;

s.gain Kalman gain vector. Computed and returned 
after every iteration. This is a read-only value.

Not 
applicable

s.iter Total number of iterations in the adaptive 
filter run. Although you can set this number 
in s, you should not.

Not 
applicable

Structure 
Element

Element Description initkalman 
Argument
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4
Digital Frequency 
Transformations

Introduction (p. 4-2) Provides background about digital frequency 
transformations for filters

Definition of the Problem (p. 4-3) Presents and defines the problem of using digital 
frequency transformation

Frequency Transformations for Real 
Filters (p. 4-11)

Discusses the functions in the toolbox used for 
transforming real filters to other real filters

Frequency Transformations for 
Complex Filters (p. 4-26)

Talks about the functions in the toolbox used for 
transforming complex filters to other complex filters, or 
real filters to complex filters
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Introduction
Converting existing FIR or IIR filter designs to a modified IIR form is often 
done using allpass frequency transformations. Although the resulting designs 
can be considerably more expensive in terms of dimensionality than the 
prototype (original) filter, their ease of use in fixed or variable applications is a 
big advantage.

The general idea of the frequency transformation is to take an existing 
prototype filter and produce another filter from it that retains some of the 
characteristics of the prototype, in the frequency domain. Transformation 
functions achieve this by replacing each delaying element of the prototype filter 
with an allpass filter carefully designed to have a prescribed phase 
characteristic for achieving the modifications requested by the designer.

This tutorial gives an overview and interpretation of the frequency 
transformations, and describes the range of transformations available to the 
toolbox user. To aid this purpose the tutorial has been arranged into three 
sections:

• “Definition of the Problem” on page 4-3 introduces the frequency 
transformation concept and provides its mathematical and intuitive 
interpretations.

• “Frequency Transformations for Real Filters” on page 4-11 describes the real 
frequency transformations available in the toolbox. Such transformations 
start from a real prototype filter and return a real target filter.

• “Frequency Transformations for Complex Filters” on page 4-26 describes 
complex frequency transformations available in the toolbox. Such 
transformations start from the any real or complex prototype filter and 
return a complex target filter.
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Definition of the Problem
The basic form of mapping in common use is

The HA(z) is an Nth-order allpass mapping filter given by

where

Ho(z)— Transfer function of the prototype filter

HA(z)— Transfer function of the allpass mapping filter

HT(z)— Transfer function of the target filter

Let’s look at a simple example of the transformation given by

The target filter has its poles and zeroes flipped across the origin of the real and 
imaginary axes. For the real filter prototype, it gives a mirror effect against 0.5, 
which means that lowpass Ho(z) gives rise to a real highpass HT(z). This is 
shown in the following figure for the prototype filter designed as a third-order 
halfband elliptic filter.
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Figure 4-1:  Example of a Simple Mirror Transformation

The choice of an allpass filter to provide the frequency mapping is necessary to 
provide the frequency translation of the prototype filter frequency response to 
the target filter by changing the frequency position of the features from the 
prototype filter without affecting the overall shape of the filter response.

The phase response of the mapping filter normalized to π can be interpreted as 
a translation function:

The graphical interpretation of the frequency transformation is shown in the 
figure below. The complex multiband transformation takes a real lowpass filter 
and converts it into a number of passbands around the unit circle.
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Figure 4-2:  Graphical Interpretation of the Mapping Process

Most of the frequency transformations are based on the second-order allpass 
mapping filter:

The two degrees of freedom provided by α1 and α2 choices are not fully used by 
the usual restrictive set of “flat-top” classical mappings like lowpass to 
bandpass. Instead, any two transfer function features can be migrated to 
(almost) any two other frequency locations if α1 and α2 are chosen so as to keep 
the poles of HA(z) strictly outside the unit circle (since HA(z) is substituted for 
z in the prototype prototype transfer function). Moreover, as first pointed out 
by Constantinides, the selection of the outside sign influences whether the 
original feature at zero can be moved (the minus sign, a condition known as 
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“DC mobility”) or whether the Nyquist frequency can be migrated (the “Nyquist 
mobility” case arising when the leading sign is positive).

All the transformations forming the package are explained in the next sections 
of the tutorial. They are separated into those operating on real filters and those 
generating or working with complex filters. The choice of transformation 
ranges from standard Constantinides first and second-order ones [13][14] up to 
the real muliband filter by Mullis and Franchitti [15], and the complex 
multiband filter and real/complex multipoint ones by Krukowski, Cain and 
Kale [16].

Selecting Features Subject to Transformation
Choosing the appropriate frequency transformation for achieving the required 
effect and the correct features of the prototype filter is very important and 
needs careful consideration. It is not advisable to use a first-order 
transformation for controlling more than one feature. The mapping filter will 
not give enough flexibility. It is also not good to use higher order 
transformation just to change the cutoff frequency of the lowpass filter. The 
increase of the filter order would be too big, without considering the additional 
replica of the prototype filter that may be created in undesired places.

Figure 4-3:  Feature Selection for Real Lowpass to Bandpass Transformation

To illustrate the idea, the second-order real multipoint transformation was 
applied three times to the same elliptic halfband filter in order to make it into 
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a bandpass filter. In each of the three cases, two different features of the 
prototype filter were selected in order to obtain a bandpass filter with passband 
ranging from 0.25 to 0.75. The position of the DC feature was not important, 
but it would be advantageous if it were in the middle between the edges of the 
passband in the target filter. In the first case the selected features were the left 
and the right band edges of the lowpass filter passband, in the second case they 
were the left band edge and the DC, in the third case they were DC and the 
right band edge.

Figure 4-4:  Result of choosing different features

The results of all three approaches are completely different. For each of them 
only the selected features were positioned precisely where they were required. 
In the first case the DC is moved toward the left passband edge just like all the 
other features close to the left edge being squeezed there. In the second case the 
right passband edge was pushed way out of the expected target as the precise 
position of DC was required. In the third case the left passband edge was pulled 
toward the DC in order to position it at the correct frequency. The conclusion 
is that if only the DC can be anywhere in the passband, the edges of the 
passband should have been selected for the transformation. For most of the 
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cases requiring the positioning of passbands and stopbands, designers should 
always choose the position of the edges of the prototype filter in order to make 
sure that they get the edges of the target filter in the correct places. Frequency 
responses for the three cases considered are shown in the figure. The prototype 
filter was a third-order elliptic lowpass filter with cutoff frequency at 0.5.

The MATLAB code used to generate the figure is given here.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

In the example the requirements are set to create a real bandpass filter with 
passband edges at 0.1 and 0.3 out of the real lowpass filter having the cutoff 
frequency at 0.5. This is attempted in three different ways. In the first 
approach both edges of the passband are selected, in the second approach the 
left edge of the passband and the DC are chosen, while in the third approach 
the DC and the right edge of the passband are taken:

[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [ 0.0, 0.5], [0.2, 0.3]);

Mapping from Prototype Filter to Target Filter
In general the frequency mapping converts the prototype filter, Ho(z), to the 
target filter, HT(z), using the NAth-order allpass filter, HA(z). The general form 
of the allpass mapping filter is given in Equation . The frequency mapping is a 
mathematical operation that replaces each delayer of the prototype filter with 
an allpass filter. There are two ways of performing such mapping. The choice 
of the approach is dependent on how prototype and target filters are 
represented.

When the Nth-order prototype filter is given with pole-zero form

Ho z( )

z zi–( )

i 1=

N

∑

z pi–( )

i 1

N

∑

-----------------------------=
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the mapping will replace each pole, pi, and each zero, zi, with a number of poles 
and zeros equal to the order of the allpass mapping filter:

The root finding needs to be used on the bracketed expressions in order to find 
the poles and zeros of the target filter.

When the prototype filter is described in the numerator-denominator form:

Then the mapping process will require a number of convolutions in order to 
calculate the numerator and denominator of the target filter:

For each coefficient αi and βi of the prototype filter the NAth-order polymonials 
must be convolved N times. Such approach may cause rounding errors for large 
prototype filters and/or high order mapping filters. In such a case the user 
should consider the alternative of doing the mapping using via poles and zeros. 

Summary of Frequency Transformations

Advantages

• Most frequency transformations are described by closed-form solutions or 
can be calculated from the set of linear equations.

• They give predictable and familiar results.

• Ripple heights from the prototype filter are preserved in the target filter.

• They are architecturally appealing for variable and adaptive filters.

Ho z( )

S αkzk

k 0=

∑ zi αkzN k–

k 0=

∑⋅–
 
 
 
 

i 1=

∑

S αkzk

k 0

N 1–

∑ pi αkzN k–

k 0

N 1–

∑⋅–
 
 
 
 

i 1

N

∑

----------------------------------------------------------------------------------------------=

HT z( )
β0zN β1zN 1– … βN+ + +

α0zN α1zN 1– … αN+ + +
--------------------------------------------------------------------

z HA z( )=

=

HT z( )
β1NA z( )N β2NA z( )N 1– DA z( ) … βNDA z( )N

+ + +

β1NA z( )N β2NA z( )N 1– DA z( ) … βNDA z( )N
+ + +

-----------------------------------------------------------------------------------------------------------------------------------=
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Disadvantages

• There are cases when using optimization methods to design the required 
filter gives better results.

• High-order transformations increase the dimensionality of the target filter, 
which may give expensive final results.

• Starting from fresh designs helps avoid locked-in compromises.
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Frequency Transformations for Real Filters
This section discusses real frequency transformations that take the real 
lowpass prototype filter and convert it into a different real target filter. The 
target filter has its frequency response modified in respect to the frequency 
response of the prototype filter according to the characteristic of the applied 
frequency transformation:

• “Real Frequency Shift” on page 4-12

• “Real Lowpass to Real Lowpass” on page 4-13

• “Real Lowpass to Real Highpass” on page 4-15

• “Real Lowpass to Real Bandpass” on page 4-17

• “Real Lowpass to Real Bandstop” on page 4-19

• “Real Lowpass to Real Multiband” on page 4-21

• “Real Lowpass to Real Multipoint” on page 4-23
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Real Frequency Shift
Real frequency shift transformation uses a second-order allpass mapping filter. 
It performs an exact mapping of one selected feature of the frequency response 
into its new location, additionally moving both the Nyquist and DC features. 
This effectively moves the whole response of the lowpass filter by the distance 
specified by the selection of the feature from the prototype filter and the target 
filter. As a real transformation, it works in a similar way for positive and 
negative frequencies.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

The example below shows how this transformation can be used to move the 
response of the prototype lowpass filter in either direction. Please note that 
because the target filter must also be real, the response of the target filter will 
inherently be disturbed at frequencies close to Nyquist and close to DC. Here 
is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

HA z( ) z 1– 1 αz 1–
–

α z 1–
–

---------------------⋅=

α

π
2
--- ωold 2ωnew–( )cos

π
2
---ωoldcos

----------------------------------------------------- for π
2
--- ωold 2ωnew–( )cos 1<

π
2
--- ωold 2ωnew–( )sin

π
2
---ωoldsin

----------------------------------------------------- otherwise













=
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Figure 4-5:  Example of Real Frequency Shift Mapping

Real Lowpass to Real Lowpass
Real lowpass filter to real lowpass filter transformation uses a first-order 
allpass mapping filter. It performs an exact mapping of one feature of the 
frequency response into the new location keeping DC and Nyquist features 
fixed. As a real transformation, it works in a similar way for positive and 
negative frequencies. It is important to mention that using first-order mapping 
ensures that the order of the filter after the transformation is the same as it 
was originally.
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with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to modify the cutoff frequency of the prototype 
filter. The MATLAB code for this example is shown in the figure below.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The cutoff frequency moves from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

HA z( ) 1 αz 1–
–

α z 1–
–

---------------------
 
 
 

–=

α

π
2
--- wold wnew–( )sin

π
2
--- wold wnew+( )sin

---------------------------------------------------=
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Figure 4-6:  Example of Real Lowpass to Real Lowpass Mapping

Real Lowpass to Real Highpass
Real lowpass filter to real highpass filter transformation uses a first-order 
allpass mapping filter. It performs an exact mapping of one feature of the 
frequency response into the new location additionally swapping DC and 
Nyquist features. As a real transformation, it works in a similar way for 
positive and negative frequencies. Just like in the previous transformation 
because of using a first-order mapping, the order of the filter before and after 
the transformation is the same.
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with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to convert the lowpass filter into a highpass 
filter with arbitrarily chosen cutoff frequency. In the MATLAB code below, the 
lowpass filter is converted into a highpass with cutoff frequency shifted from0.5 
to 0.75. Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example moves the cutoff frequency from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

HA z( ) 1 αz 1–
+

α z 1–
+

----------------------
 
 
 

–=

α

π
2
--- wold wnew+( )cos

π
2
--- wold wnew–( )cos

---------------------------------------------------

 
 
 
 
 

–=
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Figure 4-7:  Example of Real Lowpass to Real Highpass Mapping

Real Lowpass to Real Bandpass
Real lowpass filter to real bandpass filter transformation uses a second-order 
allpass mapping filter. It performs an exact mapping of two features of the 
frequency response into their new location additionally moving a DC feature 
and keeping the Nyquist feature fixed. As a real transformation, it works in a 
similar way for positive and negative frequencies.

with α and β given by
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+
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–=



4 Digital Frequency Transformations

4-18

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how to move the response of the prototype lowpass 
filter in either direction. Please note that because the target filter must also be 
real, the response of the target filter will inherently be disturbed at frequencies 
close to Nyquist and close to DC. Here is the MATLAB code for generating the 
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates the passband between 0.5 and 0.75:

[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2,– wnew 1,+( )sin

π
4
--- 2wold wnew 2, wnew 1,–+( )sin

-------------------------------------------------------------------------------------=

β π
2
--- wnew 1, wnew 2,+( )cos=
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Figure 4-8:  Example of Real Lowpass to Real Bandpass Mapping

Real Lowpass to Real Bandstop
Real lowpass filter to real bandstop filter transformation uses a second-order 
allpass mapping filter. It performs an exact mapping of two features of the 
frequency response into their new location additionally moving a Nyquist 
feature and keeping the DC feature fixed. This effectively creates a stopband 
between the selected frequency locations in the target filter. As a real 
transformation, it works in a similar way for positive and negative frequencies.
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with α and β given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how this transformation can be used to convert the 
prototype lowpass filter with cutoff frequency at 0.5 into a real bandstop filter 
with the same passband and stopband ripple structure and stopband 
positioned between 0.5 and 0.75. Here is the MATLAB code for generating the 
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2, wnew 1,–+( )cos

π
4
--- 2wold wnew 2, wnew 1,+–( )cos

-------------------------------------------------------------------------------------=

β π
2
--- wnew 1, wnew 2,+( )cos=
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Figure 4-9:  Example of Real Lowpass to Real Bandstop Mapping

Real Lowpass to Real Multiband
This high-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into a number of new 
locations in the target filter. Its most common use is to convert a real lowpass 
with predefined passband and stopband ripples into a real multiband filter 
with N arbitrary band edges, where N is the order of the allpass mapping filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency  (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency  (×π rad/sample)

ωt1 ωt2



4 Digital Frequency Transformations

4-22

The coefficients α are given by

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility or either DC or Nyquist feature:

The example below shows how this transformation can be used to convert the 
prototype lowpass filter with cutoff frequency at 0.5 into a filter having a 
number of bands positioned at arbitrary edge frequencies 1/5, 2/5, 3/5 and 4/5. 
Parameter S was such that there is a passband at DC. Here is the MATLAB 
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates three passbands, from DC to 0.2, from 0.4 
to 0.6 and from 0.8 to Nyquist:

[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], pass );

HA z( ) S

α iz
i–

i 0=

N

∑

α iz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

α0 1= k 1 … N, ,=

αk S

π
2
--- Nωnew 1–( )kωold+( )sin

π
2
--- N 2k–( )ωnew 1–( )kωold+( )sin

----------------------------------------------------------------------------------------–=









S
1 Nyquist
1– DC




=
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Figure 4-10:  Example of Real Lowpass to Real Multiband Mapping

Real Lowpass to Real Multipoint
This high-order frequency transformation performs an exact mapping of a 
number of selected features of the prototype filter frequency response to their 
new locations in the target filter. The mapping filter is given by the general IIR 
polynomial form of the transfer function as given below.
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For the Nth-order multipoint frequency transformation the coefficients α are

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility of either DC or Nyquist feature:

The example below shows how this transformation can be used to move 
features of the prototype lowpass filter originally at -0.5 and 0.5 to their new 
locations at 0.5 and 0.75, effectively changing a position of the filter passband. 
Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], pass );

HA z( ) S

α iz
i–

i 0=

N

∑

α iz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

αN i– zold k, znew k,
i S znew k,

N i–⋅–⋅

i 1=

N

∑ zold k, S znew k,⋅––=

zold k, e
jπωold k,=

znew k, e
jπωnew k,=

k 1 … N, ,=











S
1 Nyquist
1– DC




=
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Figure 4-11:  Example of Real Lowpass to Real Multipoint Mapping
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Frequency Transformations for Complex Filters
This section discusses complex frequency transformation that take the complex 
prototype filter and convert it into a different complex target filter. The target 
filter has its frequency response modified in respect to the frequency response 
of the prototype filter according to the characteristic of the applied frequency 
transformation from:

• “Complex Frequency Shift” on page 4-26

• “Real Lowpass to Complex Bandpass” on page 4-28

• “Real Lowpass to Complex Bandstop” on page 4-29

• “Real Lowpass to Complex Multiband” on page 4-31

• “Real Lowpass to Complex Multipoint” on page 4-33

• “Complex Bandpass to Complex Bandpass” on page 4-36

Complex Frequency Shift
Complex frequency shift transformation is the simplest first-order 
transformation that performs an exact mapping of one selected feature of the 
frequency response into its new location. At the same time it rotates the whole 
response of the prototype lowpass filter by the distance specified by the 
selection of the feature from the prototype filter and the target filter.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

A special case of the complex frequency shift is a, so called, Hilbert 
Transformer. It can be designed by setting the parameter to |α|=1, that is

HA z( ) αz 1–
=

α e
j2π νnew νold–( )

=

α
1 forward
1– inverse




=
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The example below shows how to apply this transformation to rotate the 
response of the prototype lowpass filter in either direction. Please note that 
because the transformation can be achieved by a simple phase shift operator, 
all features of the prototype filter will be moved by the same amount. Here is 
the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

Figure 4-12:  Example of Complex Frequency Shift Mapping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency  (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency  (×π rad/sample)

ωt



4 Digital Frequency Transformations

4-28

Real Lowpass to Complex Bandpass
This first-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into two new locations in the 
target filter creating a passband between them. Both Nyquist and DC features 
can be moved with the rest of the frequency response.

with α and β are given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real 
halfband lowpass filter into a complex bandpass filter with band edges at 0.5 
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a half band elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);

HA z( ) β αz 1–
–

z 1– αβ–
---------------------=

α

π
4
--- 2wold wnew 2, wnew 1,+–( )sin

π 2wold wnew 2, wnew 1,–+( )sin
-------------------------------------------------------------------------------------=

β e
j– π wnew wold–( )

=
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Figure 4-13:  Example of Real Lowpass to Complex Bandpass Mapping

Real Lowpass to Complex Bandstop
This first-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into two new locations in the 
target filter creating a stopband between them. Both Nyquist and DC features 
can be moved with the rest of the frequency response.

with α and β are given by
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where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real 
halfband lowpass filter into a complex bandstop filter with band edges at 0.5 
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);

α
π 2wold νnew 2, νnew 1,–+( )cos
π 2wold νnew 2, νnew 1,+–( )cos

----------------------------------------------------------------------------------=

β e
j– π wnew wold–( )

=
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Figure 4-14:  Example of Real Lowpass to Complex Bandstop Mapping

Real Lowpass to Complex Multiband
This high-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into a number of new 
locations in the target filter. Its most common use is to convert a real lowpass 
with predefined passband and stopband ripples into a multiband filter with 
arbitrary band edges. The order of the mapping filter must be even, which 
corresponds to an even number of band edges in the target filter. The Nth-order 
complex allpass mapping filter is given by the general transfer function form 
as shown below.
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The coefficients α are calculated from the system of linear equations:

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,i — Position of features originally at ±ωold in the target filter

Parameter S is the additional rotation factor by the frequency distance ∆C, 
giving the additional flexibility of achieving the required mapping:

The example shows the use of such a transformation for converting a prototype 
real lowpass filter with the cutoff frequency at 0.5 into a multiband complex 
filter with band edges at 0.2, 0.4, 0.6 and 0.8, creating two passbands around 
the unit circle. Here is the MATLAB code for generating the figure.

HA z( ) S

α iz
i–

i 0=

N

∑

α i
∗ z N– i+

i 0=

N

∑

------------------------------------=

α0 1=

ℜ α i( ) β1 k, β2 k,cos–cos[ ] ℑ α i( ) β1 k, β2 k,sin+sin[ ]⋅+⋅

i 1=

N

∑ β3 k,cos=

ℜ α i( ) β1 k,sin β2 k,sin–[ ] ℑ α i( ) β1 k, β2 k,cos+cos[ ]⋅–⋅

i 1=

N

∑ β3 k,sin=

β1 k, π νold 1–( )k⋅ νnew k, N k–( )+[ ]–=

β2 k, π ∆C νnew k, k+[ ]–=

β3 k, π νold 1–( )k⋅ νnew k, N+[ ]–=

k 1…N=
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
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S e jπ∆C–
=



Frequency Transformations for Complex Filters

4-33

Figure 4-15:  Example of Real Lowpass to Complex Multiband Mapping

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two complex passbands:

[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);

Real Lowpass to Complex Multipoint
This high-order transformation performs an exact mapping of a number of 
selected features of the prototype filter frequency response to their new 
locations in the target filter. The Nth-order complex allpass mapping filter is 
given by the general transfer function form as shown below.
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The coefficients α can be calculated from the system of linear equations:

where

ωold,k — Frequency location of the first feature in the prototype filter

ωnew,k — Position of the feature originally at ωold,k in the target filter

Parameter S is the additional rotation factor by the frequency distance ∆C, 
giving the additional flexibility of achieving the required mapping:

The example below shows how this transformation can be used to move one 
selected feature of the prototype lowpass filter originally at -0.5 to two new 
frequencies -0.5 and 0.1, and the second feature of the prototype filter from 0.5 
to new locations at -0.25 and 0.3. This creates two nonsymmetric passbands 
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around the unit circle, creating a complex filter. Here is the MATLAB code for 
generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two nonsymmetric passbands:

[num,den] = iirlp2xc(b,a,0.5*[-1,1,-1,1], [-0.5,-0.25,0.1,0.3]);

Figure 4-16:  Example of Real Lowpass to Complex Multipoint Mapping
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Complex Bandpass to Complex Bandpass
This first-order transformation performs an exact mapping of two selected 
features of the prototype filter frequency response into two new locations in the 
target filter. Its most common use is to adjust the edges of the complex 
bandpass filter.

with α and β are given by

where

ωold,1 — Frequency location of the first feature in the prototype filter

ωold,2 — Frequency location of the second feature in the prototype filter

ωnew,1 — Position of the feature originally at ωold,1 in the target filter

ωnew,2 — Position of the feature originally at ωold,2 in the target filter

The example below shows how this transformation can be used to modify the 
position of the passband of the prototype filter, either real or complex. In the 
example below the prototype filter passband spanned from 0.5 to 0.75. It was 
converted to having a passband between -0.5 and 0.1. Here is the MATLAB 
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.25 to 0.75:

[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);

HA z( ) α γ βz 1–
–( )

z 1– β– γ
-----------------------------=

α

π
4
--- wold 2, wold 1,–( ) wnew 2, wnew 1,–( )–( )sin

π
4
--- wold 2, wold 1,–( ) wnew 2, wnew 1,–( )+( )sin

----------------------------------------------------------------------------------------------------------------------=

α e
j– π wold 2, wold 1,–( )

=

γ e
j– π wnew 2, wnew 1,–( )

=
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Figure 4-17:  Example of Complex Bandpass to Complex Bandpass Mapping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency  (×π rad/sample)

ωo1 ωo2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency  (×π rad/sample)

ωt1 ωt2



4 Digital Frequency Transformations

4-38



 

5
Quantization and 
Quantized Filtering

Binary Data Types (p. 5-3) Read this for an introduction to binary data types in the 
toolbox

Introductory Quantized Filter Example 
(p. 5-7)

To help you become familiar with quantized filters, this 
provides an example of using and analyzing a quantized 
filter

Fixed-Point Arithmetic (p. 5-16) Reviews the fundamentals of fixed-point arithmetic and 
how the toolbox uses it

Floating-Point Arithmetic (p. 5-19) Reviews the fundamentals of floating-point arithmetic 
and the data types in the toolbox
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In the Filter Design Toolbox you can implement and analyze single-input 
single-output filters either as fixed-point filters, or as custom floating-point 
filters. Either type of filter is referred to as a quantized filter.

You can create a quantized filter from a reference filter, that is, a filter whose 
coefficients and arithmetic operations you want to quantize in some fashion.

You can also implement quantized FFTs and quantized inverse FFTs in this 
toolbox.

You can specify quantization parameters for quantized filters and FFTs with 
quantizers. Quantizers specify how data is quantized. You can also quantize 
any data set with a quantizer. 

When you apply a quantized filter to data, not only are the filter coefficients 
quantized to your specification, but so are:

• The data that you filter

• The results of any arithmetic operations that occur during filtering

See “Bibliography” for a list of relevant references on quantized filtering.
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Binary Data Types
Binary data is coded and stored as ones and zeros.

Binary Data for Fixed-Point Arithmetic
Binary data that is coded for fixed-point arithmetic is characterized by word 
length (in bits) and the placement of the radix (binary) point. The radix point 
placement determines the fraction length of a binary word, and also 
determines how the binary words are scaled. You can specify fixed-point words 
in this toolbox with word lengths up to the limits of memory on your PC. The 
fraction length can range from 0 bits (for integers) to one bit less than the word 
length. 

Binary Data for Floating-Point Arithmetic
Binary data that is coded for floating-point arithmetic is characterized by the 
lengths of the fraction (mantissa) and the exponent (or equivalently, by the 
word length and the exponent length). In addition to having the ability to 
specify the standard IEEE single-precision and double-precision formats, you 
can specify filters in a custom floating-point format, with word lengths ranging 
from 2 to up to the limits of memory on your PC, and exponent lengths ranging 
from 0 to 11 bits.

Different data coding methods and precisions affect the following:

• The numerical range of the result

• The quantization error 

You can use the Filter Design Toolbox to analyze quantized filters, quantized 
FFTs, or quantizers, and see how all of these factors affect your filter 
performance on data sets.

Digital Filters
Digital computers generate coded binary data. Binary data is usually coded in 
a fixed-point or floating-point format. You use digital filters to process binary 
data. Digital filters are modeled as discrete-time linear systems. 

You can use digital filters to:

• Filter out noise in measurements 
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• Enhance signals

• Represent signals 

Quantized Filter Types
You can specify any type of filter in this toolbox as a quantized filter:

• Fixed-point filters

Fixed-point filters are useful for modeling fixed-point Digital Signal 
Processing (DSP) processors that operate on data using fixed-point 
arithmetic. 

• Double-precision floating-point filters

• Single-precision floating-point filters

• Custom floating-point filters

You can use custom floating-point filters in this toolbox to model 
floating-point DSP processors that operate on data using specific 
floating-point formats. 

Quantized Filter Structures
The quantized filters you can implement in this toolbox can have any of the 
following structures:

• Direct form I 

• Direct form I transposed

• Direct form II 

• Direct form II transposed

• Direct form finite impulse response (FIR) 

• Direct form FIR transposed filters

• Direct form antisymmetric FIR filters

• Direct form symmetric FIR filters

• Lattice allpass

• Lattice coupled-allpass filters

• Lattice moving average (MA) minimum phase filters

• Lattice MA maximum phase filters
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• Lattice autoregressive (AR) filters 

• Lattice ARMA filters 

• Lattice coupled-allpass power complementary filters

• Single-input single-output state-space filters

Data Format for Quantized Filters
You can specify the precision and dynamic range for fixed-point filters with two 
fixed-point data format parameters:

• Word length

• Fraction length

The word length is the length in bits of any binary word. The fraction length is 
the length in bits of the binary word up to the radix point. 

You can specify the precision, dynamic range, and other quantization 
parameters for floating-point filters with two floating-point data format 
parameters:

• Word length

• Exponent length

You can specify the precision, dynamic range, and other quantization 
parameters when you specify the data format properties. You can specify these 
properties using quantizers. 

Except for when you specify a double- or single-precision quantized filter, you 
can specify the precision and dynamic range for each of the following 
quantization results individually:

• Inputs to a filtering operation

• Outputs of a filtering operation

• Quantized filter coefficients

• Sums that result from filtering

• Products that result from filtering

• Terms that are multiplied by filter coefficients (multiplicands)

These filter characteristics allow you to specify different quantization 
parameters for data and arithmetic instructions. 
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Quantized FFTs and Quantized Inverse FFTs
You can specify any type of radix two or radix four quantized FFT in this 
toolbox with the following data formats:

• Fixed-point FFTs

• Double-precision floating-point FFTs

• Single-precision floating-point FFTs

• Custom floating-point FFTs

The data formats for quantized FFTs are identical to those of quantized filters.
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Introductory Quantized Filter Example
Follow the example in this section to:

• Construct a quantized filter.

• Plot the filter’s poles and zeros.

• Plot the filter’s impulse response.

• Plot the filter’s frequency response from the quantized filter coefficients. The 
method used does not account for other quantization effects on the frequency 
response computation.

• Plot the filter’s frequency response using the noise loading method. This 
method takes all quantization effects into account.

• Test the filter for limit cycles.

You can construct quantized filters by either:

• Using the quantized filter constructor function qfilt

• Copying a quantized filter from an existing one

Quantized filters have many properties, including the filter structure and the 
quantization formats.

When you use the function qfilt to create a quantized filter Hq, you can either:

• Type
Hq = qfilt 

at the command line to accept the default filter properties, and change the 
property values later.

• Use a modified syntax for qfilt to set property values when you create Hq.

You can construct quantized filters with any of several filter structures.

Once you construct a filter, use the filter command to apply it to data. In 
addition, the following analysis functions apply to quantized filters:

• zplane for pole/zero plots

• impz for quantized impulse response plots

• freqz for computing and plotting the linear frequency response from the 
quantized filter coefficients
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• nlm for estimating and plotting the frequency response using the noise 
loading method

• limitcycle for limit cycle detection and analysis

The first three of these Filter Design Toolbox functions are overloaded for 
quantized filters. They behave similarly to the functions with the same name 
in the Signal Processing Toolbox.

The introductory example presented in this section is included to illustrate 
some of the features of this toolbox. In this example, you can use the code 
presented to construct an eight-bit fixed-point quantized FIR filter, and 
analyze it with the response functions listed above. 

To learn more about quantized filters, see Chapter 8, “Working with Quantized 
Filters” and Chapter 10, “Quantized Filtering Analysis Examples.”

Constructing an Eight-Bit Quantized Filter

1 Use gremez to design an FIR low-pass filter in the frequency domain with a 
normalized cutoff frequency of approximately 0.4 radians/sample. Specify:

- 27 filter coefficients

- Four frequency points [0 .4 .6 1]

- Four corresponding gains [1 1 0 0]
b = gremez(27,[0 .4 .6 1],[1 1 0 0]);

The entries in the vector b are the coefficients of the (numerator) polynomial 
of the FIR filter. This is your reference filter. 

2 Construct a fixed-point quantized FIR filter from your reference filter with 
the following characteristics:

- 8-bit word length for all data formats

- 7-bit fraction length for all data formats

- Direct form finite impulse response (FIR) filter structure

- The 'convergent' method used to round quantized numbers to the 
nearest allowable quantized value.

You can create quantized filters using the qfilt command. When you create a 
quantized filter, you must enter the vector of reference filter coefficients b in 
a cell array by enclosing the coefficients in curly braces, {b}.
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Hq = qfilt('fir',{b},'Format',{[8,7],'convergent'})

Hq = 
Quantized Direct form FIR filter.                              
Numerator                                                                    
  QuantizedCoefficients{1}    ReferenceCoefficients{1}                       
0          ( 1)  0.0000000     0.001722275146612721                          
0          ( 2)  0.0000000     0.003409515867936453                          
           ( 3) -0.0078125    -0.004898115162792102                          
           ( 4) -0.0078125    -0.006325311495727597                          
           ( 5)  0.0078125     0.009418759615173328                          
           ( 6)  0.0156250     0.012524352890295399                          
           ( 7) -0.0156250    -0.017394015777896423                          
           ( 8) -0.0234375    -0.022634462311564768                          
           ( 9)  0.0312500     0.030838037214625479                          
           (10)  0.0390625     0.040914907859937441                          
           (11) -0.0546875    -0.057578619191314129                          
           (12) -0.0859375    -0.084552886463529736                          
           (13)  0.1484375     0.147259140040687880                          
           (14)  0.4453125     0.448759881582659110                          
           (15)  0.4453125     0.448759881582659110                          
           (16)  0.1484375     0.147259140040687880                          
           (17) -0.0859375    -0.084552886463529736                          
           (18) -0.0546875    -0.057578619191314129                          
           (19)  0.0390625     0.040914907859937441                          
           (20)  0.0312500     0.030838037214625479                          
           (21) -0.0234375    -0.022634462311564768                          
           (22) -0.0156250    -0.017394015777896423                          
           (23)  0.0156250     0.012524352890295399                          
           (24)  0.0078125     0.009418759615173328                          
           (25) -0.0078125    -0.006325311495727597                          
           (26) -0.0078125    -0.004898115162792102                          
0          (27)  0.0000000     0.003409515867936453                          
0          (28)  0.0000000     0.001722275146612721                          

   FilterStructure = fir                                                     
       ScaleValues = [1]                                                     
  NumberOfSections = 1                                                       
  StatesPerSection = [27]                                                    
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 CoefficientFormat = unitquantizer('fixed', 'convergent', 
'saturate', [8  7])
       InputFormat = quantizer('fixed', 'convergent', 'saturate', 
[8  7])    
      OutputFormat = quantizer('fixed', 'convergent', 'saturate', 
[8  7])    
MultiplicandFormat = quantizer('fixed', 'convergent', 'saturate', 
[8  7])    
     ProductFormat = quantizer('fixed', 'convergent', 'saturate', 
[8  7])    

SumFormat = quantizer('fixed', 'convergent', 'saturate', [8  7]) 

Notice that the display provides information about the filter and its property 
values. For this example, we created a filter whose product and sum quantizer 
formats are the same size as the coefficient format to illustrate the 
quantization effects.

Analyzing Poles and Zeros with zplane
To compare poles and zeros of the reference filter to those of the quantized filter 
Hq you just constructed, type

zplane(Hq)

Notice that the quantized zeros are not very close to the reference poles and 
zeros on the plot. 
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Analyzing the Impulse Response with impz
To compare the impulse response plot of the quantized filter Hq you just 
constructed to that of its floating-point reference (b), use the impz command.

impz(Hq)

The impulse response computed by impz is the response of the fixed-point 
quantized filter Hq to a quantized impulse. 
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Analyzing the Frequency Response with freqz
To compare the frequency response plot of the quantized filter Hq you just 
constructed to that of its floating-point reference (b), use the freqz command.

freqz(Hq)
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The freqz command computes the linear frequency response of the two filters 
whose coefficients are, respectively:

• The quantized filter coefficients

• The reference filter coefficients

Noise Loading Frequency Response Analysis: nlm
You can estimate the frequency response of the filter Hq you just created using 
the noise loading method computed with nlm. The noise loading method takes 
quantization effects into account. This method estimates the quantization 
noise figure when it runs a set of Monte Carlo frequency response calculations 
by filtering a set of sinusoids with randomly varying phase.
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nlm(Hq)

Difference Between nlm and freqz for Frequency Response Analysis
The frequency response computed by freqz is determined using the true linear 
frequency response of the transfer function associated with the quantized filter 
coefficients. It does not take any other quantization effects into account, and is 
not computed from the filter structure you specify.

The frequency response computed by nlm is an estimate of the frequency 
response that accounts for nonlinear quantization effects due to your choice of:

• Filter structure

• Other quantization parameters

Analyzing Limit Cycles with limitcycle
You can analyze limit cycles of the filter Hq with limitcycle. This function 
computes a Monte Carlo simulation to detect the presence of limit cycles. 

limitcycle(Hq)
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No limit cycles detected after 20 Monte Carlo trials.

As is guaranteed for FIR filters, no limit cycles are detected for this model.
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Fixed-Point Arithmetic
You can specify how numbers are quantized using fixed-point arithmetic in this 
toolbox with two quantities:

• Word length in bits

• Fraction length in bits

Note  This toolbox does bit-true fixed-point arithmetic for word lengths of 53 
bits and fewer. It simulates fixed-point arithmetic for word lengths greater 
than 53 bits, such as 64 bits.

Although the 64-bit fixed-point arithmetic is not be bit-true to the last bit, it 
properly handles overflows and the results are almost indistinguishable from 
bit-true results when the numbers are scaled properly. For example, (small 
numbers + small numbers) work correctly and (large numbers + large 
numbers) are right as well, but (large numbers + small numbers) will be 
dominated by the large number and some precision loss will occur.

Fraction length can be up to one bit less than the word length.

A general representation for a two’s complement binary fixed-point number is

where:

• bi are the binary digits (bits, zeros or ones).

•
… b0b1bw 2– b5 b3b4 b2bw 1–

Least significant bitRadix pointSign bit

Word length

Fraction length
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• The word length in bits is given by w.

• The most significant bit (MSB) is the leftmost bit. It is represented by the 
location of bw-1. In Filter Design Toolbox, this number represents the sign 
bit; a 1 indicates the number is negative, and a 0 indicates it is nonnegative.

• The least significant bit (LSB) is the rightmost bit, represented by the 
location of b0. 

• The radix (binary) point is shown four places to the left of the LSB for this 
example.

• The fraction length f is the distance from the LSB to the radix point.

Radix Point Interpretation
Where you place the radix point determines how fixed-point numbers are 
interpreted in two’s complement arithmetic. For example, the five bit binary 
number: 

• 10110 represents the integer –24+22+2 = –10.

• 10.110 represents –2+2–1+2–2 = –1.25.

• 1.0110 represents –2–0+2–2+2–3 = –0.625.

Dynamic Range and Precision
A fixed-point quantization scheme determines the dynamic range of the 
numbers that can be applied to it. Numbers outside of this range are always 
mapped to fixed-point numbers within the range when you quantize them. The 
precision is the distance between successive numbers occurring within the 
dynamic range in a fixed-point representation. The dynamic range and 
precision depend on the word length and the fraction length.

For a signed fixed-point number with word length w and fraction length f, the 
range is from –2w–f–1 to 2w–f–1–2–f.

For an unsigned fixed-point number with word length w and fraction length f, 
the range is from 0 to 2w–f–2–f.

In either case the precision is 2–f.
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Overflows and Scaling
When you quantize a number that is outside of the dynamic range for your 
specified precision, overflows occur. Overflows occur more frequently with 
fixed-point quantization than with floating-point, because the dynamic range 
of fixed-point numbers is much less than that of floating-point numbers with 
equivalent word lengths. 

Overflows can occur when you create a fixed-point quantized filter from an 
arbitrary floating-point design. You can normalize your fixed-point filter 
coefficients and introduce a corresponding scaling factor for filtering to avoid 
overflows in the coefficients.

In this toolbox you can specify how you want overflows to be handled:

• Saturate on the overflow

• Wrap on the overflow
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Floating-Point Arithmetic
Fixed-point numbers are limited in that they cannot simultaneously represent 
very large or very small numbers using a reasonable word length. This 
limitation is overcome by using scientific notation. With scientific notation, you 
can dynamically place the radix point at a convenient location and use powers 
of the radix to keep track of that location. Thus, a range of very large and very 
small numbers can be represented with only a few digits.

Any binary floating-point number can be represented in floating-point using 

scientific notation form as  where F is the fraction or mantissa (of 
length f), 2 is the radix or base (binary in this case), and E is the exponent of 
the radix (of length e). The floating-point word length w is f+e+1. The extra bit 
is for the sign bit.

You can specify single-precision and double-precision floating-point quantized 
filters with the Filter Design Toolbox. In addition, you can specify custom 
floating-point quantized filters with word lengths of up to 64 bits, and exponent 
lengths of up to 11 bits. 

See http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf 
for more information on floating-point computation.

Scientific Notation
A direct analogy exists between scientific notation and radix point notation. 
For example, scientific notation using five decimal digits for the mantissa 
would take the form

where p is an integer of unrestricted range. Radix point notation using 5 bits 
for the mantissa is the same except for the number base

where q is an integer of unrestricted range. The previous equation is valid for 
both fixed- and floating-point numbers. For both these data types, the mantissa 
can be changed at any time by the processor. However, for fixed-point numbers, 
the exponent never changes, while for floating-point numbers, the exponent 
can be changed any time by the processor.

 F± 2× E±

d.dddd 10× p ddddd.0± 10× p 4– 0± .ddddd 10× p 1+
==±

b.bbbb 2× q± bbbbb.0 2× q 4–± 0.bbbbb 2× q 1+±= =
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The IEEE Format
The IEEE 754 Standard for binary floating-point arithmetic has been widely 
adopted for use on DSP processors.

This standard specifies four floating-point number formats including single- 
and double-precision. Each format contains three components: 

• Exponent

• Fraction

• Sign bit

The Exponent 
In the IEEE format, exponent representations are biased. This means a fixed 
value (the bias) is subtracted from the field to get the true exponent value. For 
example, if the exponent field is 8 bits, then the numbers 0 through 255 are 
represented, and there is a bias of 127. Some values of the exponent are 
reserved for flagging inf, NaN, and denormalized numbers, so the true 
exponent values range from –126 to 127. If the exponent length is e, the bias is 
given by 2e–1–1.

The Fraction 
In general, floating-point numbers can be represented in many different ways 
by shifting the number to the left or right of the radix point and decreasing or 
increasing the exponent of the radix by a corresponding amount. To simplify 
operations on these numbers, they are normalized in the IEEE format. 
A normalized binary number has a fraction with the form 1.F where F has a 
fixed size for a given data type. Since the leftmost fraction bit is always a 1, it 
is unnecessary to store this bit and is therefore implicit (or hidden). Thus, an 
n-bit fraction stores an n+1-bit number. If the exponent length is e and the 
word length is w, then the fraction length f = w–e–1. IEEE also supports 
denormalized numbers.

The Sign Bit
IEEE floating-point numbers use a sign/magnitude representation where the 
sign bit is explicitly included in the word. Using this representation, a sign bit 
of 0 represents a positive number and a sign bit of 1 represents a negative 
number. Both the fraction and the exponent can be positive or negative, but 
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only the fraction has a sign bit. The sign of the exponent is determined by the 
bias.

Single-Precision Format
The IEEE 754 single precision floating-point format is a 32-bit word divided 
into a 1-bit sign indicator s, an 8-bit biased exponent E, and a 24-bit fraction F. 
A representation of this format is given below.

The relationship between this format and the representation of real numbers 
is given below.

Denormalized values are discussed in “Exceptional Arithmetic” on page 5-24.

Double-Precision Format
The IEEE 754 double precision (64-bit) floating-point format consists of a 1-bit 
sign indicator s, an 11-bit biased exponent E, and a 52-bit fraction F. 
A representation of this format is given below.

Number Characterization Value

Normalized, 0<E<255 (–1)s(2E–127)(1.F)

Denormalized, E=0; F≠0 (–1)s(2–126)(0.F)

Zero, E=0; F=0 (–1)s(0)

Otherwise exceptional value

b0b22b30b31

Fs E

b0b51b62b63

Fs E
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The relationship between this format and the representation of real numbers 
is given below.

Denormalized values are discussed in “Exceptional Arithmetic” on page 5-24.

Custom Floating-Point Data Types
This toolbox supports custom (nonstandard) IEEE-style floating-point data 
types. These data types adhere to the definitions and formulas previously given 
for IEEE single- and double-precision numbers. 

The fraction length and the bias for the exponent are calculated from the word 
length and exponent length you supply. You can specify:

• Any exponent length up to 11 bits

• Any word length greater than the exponent length up to 64 bits

When specifying a custom format, keep in mind that the exponent length 
largely determines the dynamic range, while the fraction length largely 
determines the precision of the result.

Dynamic Range 
A floating-point quantization scheme determines the dynamic range of the 
numbers that can be applied to it. Numbers outside of this range are always 
mapped to ±inf. 

Number Characterization Value

Normalized, 0<E<2047 (–1)s(2E–1023)(1.F)

Denormalized, E=0; F≠0 (–1)s(2–1022)(0.F)

Zero, E=0; F=0 (–1)s(0)

Otherwise exceptional value
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The range of representable numbers for an IEEE floating-point number with 
word length w, exponent length e, fraction length f = w–e–1, and the exponent 
bias given by bias = 2e – 1– 1 is described in the following diagram

where:

• Normalized positive numbers are defined within the range 21–bias to 
(2 – 2–f).2bias.

• Normalized negative numbers are defined within the range –21–bias to 
–(2 – 2–f).2bias.

• Positive numbers greater than (2 – 2–f).2bias, and negative numbers greater 
than –(2 – 2–f).2bias are called overflows.

• Positive numbers less than 21–bias, and negative numbers less than –21–bias 

are either underflows or denormalized numbers.

• Zero is specified by a E=0; F=0.

Overflows and underflows result from exceptional arithmetic conditions. 
Exceptional arithmetic is discussed “Exceptional Arithmetic” on page 5-24.

Note  You can use the MATLAB functions realmin and realmax to determine 
the dynamic range of double-precision floating-point values for your computer.

Precision
The precision is the distance between 1.0 and the next largest floating-point 
number. The dynamic range and precision depend on the word length and the 
exponent length.

The precision for floating-point numbers is 2–f.

positive 
underflow

negative 
underflow

positive 
overflow

negative 
overflow

negative numbers positive numbers
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Note  In MATLAB, floating-point relative accuracy is given by the command 
eps which returns the distance from 1.0 to the next largest floating-point 
number. For computers that support the IEEE standard for floating-point 
numbers, eps = 2–52 or 2.2204 ✕ 10–16.

Floating-Point Data Type Parameters
The maximum and minimum absolute values, exponent bias, and precision for 
the floating-point formats supported by this toolbox are given below.

Due to the sign/magnitude representation of floating-point numbers, there are 
two representations of zero, one positive and one negative. For both 
representations E = 0 and F = 0.

Exceptional Arithmetic
In addition to specifying a floating-point format, the IEEE 754 Standard for 
binary floating-point arithmetic specifies practices and procedures so that 
predictable results are produced independent of the hardware platform. 
Specifically, denormalized numbers, are defined to deal with exceptional 
arithmetic (underflow and overflow). 

Denormalized Numbers
Denormalized numbers are used to handle cases of exponent underflow. When 
the exponent of the result is too small (such as a negative exponent whose 
magnitude is too large), the result is denormalized by right-shifting the 
fraction and leaving the exponent at its minimum value. Using denormalized 
numbers is also referred to as gradual underflow. Without denormalized 

Table 5-1:  Floating-Point Data Type Parameters

Floating-Point 
Data Type

Normalized 
Minimum 

Maximum Exponent 
Bias

 Precision

Single 2–126≈10–38 (2–2–23)2127≈3(1038) 127 2–23≈10–7

Double 2–1022≈2(10–308) (2–2–52)21023≈1.7(10308) 1023 2–52≈10–16

Custom 21–bias (2–2–f)2bias 2e–1–1 2–f
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numbers, the gap between the smallest representable nonzero number and 
zero is much wider than the gap between the smallest representable nonzero 
number and the next larger number. Gradual underflow fills that gap and 
reduces the impact of exponent underflow to a level comparable with roundoff 
among the normalized numbers. Thus, denormalized numbers provide 
extended range for small numbers at the expense of precision.

For more information about denormalized single- and double-precision 
numbers, refer to “Single-Precision Format” on page 5-21 and 
“Double-Precision Format” on page 5-21.
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6

Working with Objects

Objects for Quantized Filtering (p. 6-2) Describes the objects the toolbox uses for quantized 
filtering

Properties and Property Values (p. 6-5) Outlines the properties of the quantized filter objects

Functions Acting on Objects (p. 6-11) Lists the functions (methods) that apply to quantized 
filter objects

Using Command Line Help (p. 6-12) Describes how to get help on quantized objects, 
properties, and methods

Using Cell Arrays (p. 6-14) Provides information on using cell arrays, which are 
common when you use the objects in the toolbox
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Objects for Quantized Filtering
The Filter Design Toolbox uses objects to create:

• Quantizers

• Quantized filters

• Quantized FFTs

Concepts you need to know about the objects for quantized filtering in this 
toolbox are covered in these sections:

• “Constructing Objects”

• “Copying Objects to Inherit Properties”

• “Properties and Property Values”

• “Setting and Retrieving Property Values”

- “Setting Property Values Directly at Construction”

- “Setting Property Values with the set Command”

- “Retrieving Properties with the get Command”

- “Direct Property Referencing to Set and Get Values”

• “Functions Acting on Objects”

• “Using Command Line Help”

• “Using Cell Arrays”

- “Indexing into a Cell Array of Vectors or Matrices”

- “Indexing into a Cell Array of Cell Arrays”

Note  Although the examples in this section use quantized filters, the 
techniques discussed here apply to quantizers and quantized FFTs. See 
“MATLAB Classes and Objects” in your MATLAB documentation for more 
details on object-oriented programming in MATLAB.
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Constructing Objects
You use one of the two methods Filter Design Toolbox offers to construct 
objects:

• Use the object constructor function

• Copy an existing object

For example, when you create a quantized filter using the qfilt command, you 
are creating a Qfilt object. The Qfilt object implementation relies on MATLAB 
object-oriented programming capabilities. 

Like other MATLAB structures, objects in this toolbox have predefined fields 
called object properties. 

You specify object property values by either:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all of 
these property values later

For examples of setting quantized filter properties, see “Quantized Filter 
Properties” on page 8-6.

Example — Constructor for Quantized Filters
The easiest way to create a quantized filter (qfilt object) is to create one with 
the default properties. You can create a quantized filter Hq by typing

Hq = qfilt

MATLAB lists the properties of the filter Hq you created along with the 
associated default property values.

Quantized Direct form II transposed filter                            
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
+ (1)       0.999969482421875  1.000000000000000000                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
+ (1)       0.999969482421875  1.000000000000000000                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
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  StatesPerSection = [0]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
Warning: 2 overflows in coefficients. 

The properties of this filter are described in Table 12-3, Quick Guide to 
Quantized Filter Properties, on page 12-10, and in more detail in “Quantized 
Filter Properties Reference” on page 12-11. All of these properties are set to 
default values when you construct them.

For information on quantizer properties, see “A Quick Guide to Quantizer 
Properties” on page 12-2 or “Quantizer Properties Reference” on page 12-3 for 
more details.

For information on quantized FFT properties, see “A Quick Guide to Quantized 
FFT Properties” on page 12-51, or “Quantized FFT Properties Reference” on 
page 12-52 for more details.

Copying Objects to Inherit Properties
If you already have an object with the property values set the way you want 
them, you can create a new one with the same property values by copying the 
first object. 

This feature is convenient to use when you want to change a small number of 
properties on a set of objects. 

Example — Copying Quantized Filters to Inherit Properties
To create a new quantized filter Hq2 with the same property values as an 
existing quantized filter Hq, type

Hq2 = copyobj(Hq);



Properties and Property Values

6-5

Properties and Property Values
All objects in this toolbox have properties associated with them. Each property 
associated with an object is assigned a value. You can set the values of most 
properties. However, some properties have read-only values.

To learn about properties that are specific to quantized filters, see “Quantized 
Filter Properties” on page 8-6.

To learn about properties that are specific to quantizers, see “Quantizer 
Properties Reference” on page 12-3.

To learn about properties that are specific to quantized FFTs, see “Quantized 
FFT Properties Reference” on page 12-52.

Setting and Retrieving Property Values
You can set Filter Design Toolbox object property values:

• Directly when you create the object

• By using the set command with an existing object

You can retrieve quantized filter property values using the get command.

In addition, direct property referencing lets you either set or retrieve property 
values.

Setting Property Values Directly at Construction
To set property values directly when you construct an object, simply include the 
following in the argument list for the object construction command:

• A string for the property name you want to set followed by a comma

• The associated property value. Sometimes this value is also a string

Include as many property names in the argument list for the object 
construction command as there are properties you want to set directly. 

Example — Setting Quantized Filter Property Values at Construction
Suppose you want to set the following filter characteristics when you create a 
fixed-point quantized filter: 

• The filter structure has a direct form II transposed structure
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• The reference filter transfer function has numerator [1 .5] and denominator 
[1 .7 .89]

Do this by typing

Hq = qfilt('FilterStructure','df2t','ReferenceCoefficients',...
{[1 .5] [1 .7 .89]});

These properties are described in “Quantized Filter Properties Reference” on 
page 12-11. 

Note  When you set any object property values, the strings for property 
names and their values are case-insensitive. In addition, you only need to type 
the shortest uniquely identifying string in each case. For example, you could 
have typed the above code as

Hq = qfilt('filt','df2t','ref',{[1 .5] [1 .7 .89]});

Setting Property Values with the set Command
Once you construct an object, you can modify its property values using the set 
command. 

You can use the set command to both:

• Set specific property values

• Display a listing of all property values you can set

Example — Setting Fixed-Point Quantized Filter Property Values Using set
For example, set the following specifications for the fixed-point filter Hq you 
just created:

• Set the input quantization format to [24 23]

• Set the filter structure to a direct form I structure

To do this, type

set(Hq,'inputformat',[24 23],'filterstructure','df1')
Hq.input.format
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ans =
    24    23

Hq.filt

ans =
df1

Notice how the display reflects the changes in the property values.

To display a listing of all of the properties associated with a quantized filter Hq 
that you can set, type 

set(Hq)

QuantizedCoefficients: Quantized from reference coefficients.
ReferenceCoefficients: Cell array of coefficients.  One cell per 
section.
                       {num,den} | {{num1,den1},{num2,den2},...} |
                       {num} | {{num1},{num2},...} | 
                       {k} | {{k1},{k2},...} | 
                       {k,v} | {{k1,v1},{k2,v2},...} |
                       {k1,k2,beta} | 
{{k11,k21,beta1},{k12,k22,beta2},...} |
                       {A,B,C,D} | {{A1,B1,C1,D1},{A2,B2,C2,D2},...}
      FilterStructure: [df1 | df1t | df2 | <df2t> | fir | firt | 
                        symmetricfir | antisymmetricfir | 
                        latticear | latcallpass | 
                        latticema | latcmax | latticearma |
                        latticeca | latticecapc | statespace]
          ScaleValues: Vector of scale values between sections.
    CoefficientFormat: quantizer
          InputFormat: quantizer
         OutputFormat: quantizer
   MultiplicandFormat: quantizer
        ProductFormat: quantizer
            SumFormat: quantizer
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Retrieving Properties with the get Command
You can use the get command to:

• Retrieve property values for an object

• Display a listing of all the properties associated with an object and the 
associated property values

Example — Retrieving Quantized Filter Property Values
For example, to retrieve the value of the quantization data format for the input, 
type

v = get(Hq,'FilterStructure')

v =
df1

Note  When you retrieve properties, the strings for property names and their 
values are case-insensitive. In addition, you only need to type the shortest 
uniquely identifying string in each case. For example, you could have typed 
the above code as

v = get(Hq,'filt');

Note  To display a listing of the properties of a quantized filter Hq, and their 
values, type 

get(Hq)

Quantized Direct Form I (df1) filter.
Numerator
 QuantizedCoefficients{1}    ReferenceCoefficients{1}
    (1) 1.000000000000000    1.000000000000000000
    (2) 0.500000000000000    0.500000000000000000
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Denominator
 QuantizedCoefficients{2}    ReferenceCoefficients{2}
    (1) 1.000000000000000    1.000000000000000000
    (2) 0.699981689453125    0.699999999999999960
    (3) 0.889984130859375    0.890000000000000010

   FilterStructure = df1
       ScaleValues = [1]
  NumberOfSections = 1
  StatesPerSection = [3]
 CoefficientFormat = unitquantizer('fixed', 'floor', 'saturate', 
[16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [24  
23])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  
30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  
30])

Direct Property Referencing to Set and Get Values
You can reference directly into a property for setting or retrieving property 
values using MATLAB structure-like referencing. You do this by using a period 
to index into a property by name. 

Example — Direct Property Referencing in Quantized Filters
For example:

1 Create a filter with default values.

2 Change its reference filter coefficients.

Hq = qfilt;
Hq.ref = {[1 .5],[1 .7 .89]};
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Notice that you do not have to type the full name of the 
ReferenceCoefficients property, and you can use lower case to refer to the 
property. 

To retrieve any property values, you can also use direct property referencing.

v = Hq.ref

v = 
    [1x2 double]    [1x3 double]

Notice that v is a cell array, and you need to index into it to retrieve its values. 
See “Using Cell Arrays” on page 6-14 for help about indexing into cell arrays.
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Functions Acting on Objects
Several functions in this toolbox have the same name as functions in the Signal 
Processing Toolbox or in MATLAB. These Filter Design Toolbox functions 
behave similarly to their original counterparts, but you apply these functions 
directly to an object. This concept of having functions with the same name 
operate on different types of objects (or on data) is called overloading of 
functions.

For example, the filter command is overloaded for quantized filters (qfilt 
objects). Once you specify your quantized filter by assigning values to its 
properties, you can apply many of the functions in this toolbox (such as freqz 
for frequency response analysis) directly to the variable name you assign to 
your quantized filter, without having to specify filter parameters again. 

For a complete list of the functions that act on quantizers, see “Functions 
Operating on Quantizers” on page 13-12.

For a complete list of the functions that act on quantized filters, see “Functions 
Operating on Quantized FFTs” on page 13-14.

For a complete list of the functions that act on quantized FFTs, see “Functions 
Operating on Quantized FFTs” on page 13-14.
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Using Command Line Help
How you get command line help on a function depends on whether the function 
is overloaded.

Command Line Help For Nonoverloaded Functions 
You can use the usual syntax for getting command line help on functions that 
are not overloaded. 

Type 

help FuncName

to get command line help on functions in this toolbox that are not overloaded.

Command Line Help For Overloaded Functions
Because many of the toolbox functions are overloaded, you need to refer to the 
object name when you are trying to get command line help for overloaded 
functions.

Command Line Help for Overloaded Functions on Quantized Filters
To get command line help for an overloaded function MethodName that operates 
on quantized filters (Qfilt objects), type 

help qfilt/MethodName

Similarly, for command line help on overloaded methods for quantizers or 
quantized FFTs, type

help quantizer/MethodName
help qfft/MethodName

For example, to get help on the zplane function in this toolbox, type

help qfilt/zplane

You can find a list of the overloaded functions for quantized filters in 
“Functions Operating on Quantized FFTs” on page 13-14.

You can find a list of the overloaded functions for quantizers, in “Functions 
Operating on Quantizers” on page 13-12.
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You can find a list of the overloaded functions for quantized FFTs, in 
“Functions Operating on Quantized FFTs” on page 13-14.

Note  Many of the toolbox functions are overloaded. MATLAB does not 
necessarily display the appropriate help text for a given object command 
MethodName when you type

help MethodName

To get the appropriate help for an overloaded function, you may need to 
specify the type of object to which you are applying the function. For example,

help qfilt/MethodName
help qfft/MethodName



6 Working with Objects

6-14

Using Cell Arrays
The syntax for constructing quantized filters requires you to enter the 
reference filter coefficients as cell arrays. 

Cell arrays can store any type of data: strings, vectors, matrices, cell arrays, 
and so forth. You specify a cell array using curly braces ({}). You need to use 
these braces to index into a cell array to retrieve its contents. 

When you index into a cell array you use one set of braces to index into each 
layer of a cell array.

For details on constructing and using quantized filters in this toolbox, see 
Chapter 8, “Working with Quantized Filters.” For detailed information on cell 
arrays, see Using MATLAB. 

The next sections provide guidance and examples of how to index into a cell 
array:

• “Indexing into a Cell Array of Vectors or Matrices” on page 6-14

• “Indexing into a Cell Array of Cell Arrays” on page 6-15

Indexing into a Cell Array of Vectors or Matrices
To index into a cell array of matrices (as opposed to a cell array of cell arrays), 
you only need one set of braces to index into the cell array. 

Here’s an example of accessing cell array information from a quantized filter 
with a single section. In this case, the filter coefficient information is stored as 
a cell array of vectors. 

Example — Accessing Coefficient Information from Filters with One 
Section
You can specify a sample quantized filter by typing

Hq = qfilt('ref',{[1 .5],[1 .7 .89]});
Hq.ReferenceCoefficients

ans = 
    [1x2 double]    [1x3 double]

Notice that the filter reference coefficients are stored in a two-by-one cell array 
of vectors, the way you specified them. 
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Suppose that you want to retrieve the values stored in this property. 

Use curly braces to index into and access the first entry of the cell array 
Hq.ReferenceCoefficients. You can use the shorthand for property names 
when you index into the properties of Hq.

Hq.ref{1}

ans =
    1.0000    0.5000

Similarly,

Hq.ref{2}

ans =
    1.0000    0.7000    0.8900

To access the third entry in Hq.ref{2}, index into Hq.ref{2} in the standard 
way.

Hq.ref{2}(3)

ans =
    0.8900

Indexing into a Cell Array of Cell Arrays 
To index into a cell array of cell arrays, you have to use as many sets of braces 
as you have layers of cells. 

Here’s an example of indexing into the cell arrays of multisection quantized 
filters.

Example — Accessing Coefficient Information from Multisection Filters
When you create quantized filters with multiple sections, specify the reference 
filter coefficients as a cell array of cell arrays, using one cell array to enter the 
numerator and denominator of each section. In this case, use sequences of curly 
braces to index into these cell arrays.

For example, suppose you want to quantize and design a sixth-order 
Butterworth filter you create using the Signal Processing Toolbox.

[b,a] = butter(6,.5);
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Filters whose transfer functions are factored into second-order sections are 
much more robust against quantization error, so use sos to put your direct 
form II filter into a second-order sections form.

Hq = sos(qfilt('df2',{b,a}));
Hq.ReferenceCoefficients

ans = 
    {1x2 cell}    {1x2 cell}    {1x2 cell}

The reference coefficients are contained in a three-by-one cell array of cells 
Hq.ReferenceCoefficients. This cell array is created from the values you set 
for the ReferenceCoefficients property. You can index into one of the three 
cell arrays of cells by: 

1 Creating a cell array c from the cell array Hq.ReferenceCoefficients

2 Indexing into it

c = Hq.ref;
c{2}{1:2}

ans =
    0.2500    0.5012    0.2511
ans =
    1.0000    0.0000    0.1716

Notice that you can use the colon operator to obtain the contents of both entries 
in the cell array contained in the cell array c{2}.

Note  You do not have to create another cell array to index into the reference 
coefficients data for one section of the filter. You do have to create another cell 
array if you want to index into multiple entries of the cell array, as in this 
example.
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Quantizers and Unit Quantizers
There are two types of quantizers you can construct in this toolbox:

• Quantizers

• Unit quantizers

These two types of quantizers are the same, except that unit quantizers 
quantize any number within the quantization level (eps(q)) of 1 to 1, where q 
is a quantizer.

You can construct quantizers to specify quantization parameters you want to 
use when you quantize data sets. You can also use quantizers for:

• Specifying data formats for quantized filters or FFTs

• Obtaining information about the data sets you quantize 

This chapter covers quantizer-specific information:

• Constructing quantizers

• Quantizer properties 

• Quantizing data with quantizers

- Accessing data-related quantization information using a quantizer

• Displaying quantized data in binary or hexadecimal format

• Accessing quantizer data

The quantizers you create in this toolbox are objects with properties. Most of 
the basic information you need to know about setting and retrieving property 
values is found in Chapter 6, “Working with Objects.” See “Quantizer 
Properties Reference” on page 12-3 for information on quantizer properties.
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Constructing Quantizers 
You can construct quantizers by either:

• Using either quantizer constructor function:

- quantizer

- unitquantizer

• Copying a quantizer from an existing one using the copyobj function

Note  You can also use the constructor unitquantizer to transform an 
existing quantizer into a unit quantizer.

All quantizer parameters are stored as properties that you can set or retrieve. 
Some of these quantizer parameters include:

• Quantization format

• Data type (signed or unsigned fixed-point, or double-, single-, or 
custom-precision floating-point)

• Rounding method used in quantization

• Overflow method used in quantization

Constructor for Quantizers
The easiest way to create a quantizer is to create one with the default 
properties. You can create a quantizer q by typing

q = quantizer

A listing of all of the properties of the quantizer q you just created is displayed 
along with the associated property values. All property values are set to 
defaults when you construct a quantizer this way. See “Example — 
Constructor for Quantized Filters” on page 6-3 for more details.

To construct a unit quantizer q with all of the default quantizer properties, type

q = unitquantizer
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Quantizer Properties
Since a quantizer is an object, it has properties associated with it. You can set 
the values of some quantizer properties. However, some properties have 
read-only values. This sections covers both settable and read-only properties:

• “Settable Quantizer Properties” on page 7-4

• “Read-Only Quantizer Properties” on page 7-5

Properties and Property Values
Each property associated with a quantizer is assigned a value. When you 
construct a quantizer, you can assign some of the property values.

Most of the basic information you need to know about setting and retrieving 
property values is found in Chapter 6, “Working with Objects.” 

A complete list of properties of quantized filters is provided in Table 12-3, 
Quick Guide to Quantized Filter Properties, on page 12-10. Properties are 
described in more detail in “Quantized Filter Properties Reference” on 
page 12-11.

Settable Quantizer Properties
You can set the following four quantizer properties:

• Mode property — specifying the data type:

- Fixed-point (signed or unsigned)

- Custom floating-point

- Double-precision floating-point

- Single-precision floating-point

• Format property — specifying quantization format parameters

• OverflowMode property — specifying how overflows are handled in 
arithmetic operations

• RoundMode property — specifying the rounding method used in quantization

See “Quantizer Properties Reference” on page 12-3 for full details on all 
properties.

For example, create a fixed-point quantizer with:
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• The Format property value set to [16,14]

• The OverflowMode property value set to 'saturate'

• The RoundMode property value set to 'ceil'

You can do this with the following command.

q = quantizer('mode','fixed','format',[16,14],'overflowmode',...
'saturate','roundmode','ceil')

Setting Quantizer Properties Without Naming Them
You don’t have to include quantizer property names when you set quantizer 
property values. 

For example, you can create quantizer q from the previous example by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note  You do not have to include default property values when you construct 
a quantizer. In this example, you could leave out 'fixed' and 'saturate'.

Read-Only Quantizer Properties
Quantizers have five read-only properties:

• Max

• Min

• NOperations

• NOverflows

• NUnderflows

These properties log quantization information each time you use quantize to 
quantize data with a quantizer. The associated property values change each 
time you use quantize with a given quantizer. You can reset these values to 
the default value using reset.

For an example, see “Example — Data-Related Quantizer Information” on 
page 7-6.
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Quantizing Data with Quantizers
You construct a quantizer to specify the quantization parameters to use when 
you quantize data sets. You can use the quantize function to quantize data 
according to a quantizer’s specifications.

Once you quantize data with a quantizer, its data-related, read-only property 
values may change. 

The following example shows:

• How you use quantize to quantize data

• How quantization affects the read-only properties

• How you reset the read-only properties to their default values using reset 

Example — Data-Related Quantizer Information

1 Construct an example data set and a quantizer.

randn('state',0);
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the Max and Noverflows properties.

q.max

ans =
reset

q.noverflows

ans =
     0

3 Quantize the data set according to the quantizer’s specifications.

y = quantize(q,x);

4 Check the quantizer property values.

q.max
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ans =
2.3726

q.noverflows

ans =
     15

5 Reset the read-only properties and check them.

reset(q)
q.max

ans =
reset

q.noverflows

ans =
     0
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Transformations for Quantized Data 
You can convert data values from numeric to hexadecimal or binary according 
to a quantizer’s specifications.

Use:

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example, 

q = quantizer([3 2]);
      x = [0.75   -0.25
           0.50   -0.50
           0.25   -0.75
           0      -1   ];
      b = num2bin(q,x)
 
b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of three-bit 
fixed-point numbers.
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Quantizer Data Functions
Filter Design Toolbox provides a number of data functions to retrieve 
information about a quantizer. These functions include:

• denormalmax — the largest denormalized quantized number

• denormalmin — the smallest denormalized quantized number

• eps — the quantization level

• exponentbias — the exponent bias of a quantizer

• exponentlength — the exponent length of a floating-point quantizer

• exponentmax — the maximum exponent allowable for a floating-point 
quantizer

• fractionlength — the fraction length of a fixed-point quantizer

• range — the numerical range of a quantizer

• realmax — the largest positive number a quantizer can produce 

• realmin — the smallest positive normal number a quantizer can produce

• wordlength — the word length of a quantizer

For example, to find the largest positive quantized number the default 
quantizer can create, type

format long
q = quantizer;
r = realmax(q)

r =
   0.99996948242188
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(p. 8-14)

Uses examples to show you how to use quantized filters to 
filter data
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Introduces the hex and binary functions for changing the 
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This chapter covers what you need to know to construct and use quantized 
filters:

• Constructing quantized filters

• Quantized filter properties

• Filtering data with quantized filters

• Transformation Functions for Quantized Filter Coefficients

The quantized filters you create in this toolbox are objects with properties. 
Most of the basic information you need to know about setting and retrieving 
property values is found in Chapter 6, “Working with Objects.” 
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Constructing Quantized Filters 
You can construct quantized filters in the Filter Design Toolbox by either:

• Using the quantized filter constructor function qfilt

• Copying an existing one

All filter characteristics are stored as properties that you can set or retrieve. 
Some of these quantized filter characteristics include:

• Filter structure. 

• Reference filter coefficients. 

• Filter topology (single section or cascaded nth-order sections). The syntax 
you use to enter the reference filter coefficients determines the topology.

• Quantized filter data format parameters:

- Quantization parameters (precisions).

- Data type (signed or unsigned fixed-point, or, double-, single-, or 
custom-precision floating-point).

- Rounding method used in quantization.

- Overflow method used in quantization.

• Scaling factors for each section of a cascade of nth-order sections.

You can specify quantized filter properties by either:

• Specifying all of the filter properties when you create it

• Creating a quantized filter with default property values, and changing some 
or all of these property values later

Constructor for Quantized Filters
The most direct way to create a quantized filter (Qfilt object) is to create one 
with the default properties. You create a default quantized filter Hq by typing

Hq = qfilt

A listing of all of the properties of the filter Hq you just created is displayed 
along with the associated property values. All property values are set to 
defaults when you construct a quantized filter this way.
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To construct a quantized filter with properties other than the default values, 
follow the procedure outlined in “Setting Property Values Directly at 
Construction” on page 6-5.

For some examples of using the quantized filter constructor to construct a filter 
while specifying some properties at construction, see:

• “Constructing an Eight-Bit Quantized Filter” on page 5-8

• “Example — Accessing Coefficient Information from Filters with One 
Section” on page 6-14

• “Example — Accessing Coefficient Information from Multisection Filters” on 
page 6-15

Constructing a Quantized Filter from a Reference
In general you construct quantized filters from reference filters. You begin with 
a set of unquantized (or quantized) reference filter coefficients to implement in 
a quantized filter. 

Suppose you design a quantized filter from a fourth-order elliptic filter. You can 
use the Signal Processing Toolbox filter design functions to help you. First, 
design a filter with parameters in transfer function form.

[b,a] = ellip(4,3,20,.6); 

Filters designed with a second-order section topology are more robust against 
quantization errors than those composed of higher order transfer functions. 

Converting a Filter to Second-Order Sections Form
You can construct a quantized filter in second-order sections form as follows:

1 Create a quantized filter using the elliptic filter’s transfer function 
parameters as reference coefficients.

Hq = qfilt('df2t',{b,a});

This filter is not in second-order sections form and has coefficient overflow.

2 Use sos to convert the filter to second-order sections form.

Hq = sos(Hq);



Constructing Quantized Filters

8-5

Copying Filters to Inherit Properties
If you already have a quantized filter Hq with the property values set the way 
you want them, you can create a new quantized filter Hq2 with the same 
property values as Hq by typing 

Hq2 = copyobj(Hq)

This function is convenient to use when you are changing a small number of 
properties on a set of filters. 

For example, create a 16-bit precision filter Hq from an FIR reference filter with

b = fir1(80,0.5,kaiser(81,8)); % Reference filter
Hq = qfilt('fir',{b})

Except for the filter coefficients provided by {b}, Hq inherits the default property 
values for a quantized filter. 

Changing Filter Property Values After Construction
Now suppose you want to analyze the response of this same reference filter b 
when you:

• Change all of the data format property values using setbits 

• Change the ScaleValues property value to [0.5 0.5]

You can do this by first copying Hq, and then changing only those properties you 
want to change.

Hq2 = copyobj(Hq);
setbits(Hq2,[16,14])
Hq2.ScaleValues = [0.5 0.5];
Hq2.scale

ans =
    0.5000    0.5000

For more information on setting filter properties, see “Setting Property Values 
with the set Command” on page 6-6 and “Direct Property Referencing to Set 
and Get Values” on page 6-9.
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Quantized Filter Properties
Since a quantized filter is a Qfilt object, it has properties associated with it. 
These properties prescribe the most basic filter qualities, such as the data 
format for each data path or the rounding methods used for quantization and 
filtering. You can set the values of most properties. However, some properties 
have read-only values.

Properties and Property Values
Each property associated with a quantized filter is assigned a value. When you 
construct a quantized filter, you assign some of the quantized filter property 
values to design a quantized filter to your own specifications. You can set or 
retrieve quantized filter properties according to the information in “Setting and 
Retrieving Property Values” on page 6-5.

A complete list of properties of quantized filters is provided in Table 12-3, 
Quick Guide to Quantized Filter Properties, on page 12-10. Properties are 
described in more detail in “Quantized Filter Properties Reference” on 
page 12-11. 

Basic Filter Properties
Basic filter properties include:

• The ReferenceCoefficients property — specifying the filter reference 
coefficients

• The FilterStructure property — specifying the quantized filter structure

• The data format properties for setting quantization parameters for data and 
arithmetic operations:

- CoefficientFormat — specifying how the reference filter coefficients are 
quantized

- InputFormat — specifying how the inputs are quantized

- MultiplicandFormat — specifying how data is quantized before it is 
multiplied by a coefficient

- OutputFormat — specifying how the outputs are quantized

- ProductFormat — specifying how the results of multiplication are 
quantized
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- SumFormat — specifying how the results of addition are quantized

See “Quantized Filter Properties Reference” on page 12-11 for full details on all 
properties.

Specifying the Filter Reference Coefficients
The ReferenceCoefficients property value contains the filter parameters for 
the reference filter that specifies your quantized filter. “Constructing a 
Quantized Filter from a Reference” on page 8-4 uses the 
ReferenceCoefficients property in an example of quantized filter 
construction. 

The syntax you use for assigning reference filter coefficients depends on the 
filter structure and topology to assign. See “Assigning Reference Filter 
Coefficients” on page 12-40 for more information on the syntax for each filter 
structure and topology.

For example, to assign a direct form II transposed filter structure with one 
second-order section for the transfer function

type 

Hq = qfilt('FilterStructure','df2t','ReferenceCoefficients',...
{[1 .5] [1 .7 .89]});

In this example, you use the constructor qfilt to specify the quantized filter. 
You set the FilterStructure and the ReferenceCoefficients property values 
at the same time that you specify the filter. All other filter properties retain 
their default values.

Notice that you enter the numerator and denominator polynomial coefficients 
in one cell array for this filter with one second-order section. In general you use 
a separate cell array to specify the reference filter coefficients for each cascaded 
section in a quantized filter.

H z( ) 1 0.5z 1–
+

1 0.7z 1– 0.89z 2–
+ +

-----------------------------------------------------=
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Specifying the Quantized Filter Structure
In Filter Design Toolbox, you can create quantized filters with 16 different 
filter structures:

• Direct form I

• Direct form I transposed

• Direct form II 

• Direct form II transposed 

• Direct form Finite Impulse Response (FIR)

• Direct form FIR transposed

• Direct form antisymmetric FIR (odd and even orders)

• Direct form symmetric FIR filters (odd and even orders)

• Lattice allpass

• Lattice coupled-allpass filters

• Lattice coupled allpass power-complementary filters

• Lattice Moving Average (MA) minimum phase filters

• Lattice MA maximum phase filters

• Lattice Autoregressive (AR) filters 

• Lattice ARMA filters 

• Single-input single-output state-space filters 

Filter structures are described in detail in the description for the property 
FilterStructure on page 12-12.

You can create filters with two possible filter topologies:

• A single section

• Cascaded nth-order sections

Topology. You set the topology when you specify the reference filter coefficients 
for your quantized filter. See “Assigning Reference Filter Coefficients” on 
page 12-40 for more information. After you create your quantized filter with 
the topology you choose, use Filter Design and Analysis Tool (FDATool) in 
quantization mode to change the filter topology. For more information about 
FDATool, refer to Chapter 11, “Using FDATool with the Filter Design Toolbox.”
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For example, you can construct a quantized filter with a lattice AR structure 
by:

1 Specifying a vector of AR reflection coefficients

k = [.66 .7 .44];

2 Constructing a quantized filter with a lattice AR filter structure

Hq = qfilt('latticear',{k});

Notice that:

• You don’t have to type the 'FilterStructure' property name at 
construction

• You specify the reflection reference filter coefficients in a cell array

Specifying the Data Formats
Quantized filters have six data format properties you can set:

• CoefficientFormat

• InputFormat

• MultiplicandFormat

• OutputFormat

• ProductFormat

• SumFormat

Specify the data format property values for quantized filters using quantizers. 
For each data format, you can specify:

• Data type

• Quantization format parameters

• Method for handling quantization overflows

• Method for rounding

For example, the quantization format of the CoefficientFormat property for 
Hq has the default value of [16,15] (as do all data format properties for this 
filter). To change the quantization format for the CoefficientFormat property 
value to [16,14], type 
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Hq.CoefficientFormat.Format = [16,14];
Hq.CoefficientFormat.Format
ans =
    16    14

Here you are changing the Format property of the quantizer for the 
CoefficientFormat property. This syntax leaves all other property values for 
the quantizer for the CoefficientFormat property unchanged.

Specifying All Data Format Properties at Once
To implement the quantized lattice filter Hq you just specified using 
floating-point calculations, you need to set the Mode property value for each 
data format property quantizer for Hq to 'float'. You can do this using the 
quantizer syntax for accessing the data format properties. See qfilt for more 
information on this syntax.

Hq.quantizer = {'float', [24,8]}

Hq = 

Quantized Autoregressive Lattice (latticear) filter.
Lattice
 QuantizedCoefficients{1}    ReferenceCoefficients{1}
    (1) 0.659988403320313    0.660000000000000030
    (2) 0.699996948242188    0.699999999999999960
    (3) 0.439994812011719    0.440000000000000000

   FilterStructure = latticear
       ScaleValues = [1]
  NumberOfSections = 1
  StatesPerSection = [3]
 CoefficientFormat = quantizer('float', 'round', [24   8])
       InputFormat = quantizer('float', 'floor', [24   8])
      OutputFormat = quantizer('float', 'floor', [24   8])
MultiplicandFormat = quantizer('float', 'floor', [24   8])
     ProductFormat = quantizer('float', 'floor', [24   8])
         SumFormat = quantizer('float', 'floor', [24   8])
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Note  The quantizer syntax lets you use one line of code to change the Mode 
and Format property values for all data format quantizers. You can also do 
this with the following six commands.

Hq.CoefficientFormat = quantizer('float',[24,8])
Hq.InputFormat = quantizer('float',[24,8])
Hq.MultiplicandFormat = quantizer('float',[24,8])
Hq.OutputFormat = quantizer('float',[24,8])
Hq.ProductFormat = quantizer('float',[24,8])
Hq.SumFormat = quantizer('float',[24,8])

Specifying the Format Parameters with setbits 
Suppose you want to change all of the arithmetic and quantization data format 
parameters for the custom floating-point filter Hq in the previous example to 
[24 8]. You can do this in three ways:

• Using the setbits command

• Using the quantizer syntax

• Setting each data format property separately

To do this using the setbits command, type

setbits(Hq,[24,8])

To do this using the quantizer syntax, type

Hq.quantizer = [24,8];

These two commands are equivalent for floating-point filters.

Note  The setbits command behaves slightly differently for fixed-point 
filters. It doubles the quantization data formats for products and sums.
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Using normalize to Scale Coefficients
Even though you can specify how overflows are treated, they are not corrected 
for automatically. You can use normalize to account for coefficient 
quantization overflows for all of the direct form and FIR fixed-point filter 
structures. This function normalizes the coefficients and modifies the filter 
scaling.

For example, if you create an elliptic filter with Signal Processing Toolbox and 
directly quantize it with fixed-point arithmetic, there may be some coefficient 
overflows.

[b,a] = ellip(5,2,40,0.4);
Hq = qfilt('df2t',{b,a})

Warning: 5 overflows in coefficients.

A warning is displayed indicating that there are coefficient overflows in this 
fixed-point filter. This type of warning is displayed whenever you create a filter 
with coefficient overflow and you have MATLAB warning set on.

You can normalize the coefficients and modify the scaling using normalize.

Hq = normalize(Hq)

Hq.ScaleValues
ans =
    0.0313    1.0000

Notice that: 

• The ScaleValues property value has been modified from its original (default) 
value of 1.

• There is no longer any coefficient overflow in Hq.

You can apply normalize to direct form IIR and FIR filters. The 
FilterStructure property value must be one of the following:

• 'antisymmetricfir'

• 'df1'

• 'df1t'

• 'df2'
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• 'df2t'
• 'fir'
• 'firt'
• 'symmetricfir'
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Filtering Data with Quantized Filters
You can filter data with quantized filters using the filter function. 

Example: Filtering Data with a Quantized Filter
warning on
randn('state',0);
x = randn(100,2);
[b,a] = butter(3,.9,'high');
Hq = sos(qfilt('ReferenceCoefficients',{0.5* b,0.5*a},...
'CoefficientFormat',unitquantizer([26 24])));
y = filter(Hq,x);

Warning: 64 overflows in QFILT/FILTER.

                        Max            Min     NOverflows    NUnderflows    NOperations
 Coefficient          1.187             -1              0              0             12
                      1.648             -2              0              0             18
       Input          2.183         -2.202             64              0            200
      Output         0.4345        -0.4477              0              0            200
Multiplicand              1             -1              0              2            800
                     0.4345        -0.4477              0              0           1000
     Product       0.009246      -0.008869              0              0            800
                     0.7158        -0.7377              0              0           1000
         Sum        0.01274        -0.0122              0              0            600

0.4345        -0.4477              0              0           1000

Notice that a record of the overflows that occurred in filtering is displayed if 
you have set warning on. 

Use qreport to get this listing when needed as well.
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Transformation Functions for Quantized Filter Coefficients
You can change the display for quantized filter coefficients to:

• Binary, using num2bin 

• Hexidecimal, using num2hex

For example, to display the coefficients of the filter Hq you just created as 
hexidemimal numbers, type

num2hex(Hq)
Hq.QuantizedCoefficients{1} =
 
05D8
0655
0B99
0B99
0655
05D8
 
Hq.QuantizedCoefficients{2} =
 
7FFF
8000
7FFF
8000
7FFF
CAE8
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FFTs

Constructing Quantized FFTs (p. 9-3) Talks about how you construct quantized FFTs

Quantized FFT Properties (p. 9-6) Explains the properties of quantized FFT objects

Computing a Quantized FFT or Inverse 
FFT of Data (p. 9-10)

Shows you how to compute both the FFT and inverse FFT 
of a data set in MATLAB
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Use quantized fast Fourier transforms (FFTs) to specify quantization 
parameters for computing a quantized FFT or inverse FFT. 

This chapter covers what you need to know to construct and use quantized 
FFTs:

• Constructing quantized FFTs

• Quantized FFT properties

• Computing quantized FFTs and quantized inverse FFTs

The quantized FFTs you create in this toolbox are called QFFT objects. These 
objects have properties. Most of the basic information you need to know about 
setting and retrieving property values is found in Chapter 6, “Working with 
Objects.”
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Constructing Quantized FFTs 
You can construct quantized FFTs in the Filter Design Toolbox by either:

• Using the quantized FFT constructor function qfft

• Copying a quantized FFT from an existing one

All quantized FFT characteristics are stored as properties that you can set or 
retrieve. Some of these quantized FFT characteristics include:

• The FFT length.

• The radix number. Either 2 or 4.

• The number of sections in the FFT. Computed from the length and radix of 
the FFT.

• Quantized FFT data format parameters:

- Quantization parameters (precisions).

- Data type (signed or unsigned fixed-point; or double-, single-, or 
custom-precision floating-point).

- Rounding method used in quantization.

- Overflow method used in quantization.

• Scaling factors for each stage of the FFT.

You can specify quantized FFT properties by either:

• Specifying them when you create a quantized FFT 

• Creating a quantized FFT with default property values, and changing some 
or all of these property values later

Constructor for Quantized FFTs
The easiest way to create a quantized FFT (QFFT object) is to create one with 
the default properties. You create a default quantized FFT F by typing

F = qfft

A listing of the properties of the FFT F you just created is displayed along with 
the associated property values. All property values are set to defaults when you 
create a quantized FFT this way.
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To construct a quantized FFT with properties other than the default values, 
follow the procedure outlined in “Setting Property Values Directly at 
Construction” on page 6-5.

Copying Quantized FFTs to Inherit Properties
If you have a quantized FFT F with the property values set the way you want 
them, you can create a new quantized FFT F2 with the same property values 
as F by typing

F2 = copyobj(F)

For example, create a length 32, radix 2, FFT F by typing

F = qfft('length',32, 'radix', 2)

F = 
 Radix = 2

            Length = 32
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  
15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  
30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  
30])
  NumberOfSections = 5
       ScaleValues = [1]

Except for the length and the number of sections, F inherits all of the default 
property values for a quantized filter. 

Changing Some FFT Property Values After Construction
You can create another quantized FFT F2, which has the same properties as F, 
but scales each stage of the FFT differently. To do this:
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1 Copy F. 

2 Change the ScaleValues property value.

For example, you can do this by typing

F2 = copyobj(F);
F2.ScaleValues = [1 0.5 0.25 0.5 1];

For more information on setting FFT properties, see “Setting Property Values 
with the set Command” on page 6-6 and “Direct Property Referencing to Set 
and Get Values” on page 6-9.
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Quantized FFT Properties
Since a quantized FFT is a QFFT object, it has properties associated with it. 
These properties prescribe the FFT characteristics, such as the FFT length and 
the radix number. You can set the values of most properties. However, some 
properties have read-only values.

Properties and Property Values
Each property associated with a quantized FFT is assigned a value. When you 
construct a quantized FFT, you can assign some of the quantized FFT property 
values. You can set or retrieve quantized FFT properties according to the 
information in “Setting and Retrieving Property Values” on page 6-5.

A complete list of properties of quantized FFTs is provided in Table 12-6, Quick 
Guide to Quantized FFT Properties, on page 12-51. Properties are described in 
more detail in “Quantized FFT Properties Reference” on page 12-52. 

Basic Quantized FFT Properties
Basic quantized FFT properties include:

• The Radix property — specifying the FFT’s radix number (2 or 4)

• The Length property — specifying the quantized FFT length (a power of the 
radix number)

• The data format properties for setting quantization parameters for data and 
arithmetic operations:

- CoefficientFormat — specifying how the FFT coefficients (twiddle 
factors) are quantized

- InputFormat — specifying how the inputs are quantized

- MultiplicandFormat — specifying how data is quantized before it is 
multiplied by a coefficient

- OutputFormat — specifying how the outputs are quantized

- ProductFormat — specifying how the results of multiplication are 
quantized

- SumFormat — specifying how the results of addition are quantized

See “Quantized FFT Properties Reference” on page 12-52 for full details on all 
properties.
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Specifying the Data Formats
Quantized FFTs have six data format properties you can set:

• CoefficientFormat

• InputFormat

• MultiplicandFormat

• OutputFormat

• ProductFormat

• SumFormat

Specify the data format property values for quantized FFTs using quantizers. 
For each data format, you can specify:

• Data type

• Quantization format parameters

• Method for handling quantization overflows

• Method for rounding

For example:

1 Create a default quantized FFT F.

2 Change the quantization format parameters for the CoefficientFormat 
property value to [16,14].

% Create a default quantized FFT.
F = qfft;
% Display the format of the coefficient quantization.
F.CoefficientFormat.Format 

ans =
    16    15
% Change the coefficient quantization to [16,14].
F.CoefficientFormat.Format = [16,14];
F.CoefficientFormat.Format

ans =
    16    14
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Here you are changing the Format property of the quantizer for the quantized 
FFT’s CoefficientFormat property. This syntax leaves all other property 
values for the quantizer for the CoefficientFormat property unchanged.

Specifying All Data Format Properties at Once
To implement the quantized FFT F you just specified using floating-point 
calculations, set the Mode property value for each data format property 
quantizer for F to 'float'. You do this using the quantizer syntax for 
accessing the data format properties. See qfft for more information on this 
syntax.

F.quantizer = {'float', [24,8]}

F = 
             Radix = 2
            Length = 16
CoefficientFormat = quantizer('float', 'floor', [24 8])
       InputFormat = quantizer('float', 'floor', [24 8])
      OutputFormat = quantizer('float', 'floor', [24 8])
MultiplicandFormat = quantizer('float', 'floor', [24 8])
     ProductFormat = quantizer('float', 'floor', [24 8])
         SumFormat = quantizer('float', 'floor', [24 8])
    NumberOfSections = 4
       ScaleValues = [1]

Specifying the Format Parameters with setbits
Suppose you want to change all of the arithmetic and quantization data format 
parameters for the custom floating-point FFT F in the previous example to 
[24 4]. You can do this in three ways:

• Using the setbits command

• Using the quantizer syntax

• Setting each data format property separately

To do this using the setbits command, type

setbits(F,[24,4])

To do this using the quantizer syntax, type
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F.quantizer = [24,4];

These two commands are equivalent for floating-point FFTs.

Note  The setbits command behaves slightly differently for fixed-point FFTs 
in that it doubles the quantization data formats for products and sums.



9 Working with Quantized FFTs

9-10

Computing a Quantized FFT or Inverse FFT of Data
To compute a quantized FFT or inverse FFT of a data set:

1 Create a quantized FFT F.

2 Obtain or create the data set.

3 Apply fft to F for a quantized FFT or ifft to F for a quantized inverse FFT.

For example, type

warning on
randn('state',0)
F = qfft; % Create a quantized FFT.
x = randn(100,3); % Create a sample data set x.
y = fft(F,x); % Compute a quantized FFT of x.

Warning: 542 overflows in quantized fft.

                        Max            Min     NOverflows    NUnderflows    NOperations

 Coefficient              1             -1              5              4             62

       Input          2.309         -2.365             97              0            300

      Output              2             -2             71              0            192

Multiplicand              2             -2            350              0           3840

     Product              1             -1              0              0            960

         Sum          2.414         -2.414             24              0           2400

Notice that a record of the overflows that occurred in filtering is displayed if 
you have warnings turned on. 

You can also use qreport to get this report.
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Quantized Filtering 
Analysis Examples

Example — Quantized Filtering of 
Noisy Speech (p. 10-3)

To help explain quantized filtering, this example 
demonstrates one way to remove noise from a signal

Example — A Quantized Filter Bank 
(p. 10-17)

In this example, you see how to create a filter bank to 
filter data

Example — Effects of Quantized 
Arithmetic (p. 10-23)

Using quantized filters on data may change the data; this 
example describes some of those changes and how to 
account for them
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This chapter includes the following examples of how you use the quantized 
filtering features of this toolbox:

• “Example — Quantized Filtering of Noisy Speech”

• “Example — A Quantized Filter Bank”

• “Example — Effects of Quantized Arithmetic”
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Example — Quantized Filtering of Noisy Speech
This example covers the following procedure that demonstrates filtering of a 
noisy signal:

1 “Loading a Speech Signal” on page 10-3

2 “Analyzing the Frequency Content of the Speech” on page 10-4

3 “Adding Noise to the Speech” on page 10-4

4 “Creating a Filter to Extract the 3000Hz Noise” on page 10-5

5 “Quantizing the Filter as a Fixed-Point Filter” on page 10-8

6 “Normalizing the Quantized Filter Coefficients” on page 10-8

7 “Analyzing the Filter Poles and Zeros Using zplane” on page 10-9

8 “Creating a Filter with Second-Order Sections” on page 10-12

9 “Quantized Filter Frequency Response Analysis” on page 10-13

10 “Filtering with Quantized Filters” on page 10-14

11 “Analyzing the filter Function Logged Results” on page 10-15

Loading a Speech Signal
To load a speech signal contained in a matrix mtlb, along with its associated 
sampling frequency Fs, type

load mtlb

If you have speakers and a sound card, you can type 

sound(mtlb)

and hear this speech signal.
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Analyzing the Frequency Content of the Speech 
Next look at the power spectral density of this signal using the pwelch 
command.

n = length(mtlb);
nfft = 128;
pwelch(mtlb,[],[],nfft,Fs)

Adding Noise to the Speech
Now add noise to the speech signal at 3000 hertz (Hz) and 3100 Hz and look at 
its power spectral density.

f1 = 3000; % Noise frequency in Hz.
f2 = 3100; % Noise frequency in Hz.
t = (0:n-1)'/Fs; %  Time duration of the noise signal.

noise = sin(2*pi*f1*t) + 0.8*sin(2*pi*f2*t);
u = mtlb + noise; % Add noise to the mtlb signal.

0 500 1000 1500 2000 2500 3000 3500
−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
/H

z)

Welch PSD Estimate



Example — Quantized Filtering of Noisy Speech

10-5

If you have speakers and a sound card, type 

sound(u)

Otherwise, use pwelch to look at the power spectral density for u and compare 
it to that of mtlb.

pwelch(u,[],[],nfft,Fs);

Notice the difference between the two power spectral densities in the 3000 to 
3100 Hz range. 

Creating a Filter to Extract the 3000Hz Noise
Consider this simple notched filter design to remove the 3000Hz noise.

A Notched Filter Design
To design a notched filter in MATLAB to remove noise at a given frequency, for 
each frequency you want to remove:

1 Calculate the (normalized) frequency you want to remove in rad/sample.
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2 Place a complex zero on the unit circle at this normalized frequency.

3 Place a stable complex pole close to this zero, but inside the unit circle.

4 Determine the filter numerator and denominator by:

a Specifying factors of the numerator and denominator polynomials using 
the pole and zero

b Using conv to multiply the factors by their conjugates

For this example, you want to remove noise at both 3000 Hz and 3100 Hz, so 
you can follow these steps for both f1=3000 and f2=3100, and put the two 
notched filters together.

Here are the steps for f1=3000. Repeat these for f2=3100 for the final design.

The frequency you want to remove is calculated in rad/sample as

 wo = 2*pi*f1/Fs;

A notched filter has a zero on the unit circle at a frequency corresponding to an 
angle of wo radians. This removes any noise at this frequency. You can find the 
real and imaginary parts (x and y) of the corresponding zero using 

rez = cos(wo);
imz = sin(wo);

The next step in the notched filter design is to add a pole close to the zero, but 
inside the unit circle. This essentially eliminates the effect of the notched filter 
at frequencies other than 3000 Hz, while keeping the filter stable. The closer 
the pole is to the zero, the narrower the notch will be. 

rez1 = .99*cos(wo);
imz1 = .99*sin(wo);

You can define this portion of the filter’s numerator and denominator 
polynomials b and a by introducing the complex conjugate factors and using 
conv. 

 b1 = conv([1 -rez-i*imz],[1 -rez+i*imz]);
 a1 = conv([1 -rez1-i*imz1],[1 -rez1+i*imz1]);

Similarly, you can follow these steps to remove 3100 Hz noise.
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b2 = conv([1 -cos(2*pi*f2/Fs)-i*sin(2*pi*f2/Fs)],...
[1 -cos(2*pi*f2/Fs)+i*sin(2*pi*f2/Fs)]);

a2 = conv([1 -0.99*cos(2*pi*f2/Fs)-i*0.99*sin(2*pi*f2/Fs)],...
[1 -0.99*cos(2*pi*f2/Fs)+i*0.99*sin(2*pi*f2/Fs)]);

Finally, put these two filters together and look at the frequency response.

b = conv(b1,b2);
a = conv(a1,a2);
freqz(b,a,512,Fs);
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Quantizing the Filter as a Fixed-Point Filter
You can create a direct form II transposed fixed-point quantized filter using the 
elliptic filter you just created as a reference. Name the filter Hq1.

Hq1 = qfilt('df2t',{b,a});

Warning: 9 Overflows in coefficients.

Normalizing the Quantized Filter Coefficients
MATLAB displays a warning because the filter you just created has some 
coefficient overflow associated with it. You can use the normalize command to 
scale the coefficients and account for this overflow. 

Hq1 = normalize(Hq1);

In addition to scaling the filter coefficients, the normalize also modifies the 
ScaleValues property value to account for the coefficient scaling when you 
filter.

Hq1

Hq1 = 
Quantized Direct form II transposed filter                            
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
  (1)       0.125000000000000  0.125000000000000000                   
  (2)       0.423736572265625  0.423728525076514370                   
  (3)       0.608825683593750  0.608840299517598550                   
  (4)       0.423736572265625  0.423728525076514370                   
  (5)       0.125000000000000  0.125000000000000000                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
  (1)       0.125000000000000  0.125000000000000000                   
  (2)       0.419494628906250  0.419491239825749210                   
  (3)       0.596710205078125  0.596724377557198320                   
  (4)       0.411132812500000  0.411143364153216890                   
  (5)       0.120086669921875  0.120074501250000020                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1  1]                                           
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  NumberOfSections = 1                                                
  StatesPerSection = [4]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  
15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  
15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  
30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])

Note  In this example, the ScaleValues property value is [1 1]. There is 
effectively no scaling associated with the sections of this particular filter, even 
after it has been normalized. This is because the required scaling for the 
numerator and denominator of each filter section is the same.

Analyzing the Filter Poles and Zeros Using zplane
You can apply zplane to a quantized filter to analyze its poles and zeros.
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zplane(Hq1)
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At first glance, this looks like you’ve done a good job at the fixed point notched 
filter design. If you zoom in, you can see that the quantized poles are not really 
at the correct angles for the notched filter. This is caused by quantization error. 

Having poles located at incorrect angles is not the only problem in the filter. 
There are overflow limit cycles that you detect by

rand('state',0)
limitcycle(Hq1)

resulting in the warning

Overflow limit cycle detected.

To see the destructive behavior of the limit cycles, look at the plot from the 
noise loading method nlm.

nlm(Hq1)

The quantized noise loading method is random noise around the filter notches. 
Also, zplane(Hq1) shows oscillating behavior for the filter.
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Creating a Filter with Second-Order Sections
Filters whose transfer functions have been factored into second-order sections 
are less susceptible to coefficient quantization errors. If you are using a 
quantized filter with a transfer function filter structure, you can use sos to 
convert the normalized quantized filter to second-order sections form.

Hq2 = sos(Hq1);

Now look at the poles and zeros using zplane.

zplane(Hq2)

Zoom in, as shown in the next figure, to see that the quantized notched filter 
design poles and zeros are lined up the way you designed them.

Also, the overflow limit cycle problem has cleared up. You can verify this with

limitcycle(Hq2)

and

nlm(Hq2)

1 0 5 0 0 5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y 
pa

rt

Sections 1 − 2

Quantized zeros
Quantized poles
Reference zeros
Reference poles



Example — Quantized Filtering of Noisy Speech

10-13

By zooming in on the tail of the impulse response, plotted by impz(Hq2), you 
see the granular limit cycle, but this is not as big an issue as overflow limit 
cycles.

Quantized Filter Frequency Response Analysis 
You can use freqz to analyze the frequency response of a quantized filter.

[H,F,units,Hr] = freqz(Hq2,512,Fs);

This syntax allows you to compare the frequency response H of the quantized 
filter, to that (Hr) of the reference filter.

plot(F,20*log10(abs([H Hr])));
ylabel('Magnitude (dB)')
xlabel('Frequency (Hz)')
legend('Quantized','Reference',3)
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The two responses are almost identical.

Filtering with Quantized Filters
Now that you’ve designed a quantized filter you are happy with, use the filter 
command to apply it to the noisy speech signal and see how well it does. 

y = filter(Hq2,u/5);

This scaling of the input is to avoid overflows.

You can listen to the filtered speech signal by typing 

sound(y)
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Sounds pretty good. The power spectral density also looks like the original.

pwelch(y,[],[],nfft,Fs)

Analyzing the filter Function Logged Results 
You can use an alternate syntax for the filter command to monitor the 
maximum and minimum values as well as the overflows and underflows that 
occur during filtering. Suppose you didn’t realize there would be input 
overflows and hadn’t scaled the input.

warning on
y = filter(Hq2,u);
Warning: 1557 overflows in QFILT/FILTER.
                        Max            Min     NOverflows    
NUnderflows    NOperations
 Coefficient         0.8612           0.49              0              
0              6
                     0.8699         0.4901              0              
0              6
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       Input          4.127         -3.665           1557              
0           4001
      Output              1             -1              0              
0           4001
Multiplicand           1.81         -1.759           2637              
0          32008
                          2             -2           1964              
0          28007
     Product           1.81         -1.759              0              
0          32008
                          2             -2              0              
0          28007
         Sum          1.095         -1.248              0              
0          20005
                      1.688         -1.604              0              
0          20005

A report of all underflows and overflows is displayed when you filter the data.

qreport(Hq2) provides the logged function output as well.
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Example — A Quantized Filter Bank
You can use filter banks to create a set of filters that partition input signals 
into separate frequency bands or channels. Discrete Fourier Transform (DFT) 
polyphase FIR filter banks [3] provide a computationally efficient way to 
implement a filter bank that supports a large number of channels. Some cell 
phone base stations use DFT polyphase FIR fixed-point filter banks.

The polyphase DFT FIR filter bank is equivalent to a bank of long FIR filters 
operating at a relatively high sample rate.

A model for a polyphase DFT FIR filter bank is shown below. The impulse 
response coefficients of the original FIR filter are sampled and partitioned 
among the 16 FIR filters Hi(z), i=1, ... , 16. The incoming signal is successively 
delayed and downsampled, before it enters any of the FIR filters. The outputs 
of the FIR filters are then scaled and sent through an FFT. The 16 outputs of 
the FFT represent the 16 channel signals.

Figure 10-1:  Model for a Polyphase DFT FIR Filter Bank

You can follow the example in this section to create a bank of DFT polyphase 
FIR fixed-point filters using quantized filters and quantized FFTs.
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Filtering Data with the Filter Bank
To implement the filter bank shown in Figure 10-1, Model for a Polyphase DFT 
FIR Filter Bank, on page 10-17:

1 Create a quantized filter bank of 16 FIR filters followed by a quantized FFT. 
For linear analysis, adjust the ScaleValues property of the quantized FFT 
so that no overflows occur.

2 Successively delay and downsample an incoming data stream so that every 
ith signal sample enters the ith FIR filter.

3 Filter the data through the bank of FIR filters using filter on each 
quantized filter in the bank.

4 Put the output of the bank of filters through a 16-point FFT using fft on the 
quantized FFT.

5 Rescale the output of the FFT to account for the scaling introduced by its 
ScaleValues property.

Creating a DFT Polyphase FIR Quantized Filter Bank
This example follows the five steps listed in “Filtering Data with the Filter 
Bank” using a set of unit sinusoids at different frequencies for the incoming 
data.

This demo takes some time to run and produces the two frequency response 
plots shown after the example code. You only see eight channels of filters in the 
magnitude response of the filter bank because FFTs produce conjugate signals 
for real-valued inputs. The second figure shows all 16 channels, presenting the 
channel amplitude for each channel.

% Create a DFT Polyphase FIR Quantized Filter Bank.
% Initialize two variables to define the filters and the filter 
% bank.
M = 16;  % Number of channels in the filter bank.
N = 8;   % Number of taps in each FIR filter.

% Calculate the coefficients b for the prototype lowpass filter, 
% and zero-pad so that it has length M*N.
b = fir1(M*N-2,1/M);
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b = [b,zeros(1,M*N-length(b))];

% Reshape the filter coefficients into a matrix whos rows 
% represent the individual polyphase filters to be distributed
% among the filter bank.
B = flipud(reshape(b,M,N));

Hq = cell(M,1);
for k=1:M
  Hq{k} = qfilt('fir',{B(k,:)});
end

% Create a quantized FFT F of length M.
% Set the ScaleValues property value according to the 
% NumberOfSections property value. Scale each section by 1/2.

F = qfft('length',M,'scale',0.5*ones(1,log2(M)));

% Retain the FFT scaling to weight the FFT correctly.
g = 1/prod(F.ScaleValues);

% Construct a bank of M quantized filters and an M-point quantized
% FFT. Filter a sinusoid that is stepped in frequency from 0 to
% pi radians, store the power of the filtered signal, and plot the 
% results for each channel in the filter bank.

Nfreq = 200; % Number of frequencies to sweep.
w = linspace(0,pi,Nfreq);  % Frequency vector from 0 to pi.
P = 100;     % Number of output points from each channel.
t = 1:M*N*P; % Time vector.
HH = zeros(M,length(w));  % Stores output power for each channel.
for j=1:length(w)
  disp([num2str(j),' out of ',num2str(length(w))])
  x = sin(w(j)*t);           % Signal to filter
  
  % EXECUTE THE FILTER BANK:
  % Reshape the input so that it represents parallel channels of

% data going into the filter bank.
  X = [x(:);zeros(M*ceil(length(x)/M)-length(x), 1)];
  X = reshape(X,M,length(X)/M);
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  % Make the output the same size as the input.
  Y = zeros(size(X));   
  
  % FIR filter bank.
  for k=1:M
    Y(k,:) = filter(Hq{k},X(k,:));
  end

  % FFT
  Y = fft(F,Y);
  
  HH(:,j) = var(Y.')';       % Store the output power.
end

% Compensate for FFT scaling.
s = 1/prod(scalevalues(F));
HH = HH*s^2;  

% Plot the results.
figure(1)
plot(w,10*log10(HH))
title('Filter Bank Frequency Response')
xlabel('Frequency (normalized to channel center)')
ylabel('Magnitude Response (dB)')
set(gca,'xtick',(1:M/2)*w(end)/M*2)
set(gca,'xticklabel',(1:M/2))
figure(2)
strips(HH')
set(gca,'yticklabel',1:M)
set(gca,'xtick',(1:M/2)*Nfreq/M*2)
set(gca,'xticklabels',(1:M/2))
grid off
title('Filter Bank Frequency Response')
xlabel('Frequency (normalized to channel center)')
ylabel('Channel, Amplitude in Each Channel')

Look at the next two figures to see the results of the example code.
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Example — Effects of Quantized Arithmetic
When you filter data with a fixed-point quantized filter, your results may vary 
from those obtained by filtering with a double-precision reference filter. This is 
due to a number of factors, including:

• Quantization of the input to the filter

• Quantization of the output from the filter

• Quantization of the filter coefficients

• Quantization occurring during the various arithmetic operations performed 
by the filter

You can isolate the effects of fixed-point quantization that result solely from 
arithmetic operations by:

1 Creating quantizer q for data.

2 Creating a fixed-point filter Hq from a reference using quantizer q data 
formats.

3 Creating a double-precision quantized filter Hd from Hq, with the same 
(quantized) coefficients.

4 Quantizing a data set x according to the quantizer specifications.

5 Filtering the quantized data set x with both filters.

6 Comparing the results.

Creating a Quantizer for Data
Create a 16-bit default quantizer.

q = quantizer;

Creating a Fixed-Point Filter from a Quantized 
Reference

1 Create an example double-precision reference filter and quantize and scale 
the filter coefficients.
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[b,a] = ellip(7,.1,40,.4);
c = quantize(q,{b/8, a/8}); % Coefficients are in a cell array.

2 Create a fixed-point quantized filter from the coefficients c, with data 
formats specified by the quantizer q.

Hq = qfilt('df2t',c,'quantizer',q);

Creating a Double-Precision Quantized Filter
You can create a quantized double-precision filter Hd from Hq by changing the 
value of the Mode property for each of the quantizers that specify the data 
formats of Hq.

Hd = Hq;
Hd.quantizer = 'double';

Quantizing a Data Set
Create a random data set and quantize it.

rand('state',0);
n = 1000;
x = quantize(q,0.5*(2*rand(n,1) - 1));

This data set is scaled to prevent overflows. If you do not prevent overflows, you 
cannot isolate the quantization effects of arithmetic.

Filtering the Quantized Data with Both Filters
Filter the quantized data with the double-precision filter and the fixed-point 
filter.

yq = filter(Hq,x);
yd = filter(Hd,x);
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Comparing the Results
Analyze the error signal and its histogram.

e = yd - yq;
hist(e,20)

The error is approximately normally distributed. The nonzero mean is caused 
by choosing 'floor' for the rounding method.
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11
Using FDATool with the 
Filter Design Toolbox

Switching FDATool to Quantization 
Mode (p. 11-4)

After you open FDATool, this section explain how to 
access the quantization features in the tool.

Quantizing Filters in the Filter Design 
and Analysis Tool (p. 11-7)

Explains how you quantize a filter in FDATool.

Analyzing Filters with the Noise 
Loading Method (p. 11-12)

FDATool provides a variety of analysis methods for 
quantized filters; this section explains how to use them.

Optimizing the Quantization Process 
For Your Filter (p. 11-19)

You can adjust the way FDATool quantizes filters. To 
learn how, read this section.

Importing and Exporting Quantized 
Filters (p. 11-29)

Shows you how to import and export filters to and from 
your MATLAB workspace, as well as to other 
destinations.

Transforming Filters (p. 11-34) Describes how you use the filter transformation 
capability in FDATool to change the magnitude response 
of your FIR or IIR filters in the tool.

Realizing Filters as Simulink 
Subsystem Blocks (p. 11-45)

Using the Realize Model feature to create a Simulink 
model of your quantized filter as a subsystem block.

Getting Help for FDATool (p. 11-49) Shows you how to get help about the features in FDATool, 
such as using Help or using the What’s This option.
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The Filter Design Toolbox adds a new dialog and operating mode, and a new 
menu selection, to the Filter Design and Analysis Tool (FDATool) provided by 
the Signal Processing Toolbox. From the new dialog, titled Set Quantization 
Parameters, you can:

• View Simulink models of the filter structures available in the toolbox.

• Quantize double-precision filters you design in this GUI using the design 
mode.

• Quantize double-precision filters you import into this GUI using the import 
mode.

• Perform analysis of quantized filters.

• Scale the transfer function coefficients for a filter to be less than or equal to 1.

• Select the quantization settings for the properties of the quantized filter 
displayed by the tool:

- Coefficient

- Input

- Output

- Multiplicand

- Product

- Sum

• Change the input and output scale values for a filter.

After you import a filter in to FDATool, the options on the quantization dialog 
let you quantize the filter and investigate the effects of various quantization 
settings.

From the new selection on the FDATool menu bar — Transformations — you 
can transform lowpass FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:

• Lowpass to lowpass.

• Lowpass to highpass.

For IIR filters, you can convert from:

• Lowpass to lowpass.

• Lowpass to highpass.
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• Lowpass to bandpass.

• Lowpass to bandstop.

This section presents the following information and procedures for using 
FDATool:

• “Switching FDATool to Quantization Mode” on page 11-4

• “Quantizing Filters in the Filter Design and Analysis Tool” on page 11-7

• “Choosing Your Quantized Filter Structure” on page 11-16

• “Scaling Transfer Function Coefficients” on page 11-24

• “Scaling Inputs and Outputs of Quantized Filters” on page 11-26
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Switching FDATool to Quantization Mode
You use the quantization mode in FDATool to quantize filters. Quantization 
represents the fourth operating mode for FDATool, along with the filter design, 
filter transformation, and import modes. To switch to quantization mode, open 
FDATool from the MATLAB command prompt by entering

fdatool

When FDATool opens, click Set Quantization Parameters. FDATool switches 
to quantization mode and you see the following panel at the bottom of FDATool, 
with the default values shown. Controls within the dialog let you quantize 
filters and investigate the effects of changing quantization settings. To enable 
the quantization options, perform these steps:

1 Click on the FDATool menu bar.

If you have designed or imported a filter into FDATool, you now see two filter 
magnitude plots in the analysis area. One is your original filter, the other is 
your filter after quantization.

2 Click in the side bar.

The quantization options appear in the lower panel of FDATool. You see the 
settings for each quantizer in the filter.
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You use the following controls in the dialog to perform tasks related to 
quantizing filters in FDATool:

• Turn quantization on button —quantizes the filter displayed in 
Current Filter Information.

• Set quantization parameters —changes Filter Design and Analysis 
Tool to quantization mode to configure and quantize filters that you design 
or import.

• Optimization—lets you set a variety of options for quantizing your filter, 
such as scaling the filter transfer function coefficients to be less than or equal 
to one.

• Apply—applies changes you make to the quantization parameters for your 
filter.



11 Using FDATool with the Filter Design Toolbox

11-6

• Quantizer property lists, such as Convert coefficient to and Convert 
multiplicand to— these lists let you set values for the properties of the 
quantizers that constitute your quantized filter. Under Format, the entries 
contain [wordlength fractionlength] for each quantizer property.
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Quantizing Filters in the Filter Design and Analysis Tool
Quantized filters have properties that define how they quantize data you filter. 
Use the Set Quantization Parameters dialog in FDATool to set the properties. 
Using options in the Set Quantization Parameters dialog, FDATool lets you 
perform a number of tasks:

• Create a quantized filter from a reference filter after either importing the 
reference filter from your workspace, or using FDATool to design the 
reference filter.

• Create a quantized filter that has the default structure (Direct form II 
transposed) and other property values you select.

• Change the quantization property values for a quantized filter after you 
design the filter or import it from your workspace.

When you click Set Quantization Parameters, the quantized filter panel 
opens in FDATool, with all options set to default values.

To let you set the properties for the six quantizers that make up a quantized 
filter, FDATool lists each quantizer. Table 11-1 lists each component 
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quantizer, its full property name, and includes a short description of what the 
quantizer does in the filter.

Every quantizer has four properties. For each quantizer, such as Convert 
Coefficient and Convert Output, you select values for its properties to 
determine how the filter performs quantization. The properties that make up 
each quantizer in a quantized filter are listed in Table 9-2.

Table 11-1:  These Quantizers Define the Behavior of a Quantized Filter

Quantizer Filter Property Name Description

Convert coefficient to CoefficientFormat Determines how the coefficient quantizer 
handles filter coefficients. When you 
quantize a filter, the properties of this 
quantizer govern the quantization.

Convert input to InputFormat Specifies how data input to the filter is 
quantized.

Convert output to OutputFormat Specifies how date output by the filter is 
quantized.

Convert multiplicand to MultiplicandFormat Specifies how filter multiplicands are 
quantized. Multiplicands are the inputs to 
multiply operations.

Convert product to ProductFormat Determines how to quantize the results of 
multiply operations.

Convert sum to SumFormat Determines how to quantize the results of 
arithmetic sums in the filter.
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Table 11-2:  Four Properties Specify Each Quantizer

Quantizer Property Description

Mode Selects one of four arithmetic modes for the 
quantizer:

• fixed—to specify fixed-point arithmetic. fixed is 
the default setting.

• float—to specify floating-point arithmetic

• double—to specify double-precision arithmetic

• single—to specify single-precision arithmetic

Round mode Sets the way in which the quantizer handles values 
after it quantizes them. You have five options to 
choose from:

• ceil—round values to the nearest integer 
towards plus infinity.

• convergent—round values to the nearest integer, 
except in a tie, then round down if the next-to-last 
bit is even, up if odd.

• fix—round values to the nearest integer towards 
zero.

• floor—round values to the nearest integer 
towards minus infinity. The default setting for all 
quantizers except the Coefficient quantizer.

• round—round values to the nearest integer. 
Negative numbers that lie halfway between two 
values are rounded towards negative infinity. 
Positive numbers that lie halfway between two 
values are rounded towards positive infinity. Ties 
round toward positive infinity. The default setting 
for the Coefficient quantizer.
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To Quantize Reference Filters
When you are quantizing a reference filter, follow these steps to set the 
Coefficient property values that control the quantization process. Before you 
begin, verify that Turn quantization on is not selected:

1 Click Set Quantization Parameters to open the Set Quantization 
Parameters dialog.

2 Select Turn quantization on. 

When you turn quantization on, FDATool quantizes the current filter 
according to the Coefficient properties, and changes the information 
displayed in the analysis area to show quantized filter data.

Overflow mode When the result of a quantization operation exceeds 
the range that the format can represent, this value 
tells the quantizer how to handle the overflow. 
Choices are

• saturate—set values that fall outside the 
representable range to the minimum or maximum 
values in the range. Values greater than the 
maximum value are set to the maximum range 
value. Values less than the minimum value are 
set to the minimum range value. This is the 
default setting.

• wrap—map values that fall outside the 
representable range of the format back into the 
range using modular arithmetic.

Format Specifies the word length and fraction length for the 
Mode value you specified. [16 15] is the default 
setting for word length and fraction length. Notice 
that the Product and Sum quantizers default to 
[2*word length 2*fraction length], or [32 30].

Table 11-2:  Four Properties Specify Each Quantizer (Continued)

Quantizer Property Description
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3 Review the settings for the Convert coefficient to properties: Mode, 
Round mode, Overflow mode, and Format.

4 Change the Convert coefficient to properties as required to quantize your 
filter correctly.

5 Click Apply.

FDATool quantizes your filter using the new settings.

6 Use the analysis features in FDATool to determine whether the new 
quantized filter meets your requirements.

To Change the Quantization Properties of 
Quantized Filters
When you are changing the property values for a quantized filter, or after you 
import a quantized filter from your MATLAB workspace, follow these steps to 
set the property values for the quantized filter:

1 Verify that the current filter is quantized.

2 Click Set Quantization Parameters to display the Set Quantization 
Parameters panel.

3 Review and select property settings for the filter quantizers: Convert 
coefficient to, Convert input to, Convert output to, Convert 
multiplicand to, Convert product to, and Convert sum to. Settings for 
these properties determine how your filter quantizes data during filtering 
operations. 

4 Click Apply to update your current quantized filter to use the new 
quantization property settings from Step 2. 

5 Use the analysis features in FDATool to determine whether your new 
quantized filter meets your requirements.
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Analyzing Filters with the Noise Loading Method
One technique for estimating the frequency response for quantized filters is the 
noise loading method (NLM) provided by function nlm in this toolbox. FDATool 
offers the noise loading method as a filter analysis tool accessible from the 
toolbar.

Using the Noise Loading Method
After you design and quantize your filter, the noise loading method on the 
Analysis menu lets you apply the noise loading method to your filter. When 
you select Analysis -> Noise Loading Method from the menubar, FDATool 
immediately starts the Monte Carlo trials that form the basis for the method 
and runs the analysis, ending by displaying the results in the analysis area in 
FDATool.

With the NLM, you estimate the complex frequency response for your filter as 
determined by applying a noise- like signal to the filter input. NLM uses the 
Monte Carlo trials to generate a noise signal that contains complete frequency 
content across the range 0 to Fs. The first time you run the analysis, NLM uses 
default settings for the various conditions that define the process, such as the 
number of test points and the number of trials.

Analysis Parameter Default Setting Description

Number of points 512 Number of equally spaced points 
around the upper half of the 
unit circle.

Number of Monte 
Carlo trials

10 Number of times to repeat the 
Monte Carlo test to get an 
average frequency response.

Range 0 to Fs/2 Frequency range of the plot 
x-axis.

Frequency units Hz Units for specifying the 
frequency range.

Sampling 
frequency

48000 Inverse of the sampling period.
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After your first analysis run ends, open the Analysis Parameters dialog and 
adjust your settings appropriately, such as changing the numer of trials or 
number of points.

To open the Analysis Parameters dialog, use either of the next procedures 
when you have a quantized filter in FDATool:

• Select Analysis -> Analysis Parameters… from the menu bar

• Right-click in the analysis area and select Analysis Parameters… from the 
context menu

Whichever option you choose opens the dialog as shown in the figure. Notice 
that the settings for the options reflect the defaults.

Example—Noise Loading Method Applied to a Filter
To demonstrate the NLM in use, start by creating a quantized filter. For this 
example, use FDATool to design a sixth-order Butterworth IIR filter.

To Use NLM Analysis in FDATool

1 Type fdatool at the MATLAB prompt to launch FDATool.

2 In Design Method, select IIR and Butterworth from the list.
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3 Under Filter Type, select Highpass.

4 To set the filter order to 6, select Specify order under Filter Order. Type 
6 in the text box.

5 Click Design Filter.

In FDATool, the analysis area changes to display the magnitude response 
for your filter.

6 To generate the quantized version of your filter, using default quantizer 
settings, click  on the toolbar.

Now the analysis areas shows the magnitude response for both filters—your 
original filter and the quantized version.

7 Finally, to use NLM on your quantized filter, select 
Analysis -> Noise Loading Method from the menubar.

FDATool runs the NLM Monte Carlo trials, calculates the average 
magnitude response for the filter, and displays the result in the analysis 
area as shown in this figure.

In the figure you see both the magnitude response and the noise power 
spectrum used to determine the response.
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To Change Your NLM Analysis Parameters
In “Example—Noise Loading Method Applied to a Filter”, you used NLM to 
estimate the magnitude response for a quantized highpass Butterworth filter. 
Since you ran NLM only once FDATool, your noise loading analysis used the 
default NLM settings shown in “Using the Noise Loading Method”. 

To change the settings, follow these steps after the first time you use NLM on 
your quantized filter.

1 With the results from running the noise loading method displayed in the 
FDATool analysis area, right-click in the area and select Analysis 
Parameters….

To give you access to the analysis parameters, the Analysis Parameters 
dialog opens as shown here (with default settings).
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2 To use more trials to estimate the magnitude response, change Monte Carlo 
trials to 20 and click OK to run the analysis.

FDATool closes the Analysis Parameters… dialog and reruns NLM, 
returning the results in the analysis area.

To rerun NLM without closing the dialog, press Enter after you type your 
new value into a setting, then click Apply. Now FDATool runs NLM without 
closing the dailog. When you want to try many different settings for the 
noise loading analysis, this is a useful shortcut.

Comparing the NLM and Theoretical Magnitude 
Responses
An important measure of the effectiveness of the noise loading method for 
estimating the magnitude response of a quantized filter is to compare the NLM 
response to the theoretical response. To see a comparison of the two diverse 
methods, refer to the online reference page for nlm.

Choosing Your Quantized Filter Structure
FDATool lets you change the structure of any quantized filter. Use the Convert 
structure option to change the structure of your filter to one that meets your 
needs. 

To learn about changing the structure of a quantized filter in FDATool, refer to 
“Converting to a New Structure” in your Signal Processing Toolbox 
documentation.

Converting the Structure of a Quantized Filter
You use the Convert structure option to change the structure of filter. When 
the Source is Designed(Quantized) or Imported(Quantized), Convert 
structure lets you recast the filter to one of the following structures:

• “Direct Form II Transposed Filter Structure” on page 12-24

• “Direct Form I Transposed Filter Structure” on page 12-20

• “Direct Form II Filter Structure” on page 12-22

• “Direct Form I Filter Structure” on page 12-18

• “Direct Form Finite Impulse Response (FIR) Filter Structure” on page 12-26
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• “Direct Form FIR Transposed Filter Structure” on page 12-27

• “Lattice Autoregressive Moving Average (ARMA) Filter Structure” on 
page 12-34

• “Lattice Coupled-Allpass Filter Structure” on page 12-30

• “Lattice Coupled-Allpass Power Complementary Filter Structure” on 
page 12-31

• “State-Space Filter Structure” on page 12-35

Starting from any quantized filter, you can convert to one of the following 
representation:

• Direct form I 

• Direct form II 

• Direct form I transposed 

• Direct form II transposed 

• State space 

• Lattice ARMA 

Additionally, FDATool lets you do the following conversions:

• Minimum phase FIR filter to Lattice MA minimum phase

• Maximum phase FIR filter to Lattice MA maximum phase

• Allpass filters to Lattice allpass

Refer to “FilterStructure” on page 12-12 for details about each of these 
structures.

To Convert Your Filter to Second-Order Sections 
Form
To learn about using FDATool to convert your quantized filter to use 
second-order sections, refer to “Converting to Second-Order Sections” in your 
Signal Processing Toolbox documentation.

To View Schematics of Filter Structures in the Toolbox
Often it helps to see the structure of a filter. From the Set Quantization 
Parameters dialog in FDATool, the Show filter structures option opens 
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a demonstration program that provides Simulink models of each filter 
structure included in the toolbox. 

To View Filter Structures in FDATool
To open the demonstration, click Help -> Show filter structures. After the 
Help browser opens, select the filter structure to view from the table of filter 
structures.
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Optimizing the Quantization Process For Your Filter
By clicking Optimization… on the Quantized Filter panel, you launch the 
Quantized Optimizations dialog. Using the controls provided on the dialog, 
you direct FDATool about specific features of the quantization process.

As shown here, the Quantized Optimizations dialog lets you determine how 
quantization affects your filter coefficients and what happens when you scale 
your filter.
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Control Coefficient Quantization
With the Quantized Optimizations dialog open, you can use the Do not 
quantize coefficients that are exactly equal to 1 option to prevent FDATool 
from quantizing coefficients, both numerator and denominator (also called 
b and a) whose value is 1.0 

Directing FDATool not to quantize 1.0 coefficients has two advantages for your 
filter:

1 Eliminates one multiply operation for each such coefficient during filter 
quantization. When your coefficient is equal to 1.0, the quantization process 
skips the multiply associated with the coefficient, making the process more 
efficient.

2 Reduces the possible error that can result when a coefficient whose value is 
1.0 gets quantized to a value that is not exactly 1.0. Changing the value 
might alter your filter performance.

To stop FDATool from quantizing coefficients equal to 1.0, follow these steps:

1 Open the Quantized Optimizations dialog.

2 Select Do not quantize coefficients that are exaactly equal to 1.

3 Click Apply to quantize your filter with the new setting, or click OK to 
quantize your filter and close the dialog.

Limit Coefficient Overflow By Fraction Length 
Changes
One way to reduce the possibility that the coefficients of you filter overflow 
during quantization is to let the fraction length of the coefficient format change 
during quantization. FDATool provides an option that automatically adjusts 
the fraction length for a quantizer to prevent the coefficients from exceeding 
the range of the format.

The Set Quantization Parameters panel in FDATool shows the format in 
place for the Convert coefficient to quantizer in the Format column. Given as 
a vector, such as [16 15] (the default value), you can check the word length and 
fraction length for representing your filter coefficients here. 
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When you select Adjust coefficient fraction length such that coefficients do 
not overflow on the Set Quantization Parameters panel, FDATool varies the 
fraction length from the format you set on the Quantized Filter panel in 
FDATool.

To elect to let FDATool adjust the fraction length for your filter coefficients to 
prevent overflows, perform the following steps:

1 Open the Quantized Optimizations dialog.

2 Select Adjust coefficient fraction length such that coefficients do not 
overflow.

3 Click Apply to quantize your filter with the new setting, or click OK to 
quantize your filter and close the dialog.

Normalizing Transfer Function Coefficients
One way to prevent your filter coefficients from overflowing and to maintain 
well-behaved filters after quantization is to normalize the coefficients so the 
absolute value of every coefficient is 0.5< = coefficient value < 1.

To provide you with the flexibility to decide how and which coefficients to 
normalize, the Quantized Optimizations dialog provides several options for 
specifying the treatment of filter function coefficients. In this table, you see a 
summary of the options and what they do. Following the table are detailed 
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descriptions of the options and how you use them. Note that some of the options 
depend on one another.

Control Name Description

“Normalize numerator 
coefficients such that maximum 
absolute value is < = 1 and scale 
values are powers of 2”

Performs a two step process of 
normalizing and scaling the 
transfer function coefficients (b) to 
produce well-behaved filters after 
quantization.

“Normalize denominator 
coefficients such that”

Specify whether to normalize the 
denominator coefficients (a) of the 
filter transfer function. Selecting 
this option enables two other 
options that determine how to 
quantize the denominator 
coefficients.

“maximum absolute value is < = 1 
and scale values are powers of 2”

In combination with the Normalize 
denominator… option preceding, 
specifies that the coefficients after 
normalization are between -1 and 1 
and that the scale values used for 
normalizing are powers of 2. 
Compare to the Normalize 
numerator… option.

“leading denominator coefficient 
is 1”

Combined with the Normalize 
denominator… option, directs 
FDATool to normalize the leading 
denominator coefficient a(1) to be 
exactly 1.0

“Preserve filter gain when 
normalizing coefficients”

Directs FDATool to adjust the gain 
of the filter so the response after 
normalizing the coefficients is the 
same as before. This is the default 
setting.



Optimizing the Quantization Process For Your Filter

11-23

Normalize numerator coefficients such that maximum absolute value is 
< = 1 and scale values are powers of 2
Since in some cases your filter coefficient vector can contain values that are 
greater than 1, you can choose to normalize and scale the coefficients before 
quantization. Normalizing the coefficients reduces the sensitivity of your filter 
to the effects of quantization. Adjusting the normalization so the resulting 
scale factors are powers of two makes the quantization process be more 
efficient. When your scale factors are powers of 2, the multiply operations 
required to apply the scale factors can be replaced by a simple shift—much 
more efficient.

Normalize denominator coefficients such that
To reduce the effects of quantization on your filter, normalizing the 
denominator coefficients adjust the values in the coefficient vector so that all 
values in the vector are > = 0.5 and < 1. When you select this option, you enable 
two more options that let you tailor the quantization to your needs:

• maximum absolute value is < = 1 and scale values are powers of 2

• leading denominator coefficient is 1

These controls produce the same results for denominator coefficients that the 
normalization options produce for numerator coefficients.

maximum absolute value is < = 1 and scale values are powers of 2
Since in some cases your filter coefficient vector can contain values that are 
greater than 1, you can choose to normalize and scale the coefficients before 
quantization. Normalizing the coefficients reduces the sensitivity of your filter 
to the effects of quantization. Adjusting the normalization so the resulting 
scale factors are powers of two makes the quantization process be more 
efficient. When your scale factors are powers of 2, the multiply operations 
required to apply the scale factors can be replaced by a simple shift—much 
more efficient.

leading denominator coefficient is 1
With this option selected, FDATool divides the members of the denominator 
coefficient vector by the value of the leading coefficient, forcing the leading 
coefficient to be 1. Note that this occurs after normalization and scaling
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Preserve filter gain when normalizing coefficients
Filters in FDATool are in transfer function form. To mitigate the effects of 
quantization on the performance of your filter, you can normalizethe transfer 
function coefficients. After you import or design a filter in FDATool (to create 
your reference filter), you can opt to normalize the filter transfer function 
coefficients not to exceed ±1. Normalizing the coefficients prevents overflow 
and underflow conditions from occurring during quantization. 

A few things to note about using normalizing:

• When you choose to normalize your transfer function coefficients, in either 
the numerator or denominator, FDATool does two things:

- It normalizes the coefficients as directed by your choice of options on the 
Quantized Optimizations dialog.

- It changes the filter gain to keep the filter magnitude response the same 
after normalizing the coefficients. If FDATool did not change the gain, the 
response of the filter to a given input would change when you chose to 
normalize the coefficients.

• FDATool cannot restore the transfer function coefficients back to their 
values before normalization. Clearing and applying the options on the dialog 
does not restore your filter to the state before normalization. So the resulting 
filter may demonstrate changed magnitude response after you remove the 
normalization. To get back to your original filter, either redesign or reimport 
the filter.

Scaling Transfer Function Coefficients
All filters in FDATool are in transfer function form. To mitigate the effects of 
quantization on the performance of your filter, you can scale the transfer 
function coefficients. After you import or design a filter in FDATool (to create 
your reference filter), you can scale the filter transfer function coefficients not 
to exceed ±1. Scaling the coefficients prevents overflow and underflow 
conditions from occurring during quantization. 

A few things to note about using scaling:

• When you choose to scale your transfer function coefficients, FDATool does 
two things:

- It scales the coefficients as directed.
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- It changes the filter gain to keep the filter magnitude response the same 
after scaling. If FDATool did not change the gain, the response of the filter 
to a given input would change when you scaled the coefficients.

• If you remove the scaling factors, FDATool restores the transfer function 
coefficients to their values before scaling. FDATool does not remove the filter 
gain it added when you scaled the coefficients. So the resulting filter may 
demonstrate changed magnitude response after you remove the scale factors.

To Scale Transfer Function Coefficients
To scale the transfer function coefficients of a filter in FDATool, follow these 
steps:

1 Design a filter, or import a filter into FDATool. This is your reference filter.

Under Current Filter Information, the characteristics of your filter are 
structure, source, order, and whether the filter is stable. 

2 Click Set Quantization Parameters.

The bottom half of the FDATool window (the quantization region) shows the 
options for quantizing a filter, including options for scaling filter transfer 
function coefficients and setting the property values for the quantization 
properties of the filter.

3 Select Turn quantization on to quantize the filter in Current Filter 
Information.

You can review the transfer function coefficients for your filter. Select View 
Filter Coefficients from the Analysis menu. The analysis area changes to 
list the coefficients for the reference and quantized filters. Scroll through the 
list to review the coefficients and to check for coefficient overflow or 
underflow that can occur during quantization.

Notice that the left column in the analysis area contains symbols. They 
indicate whether the quantized coefficient over- or underflowed during 
quantization. A minus sign signals that the coefficient on that line 
overflowed toward positive infinity. A plus sign indicates an overflow toward 
negative infinity. Coefficients marked with zero had reference values that 
underflowed to zero.



11 Using FDATool with the Filter Design Toolbox

11-26

4 Click Scale transfer-fnc coeffs <=1.

5 Review the scaled coefficients to see that no overflow warning appears at the 
end of the list of coefficients

Warning: 1 overflow in coefficients.

and no plus, zero, or minus symbols appear in the left column.

Once you have scaled a filter, you cannot remove the scale factors. You must 
recreate the filter from the beginning by redesigning or reimporting the filter.

Scaling Inputs and Outputs of Quantized Filters
For any filter structure, each filter section has two scale values associated with 
it—an input and an output. When you select Help -> Show filter structures... 
to look at the filter structures provided by FDATool, you do not see that each 
structure includes at least two scale values, s(1) and s(2). If the filter has 
multiple sections, the number of scale values is (number of sections +1). For 
example, a filter with three sections has four scale values because the output 
scale value for each section is the input value to the next section: 

• s(1)—input scale value for the first section

• s(2)—output scale value from the first section and the input scale value to 
the second section

• s(3)—output scale value from the second section and input scale to the third 
section

• s(4)—output scale value from the third section

So the number of scale values you need for your filter depends on the filter 
structure.

Enter input and output scale values in four ways in Filter input values and 
Filter output value:

1 Select Specify scale values.

2 Do one of the following to enter your input scale values:

• Enter a scalar. FDATool uses the scalar in Filter input values for every 
scale value in your structure. 
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• Enter a vector of scale values in Filter input values. The vector can be up to 
length (number of sections +1), where each scale value entry is a real 
number. FDATool assigns the scale values in the order s(1), s(2), s(3),…s 
(number of sections + 1). When your vector contains fewer values than the 
number of scale values required for your filter structure, FDATool assigns 
the values in order until it uses all the values in the vector. Remaining scale 
values are set to one and are omitted during scaling or filtering. 

• Enter a variable name that represents a vector in your MATLAB workspace. 
The length of the vector can be up to (number of sections +1).

3 (Optional) Enter a scale value for the output scaling by doing one of the 
following steps:

• Enter a scalar. FDATool uses the scalar in Filter output value for the 
output scale value in your structure. 

• Enter a variable name that represents a vector in your MATLAB workspace.

4 Click Apply.

Scale values that are exactly equal to one are omitted during filtering and 
scaling, avoiding the associated multiplication operation.

To Enter Scale Values for Quantized Filters
Scale values apply to quantized filters. To specify the scale values for the 
current quantized filter in FDATool, follow these steps:

1 Click  on the side bar.

2 Check or determine the number of sections in your filter.

The number of scale values you need for your filter depends on the number 
of sections used in the filter design. For example, a filter with four sections 
requires you to enter either one scale value or up to 5 (the 
number of sections +1).
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3 Enter one of the following into Filter input scale values:

a A scalar. FDATool uses the scalar for the input scale value in the filter.

b A vector of scale values. The vector can be up to (number of sections +1) 
elements, where each entry is a real number.

c A variable name that represents a vector in your MATLAB workspace. 
The length of the vector in the workspace can be up to 
(number of sections +1) elements.

4 (Optional) Enter one of the following into Filter output scale value:

a A scalar. FDATool uses the scalar for the output scale value in the filter.

b A variable name that represents a scalar in your MATLAB workspace. 
FDATool uses the scalar for the output scale value in the filter.

5 Click Apply.
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Importing and Exporting Quantized Filters
When you import a quantized filter into FDATool, or export a quantized filter 
from FDATool to your workspace, the import and export functions use objects 
and you specify the filter as a variable. This contrasts with importing and 
exporting nonquantized filters, where you select the filter structure and enter 
the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB workspace, 
exporting them to text files, or exporting them to MAT-files. 

This section includes:

• “To Import Quantized Filters”

• “To Export Quantized Filters”

For general information about importing and exporting filters in FDATool, 
refer to “Filter Design and Analysis Tool” section in your Signal Processing 
Toolbox User’s Guide.

FDATool imports quantized filters having the following structures:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Direct form symmetric FIR

• Direct form antisymmetric FIR

• Lattice allpass

• Lattice AR

• Lattice MA minimum phase

• Lattice MA maximum phase

• Lattice ARMA

• Lattice coupled-allpass

• Lattice coupled-allpass power complementary

• State-space
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To Import Quantized Filters
After you design or open a quantized filter in your MATLAB workspace, 
FDATool lets you import the filter for analysis. Follow these steps to import 
your filter in to FDATool:

1 Open FDATool.

2 Select Filter->Import Filter from the menu bar.

In the lower region of FDATool, the Design Filter tab becomes Import 
Filter, and options appear for importing quantized filters, as shown.

3 From the Filter Structure list, select Quantized filter (Qfilt object).

The options for importing filters change to include:

- Quantized filter—Enter the variable name for the quantized filter in your 
workspace. You can also enter qfilt to direct FDATool to construct a 
quantized filter. When you enter qfilt, FDATool creates a quantized filter 
according to the qfilt syntax you use.

- Frequency units—Select the frequency units from the Units list, and 
specify the sampling frequency value in Fs. Your sampling frequency must 
correspond to the units you select. For example, when you select 
Normalized (0 to 1), Fs should be one.
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4 Click Import to import or construct the filter.

FDATool checks your workspace for the specified filter. It imports the filter 
if it finds it, displaying the magnitude response for the filter in the analysis 
area. If you entered the quantized filter constructor in Quantized filter, 
FDATool creates the filter and displays the filter magnitude response.

To Export Quantized Filters
To save your filter design, FDATool lets you export the quantized filter to your 
MATLAB workspace (or you can save the current session in FDATool). When 
you choose to save the quantized filter by exporting it, you select one of these 
options:

• Export to your MATLAB workspace

• Export to a text file

• Export to a MAT-file

Exporting Coefficients or Objects to the Workspace
You can save the filter as filter coefficients variables or as a dfilt or qfilt 
filter object variable. To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog appears.

2 Select Workspace from the Export To list.

3 Select Coefficients from the Export As list to save the filter coefficients or 
select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator and 
Denominator options under Variable Names. For objects, assign the 
variable name in the Discrete or Quantized filter option. If you have 
variables with the same names in your workspace and you want to overwrite 
them, select the Overwrite Variables box.

5 Click the OK button

If you try to export the filter to a variable name that exists in your 
workspace, and you did not select Overwrite existing variables, FDATool 
stops the export operation and returns a warning that the variable you 
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specified as the quantized filter name already exists in the workspace. To 
continue to export the filter to the existing variable, click OK to dismiss the 
warning dialog, select the Overwrite existing variables check box and click 
OK or Apply.

Getting Filter Coefficients after Exporting
To extract the filter coefficients from your quantized filter after you export the 
filter to MATLAB, use the celldisp function in MATLAB. For example, create 
a quantized filter in FDATool and export the filter as Hq. To extract the filter 
coefficients for Hq, use

celldisp(Hq.referencecoefficients)

which returns the cell array containing the filter reference coefficients, or

celldisp(Hq.quantizedcoefficients)

to return the quantized coefficients.

Exporting as a Text File
To save your quantized filter as a text file, follow these steps:

1 Select Export from the File menu.

2 Select Text-file under Export to.

3 Click OK to export the filter and close the dialog. Click Apply to export the 
filter without closing the Export dialog. Clicking Apply lets you export your 
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to Text-file dialog appears. This is the 
standard Microsoft Windows save file dialog.

4 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a text file with the name you 
provided, and the MATLAB editor opens, displaying the file for editing.

Exporting as a MAT-File
To save your quantized filter as a MAT-file, follow these steps:
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1 Select Export from the File menu.

2 Select MAT-file under Export to.

3 Assign a variable name for the filter.

4 Click OK to export the filter and close the dialog. Click Apply to export the 
filter without closing the Export dialog. Clicking Apply lets you export your 
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to MAT-file dialog appears. This is the 
standard Microsoft Windows save file dialog.

5 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a MAT-file with the specified 
name.
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Transforming Filters
The toolbox provides functions for transforming filters between various forms. 
When you use FDATool with the Toolbox installed, a new side bar button 
enables you to use the Transform Filter panel to transform filters as well as 
using the command line functions.

When you click the Transform Filter button on the side bar, the Transform 
Filter panel opens in FDATool, as shown here.

Your options for Original filter type refer to the type of your current filter to 
transform. If you select lowpass, you can transform your lowpass filter to 
another lowpass filter or to a highpass filter, or to numerous other filter 
formats, real and complex. 

Note  When your original filter is an FIR filter, both the FIR and IIR 
transformed filter type options appear on the Transformed filter type list. 
Both options remain active because you can apply the IIR transforms to an 
FIR filter. If your source is as IIR filter, only the IIR transformed filter options 
show on the list.
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Original Filter Type
Select the magnitude response of the filter you are transforming from the list. 
Your selection changes the types of filters you can transform to. For example:

• When you select Lowpass with an IIR filter, your transformed filter type can 
be

- Lowpass

- Highpass

- Bandpass

- Bandstop

- Multiband

- Bandpass (complex)

- Bandstop (complex)

- Multiband (complex)

• When you select Lowpass with an FIR filter, your transformed filter type 
can be

- Lowpass

- Lowpass (FIR)

- Highpass

- Highpass (FIR) narrowband

- Highpass (FIR) wideband

- Bandpass

- Bandstop

- Multiband

- Bandpass (complex)

- Bandstop (complex)

- Multiband (complex)
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In the following table you see each available original filter type and all the 
types of filter to which you can transform your original.

Original Filter Available Transformed Filter Types

Lowpass FIR • Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Lowpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)
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Highpass FIR • Lowpass

• Lowpass (FIR) narrowband

• Lowpass (FIR) wideband

• Highpass (FIR)

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Highpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Bandpass FIR • Bandpass

• Bandpass (FIR)

Bandpass IIR Bandpass

Original Filter Available Transformed Filter Types
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Note also that the options change depending on whether you original filter is 
FIR or IIR. Starting from an IIR filter, you can transform to IIR or FIR forms. 
With an FIR original filter, you are limited to FIR target filters.

After selecting your response type, use Frequency point to transform to 
specify the magnitude response point in your original filter to transfer to your 
target filter. Your target filter inherits the performance features of your 
original filter, such as passband ripple, while changing to the new response 
form.

For more information about transforming filters, refer to “Frequency 
Transformations for Real Filters” on page 4-11 and “Frequency 
Transformations for Complex Filters” on page 4-26.

Frequency Point To Transform
The frequency point you enter in this field identifies a magnitude response 
value (in dB) on the magnitude response curve. 

When you enter frequency values in the Specify desired frequency location 
option, the frequency transformation tries to set the magnitude response of the 
transformed filter to the value indentified by the frequency point you enter in 
this field.

While you can enter any location, generally you should specify a filter passband 
or stopband edge, or a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the values 
you enter in Specify desired frequency location. Specify a value that lies at 
either the edge of the stopband or the edge of the passband. If, for example, you 
are creating a bandpass filter from a highpass filter, the transformation 
algorithm sets the magnitude response of the transformed filter at the Specify 
desired frequency location to be the same as the response at the Frequency 
point to transform value. Thus you get a bandpass filter whose response at 
the low and high frequency locations is the same. Notice that the passband 

Bandstop FIR • Bandstop

• Bandstop (FIR)

Bandstop IIR Bandstop

Original Filter Available Transformed Filter Types
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between them is undefined. In the next two figures you see the original 
highpass filter and the transformed bandpass filter.

For more information about transforming filters, refer to “Digital Frequency 
Transformations” on page 4-1.

Transformed Filter Type
Select the magnitude response for the target filter from the list. The complete 
list of transformed filter types is:

• Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Not all types of transformed filters are available for all filter types on the 
Original filter types list. You can transform bandpass filters only to bandpass 
filters. Or bandstop filters to bandstop filters. Or IIR filters to IIR filters.

For more information about transforming filters, refer to “Frequency 
Transformations for Real Filters” on page 4-11 and “Frequency 
Transformations for Complex Filters” on page 4-26.

Specify Desired Frequency Location
The frequency point you enter in Frequency point to transform matched 
a magnitude response value. At each frequency you enter here, the 
transformation tries to make the magnitude response the same as the response 
identified by your Frequency point to transform value.
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While you can enter any location, generally you should specify a filter passband 
or stopband edge, or a value in the passband or stopband.

For more information about transforming filters, refer to “Digital Frequency 
Transformations” on page 4-1.

To Transform Filters
To transform the magnitude response of your filter, use the Transform Filter 
option on the side bar.

1 Design or import your filter into FDATool.

2 Click Transform Filter, , on the side bar.

FDATool opens the Transform Filter panel in FDATool.

3 From the Original filter type list, select the response form of the filter you 
are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or 
bandstop, FDATool recognizes whether your filter form is FIR or IIR. Using 
both your filter type selection and the filter form, FDATool adjusts the 
entries on the Transformed filter type list to show only those that apply to 
your original filter.
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4 Enter the frequency point to transform value in Frequency point to 
transform. Notice that the value you enter must be in KHz; for example, 
enter 0.1 for 100 Hz or 1.5 for 1500 Hz.

5 From the Transformed filter type list, select the type of filter you want to 
transform to.

Your filter type selection changes the options here. 

- When you pick a lowpass or highpass filter type, you enter one value in 
Specify desired frequency location.

- When you pick a bandpass or bandstop filter type, you enter two values— 
one in Specify desired low frequency location and one in 
Specify desired high frequency location. Your values define the edges 
of the passband or stopband.

- When you pick a multiband filter type, you enter values as elements in a 
vector in Specify a vector or desired frequency locations— one element for 
each desired location. Your values define the edges of the passbands and 
stopbands.

After you click Transform Filter, FDATool transforms your filter, 
displays the magnitude response of your new filter, and updates the 
Current Filter Information to show you that your filter has been 
transformed. In the filter information, the Source is Transformed.

For example, the figure shown here includes the magnitude response 
curves for two filter. The original filter is a lowpass filter with rolloff 
between 0.2 and 0.25. The transformed filter is a lowpass filter with rolloff 
region between 0.8 and 0.85.
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- To transform your lowpass filter to a highpass filter, select Lowpass to 
Highpass.

When you select Lowpass to Highpass, FDATool returns the dialog shown 
here. More information about the Select Transform... dialog follows the 
figure.
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To demonstrate the effects of selecting Narrowband Highpass or Wideband 
Highpass, the next figure presents the magnitude response curves for a source 
lowpass filter after it is transformed to both narrow- and wideband highpass 
filters. For comparison, the response of the original filter appears as well.
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For the narrowband case, the transformation algorithm essentially reverses 
the magnitude response, like reflecting the curve around the y-axis, then 
translating the curve to the right until the origin lies at 1 on the x-axis. After 
reflecting and translating, the passband at high frequencies is the reverse of 
the passband of the original filter at low frequencies with the same rolloff and 
ripple characteristics.
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Realizing Filters as Simulink Subsystem Blocks
After you design or import a filter in FDATool, the realize model feature lets 
you create a Simulink subsystem block that implements your filter. The 
generated filter subsystem block uses the delay, gain, and sum fixed-point 
blocks from the Fixed-Point Blockset. If you do not own the Fixed-Point 
Blockset, FDATool still realizes your model using fixed-point blocks from 
Simulink, but you cannot run any model that includes your filter subsystem 
block in Simulink.

About the Realize Model Panel in FDATool

Switching FDATool to realize model mode, by clicking on the sidebar, 
gives you access to the Realize Model panel and the options for realizing your 
quantized filter as a Simulink subsystem block.

On the panel, as shown here, are the options provided for configuring how 
FDATool realizes your model.

Model Options
Under Model, you set options that direct FDATool where to put your new 
subsystem block and what to name the block.

Destination. Tells FDATool whether to put the new block in your current 
Simulink model or open a new Simulink model and add the block to that 
window. Select Current model to add the block to your current model, or select 
New model to create a new model for the block.
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Block name. Provides FDATool with a name to assign to your block. When you 
realize your filter as a subsystem, the resulting block shows the name you enter 
here as the block name, positioned just below the block.

Overwrite block. Directs FDATool whether to overwrite an existing block with 
this block in the destination model. The result is that the new filter realization 
subsystem block replaces the existing filter subsystem block. Selecting this 
option replaces your existing filter realization subsystem block with the one 
you create when you click Realize Model. Clearing Overwrite block causes 
FDATool to create a new block in the destination model, rather than replacing 
the existing block.

Block Type Option
To realize your quantized filter as a subsystem block, the most appropriate 
choice is to select Fixed-point blocks from the list. When you are licensed to 
use the fixed-point blocks in DSP Blockset, you have the option of realizing 
your model as either fixed- or floating-point blocks. Since your filter is designed 
to use quantized coefficients, the fixed-point blocks option usually matches 
your needs most closely. 

You can elect to realize your filter using floating-point blocks, with the 
understanding that while the coefficients and gains of your filter retain their 
fixed-point values (the filter uses the fixed-point values for both gain and 
coefficients, in floating-point format), the math performed during filtering uses 
floating-point arithmetic and does not truly match the output of your filter 
running in fixed-point mode. Although realizing your quantized filter with 
floating-point blocks is not recommended, selecting Floating-point blocks 
from the list creates your filter from blocks in Simulink and the DSP Blockset.

If you do not own a license for the fixed-point blockset, realizing your quantized 
filter as a subsystem generates a subsystem block that uses fixed-point blocks, 
but you cannot run or edit the block. If you use the filter subsystem in a 
Simulink model, you cannot run the model.

Optimization Options
Four options enable you to tailor the way the realized model optimizes various 
filter features such as delays and gains. When you open the Realize Model 
panel, these options are selected by default.
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Optimize for zero gains. Specify whether to remove zero-gain blocks from the 
realized filter.

Optimize for unity gains. Specify whether to replace unity-gain blocks with direct 
connections in the filter subsystem.

Optimize for -1 gains. Specify whether to replace negative unity-gain blocks with 
a sign change at the nearest sum block in the filter.

Optimize delay chains. Specify whether to replace cascaded chains of delay blocks 
with a single integer delay block to provide an equivalent delay.

Each of these options can optimize the way your filter performs in simulation 
and in code you might generate from your model. 

To Realize a Filter Using FDATool
After your quantized filter in FDATool is performing the way you want, with 
your desired phase and magnitude response, and with the right coefficients 
and form, follow these steps to realize your filter as a subsystem that you can 
use in a Simulink model.

1 Click Realize Model on the sidebar to change FDATool to realize model 
mode.

2 From the Destination list under Model, select either:

- Current model—to add the realized filter subsystem to your current model

- New model—to open a new Simulink model window and add your filter 
subsystem to the new window

3 Provide a name for your new filter subsystem in the Name field.

4 Decide whether to overwrite an existing block with this new one, and select 
or clear Overwrite block to direct FDATool which way to go—overwrite or 
not.

5 Select Fixed-point blocks from the list in Block Type.

6 Select or clear the optimizations to apply.

- Optimize for zero gains—removes zero gain blocks from the model 
realization
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- Optimize for unity gains—replaces unity gain blocks with direct 
connetions to adjacent blocks

- Optimize for -1 gains—replaces negative gain blocks by a change of sign 
at the nearest sum block

- Optimize delay chains—replaces cascaded delay blocks with a single 
delay block that produces the equivalent gain

7 Click Realize Model to realize your quantized filter as a subsystem block 
according to the settings you selected.

If you double-click the filter block subsystem created by FDATool, you see the 
filter implementation in Simulink model form. Depending on the options you 
chose when you realized your filter, and the filter you started with, you might 
see one or more sections, or different architectures based on the form of your 
quantized filter. From this point on, the subsystem filter block acts like any 
other block that you use in Simulink models.
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Getting Help for FDATool
To find out more about the buttons or options in the FDATool dialogs, use the 
What’s This? button to access context-sensitive help.

Context-Sensitive Help—The What’s This? Option
To find information on a particular option or region of the dialog:

1 Click the What’s This? button .

Your cursor changes to .

2 Click on the region or option of interest.

For example, click Turn quantization on to find out what this option does.

You can also select What’s this? from the Help menu to launch 
context-sensitive help.

Additional Help for FDATool
For help about importing filters into FDATool, or for details about using 
FDATool to create and analyze double-precision filters, refer to the “Filter 
Design and Analysis Tool Overview” in your Signal Processing Toolbox 
documentation.
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A Quick Guide to Quantizer Properties
The following table summarizes the quantizer properties and provides a brief 
description of each. A table providing a full description of each property follows 
in the next section.

Table 12-1:  Quick Guide to Quantizer Properties

Property Brief Description of What the Property Specifies

Format Quantization format

Max Maximum value encountered when the quantizer quantizes data

Min Minimum value encountered when the quantizer quantizes data

Mode Type of quantized arithmetic

NOperations Number of quantization operations performed by a quantizer

NOverflows Number of overflows encountered when the quantizer quantizes 
data

NUnderflows Number of underflows encountered when the quantizer quantizes 
data

OverflowMode Handling of arithmetic overflows

RoundMode Rounding method used in quantization
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Quantizer Properties Reference
To quantize data using quantize, you need to specify quantization parameters 
in a quantizer. When you create a quantizer, you are creating a MATLAB 
object. You specify the quantization parameters as values assigned to the 
quantizer properties. With these property values, you specify the quantizer:

• Data format

• Arithmetic method 

• Rounding method

• Overflow method

For a quick reference to properties, see Table 12-1, Quick Guide to Quantizer 
Properties, on page 12-2. Details of all of the properties associated with 
quantizers are described in the following sections in alphabetical order.

Format
You can set the data format of a quantizer according to its Format property 
value. The interpretation of this property value depends on the value of the 
Mode property. 

For example, whether you specify the Mode property with fixed- or 
floating-point arithmetic affects the interpretation of the data format property. 
For some Mode property values, the data format property is read-only. 

The following table shows you how to interpret the values for the Format 
property value when you specify it, or how it is specified in read-only cases.
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Default value: 'fixed'

The Format property for quantizers affects the following quantized filter and 
quantized FFT data format properties:

• The CoefficientFormat property

• The InputFormat property

Table 12-2:  Interpreting Format Property for Different Arithmetic Types (Mode Property Values)

Filter Arithmetic Mode Property 
Value

Interpreting the Format Property Values

Fixed-point 'fixed' or 
'ufixed'

You specify the Format property value as a vector. The 
number of bits for the quantizer word length is the first 
entry of this vector, and the number of bits for the 
quantizer fraction length is the second entry. 

The word length can range from 2 to the limits of memory 
on your PC. The fraction length can range from 0 to one 
less than the word length.

Floating-point 'float' You specify the Format property value as a vector. The 
number of bits you want for the quantizer word length is 
the first entry of this vector, and the number of bits you 
want for the quantizer exponent length is the second 
entry. 

The word length can range from 2 to the limits of memory 
on your PC. The exponent length can range from 0 to 11.

Floating-point 'double' The Format property value is specified automatically (is 
read-only) when you set the Mode property to 'double'. 
The value is [64 11], specifying the word length and 
exponent length, respectively.

Floating-point 'single' The Format property value is specified automatically (is 
read-only) when you set the Mode property to 'single'. 
The value is [32 8], specifying the word length and 
exponent length, respectively.
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• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Set each of these data format properties using a quantizer. 

Max
The Max property is read-only. The value of the Max property is the maximum 
value data has before a quantizer is applied to it, that is, before quantization 
using quantize. This value accumulates if you use the same quantizer to 
quantize several data sets. You can reset the value using reset.

Default value: reset

Min
The Min property is read-only. The value of the Min property is the minimum 
value data has before a quantizer is applied to it, that is, before quantization 
using quantize. This value accumulates if you use the same quantizer to 
quantize several data sets. You can reset the value using reset.

Default value: reset

Mode
You specify Mode property values as one of the following strings to indicate the 
type of arithmetic used in filtering and quantization.

Mode Property Setting Description

'fixed' Signed fixed-point calculations

'float' User-specified floating-point calculations

'double' Floating-point calculations using 
double-precision
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Default value: 'fixed'

Remarks: When you set the Mode property value to 'double' or 'single' the 
Format property value becomes read-only. 

The Mode property for quantizers affects the following quantized filter and 
quantized FFT data format properties:

• The CoefficientFormat property

• The InputFormat property

• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Set each of these data format properties using a quantizer. 

NOperations
The NOperations property is read-only. The value of the NOperations property 
is the number of quantization operations that occurred during quantization 
when you use a quantizer, quantized filter, or quantized FFT. This value 
accumulates when you use the same quantizer, quantized filter, or quantized 
FFT to process several data sets. You reset the value using reset.

Default value: 0

NOverflows
The NOverflows property is read-only. The value of the NOverflows property is 
the number of overflows that occur during quantization using quantize. This 
value accumulates if you use the same quantizer to quantize several data sets. 
You can reset the value using reset.

'single' Floating-point calculations using 
single-precision

'ufixed' Unsigned fixed-point calculations

Mode Property Setting Description
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Default value: 0

NUnderflows
The NUnderflows property is read-only. The value of the NUnderflows property 
is the number of underflows that occur during quantization using quantize. 
This value accumulates when you use the same quantizer to quantize several 
data sets. You can reset the value using reset.

Default value: 0

OverflowMode
The OverflowMode property values are specified as one of the following two 
strings indicating how overflows in fixed-point arithmetic are handled:

• 'saturate' — saturate overflows. 

When the values of data to be quantized lie outside of the range of the largest 
and smallest representable numbers (as specified by the data format 
properties), these values are quantized to the value of either the largest or 
smallest representable value, depending on which is closest. 

• 'wrap' — wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest 
and smallest representable numbers (as specified by the data format 
properties), these values are wrapped back into that range using modular 
arithmetic relative to the smallest representable number.

Default value: 'saturate'

Note  Numbers in floating-point filters that extend beyond the dynamic 
range overflow to ±inf.

The OverflowMode property value is set to 'saturate' and becomes a read-only 
property when you set the value of the Mode property to either 'float', 
'double', or 'single'.

The OverflowMode property for quantizers affects the following quantized filter 
and quantized FFT data format properties:
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• The CoefficientFormat property

• The InputFormat property

• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Set each of these data format properties using a quantizer. 

RoundMode
The RoundMode property values specify the rounding method used for 
quantizing numerical values. Specify the RoundMode property values as one of 
the following five strings.

Default value: 'floor'

RoundMode String Description of Rounding Algorithm

'ceil' Round up to the next allowable quantized value.

'convergent' Round to the nearest allowable quantized value. 
Numbers that are exactly halfway between the 
two nearest allowable quantized values are 
rounded up only if the least significant bit (after 
rounding) would be set to 1.

'fix' Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

'floor' Round down to the next allowable quantized 
value.

'round' Round to the nearest allowable quantized value. 
Numbers that are halfway between the two 
nearest allowable quantized values are rounded 
up. 
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Remarks: The RoundMode property for quantizers affects the following 
quantized filter and quantized FFT data format properties:

• The CoefficientFormat property

• The InputFormat property

• The MultiplicandFormat property

• The OutputFormat property

• The ProductFormat property

• The SumFormat property

Use a quantizer to set each of these data format properties. 
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A Quick Guide to Quantized Filter Properties
The following table summarizes the quantized filter properties and provides a 
brief description of each. A table providing a full description of each property 
follows in the next section.

Table 12-3:  Quick Guide to Quantized Filter Properties

Property Brief Description of What the Property Specifies

CoefficientFormat Quantization format for filter coefficients

FilterStructure Filter structure

InputFormat Quantization format applied to inputs during filtering

NumberOfSections Number of cascaded sections in the filter

MultiplicandFormat Quantization format for inputs that are multiplied by 
coefficients in filtering operations

OutputFormat Quantization format applied to outputs during filtering

ProductFormat Quantization format for results of multiplication in filtering

QuantizedCoefficients Filter coefficients after quantization

ReferenceCoefficients Filter coefficients before quantization

ScaleValues Scaling for the quantized filter

StatesPerSection Number of states (delays) in each section of the filter

SumFormat Quantization format for results of addition in filtering
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Quantized Filter Properties Reference
When you create a quantized filter, you are creating a MATLAB object. The 
quantized filter object you create has many properties to which you assign 
values. You use these property values to assign the characteristics of the 
quantized filters you create, including:

• The filter structure

• The double-precision coefficients that specify the original reference filter 
(before quantization)

• The data formats used in quantization and filtering operations 

You specify the ReferenceCoefficients property value as a cell array. For 
more information, see “Using Cell Arrays” on page 4-13. 

For a quick reference to properties, see Table 12-1, Quick Guide to Quantizer 
Properties. Details of all of the properties associated with quantized filters are 
described in the following sections in alphabetical order.

CoefficientFormat 
The CoefficientFormat property values specify how filter coefficients are 
quantized. You specify these values with a quantizer. You set them according 
to the quantizer property values:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

The value you set for this property is used to calculate the 
QuantizedCoefficients property values. 

Default value: quantizer('fixed','round','saturate',[16,15])

Note  Coefficient overflows that occur due to quantization are not corrected 
automatically. You can use normalize with several filter structures to account 
for coefficient overflows.
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FilterStructure
The FilterStructure property values are specified as one of the following 
strings indicating the quantized filter architecture:

'Default value: 'df2t'

Remarks: The syntax for entering values for the ReferenceCoefficients 
property is constrained by the FilterStructure property value. See Table 

FilterStructure 
Property Name

Filter Description

'antisymmetricfir' Antisymmetric finite impulse response (FIR). 
Even and odd forms.

'df1' Direct form I.

'df1t' Direct form I transposed.

'df2' Direct form II.

'df2t' Direct form II transposed. Default filter structure.

'fir' Direct form FIR.

'firt' Direct form FIR transposed.

'latcallpass' Lattice allpass.

'latticeca' Lattice coupled-allpass.

'latticecapc' Lattice coupled-allpass power-complementary.

'latticear' Lattice autoregressive (AR).

'latticema' Lattice moving average (MA) minimum phase.

'latcmax' Lattice moving average (MA) maximum phase.

'latticearma' Lattice ARMA.

'statespace' Single-input/single-output state-space.

'symmetricfir' Symmetric FIR. Even and odd forms.
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12-4: Syntax for Assigning Reference Filter Coefficients (Single Section) on 
page 12-41, for information on how to enter these coefficients for each filter 
architecture.

Filter Structure with Quantizers in Place
To help you understand how the quantizers work in filter structures like those 
provided in the Toolbox, Figure 12-1 presents the structure for a Direct Form 2 
filter, including the quantizers that compose the quantized filter. You see that 
one or more quantizers accompany each filter element, such as a delay, 
coefficient, or a summation element. The input to or output from each element 
reflects the result of the associated quantizer. Wherever a particular filter 
element appears in a structure, recall the quantizers that accompany it as they 
appear in this figure. For example, a multiplicand quantizer precedes every 
coefficient element and a product quantizer follows every coefficient element. 
Or a sum quantizer follows each sum element.

Notice that in this diagram, the first denominator coefficient in your filter, 
1/a(1), appears because a(1) is not equal to 1.

Figure 12-1:  df2 Filter Structure Including the Quantizers, with a(1) ≠ 1
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When your filter sets a(1) = 1, the df2 structure changes as shown in the next 
diagram, where the multiplicand and product quantizers for a(1) are not 
included and are not used when you quantize your filter. Skipping these 
quantizers removes potential errors that arise when a(1) ends up not quite 
equal to 1 after quantization, although it should be exactly 1.

Figure 12-2:  df2 Filter Structure Without Input Quantizers, where a(1) = 1

When the leading denominator coefficient a(1) is not 1, choose it to be a power 
of two so that a shift replaces the multiply that would otherwise be used.

Note  The quantized filter structures in the toolbox include the first 
denominator coefficient a(1) in the feedback loop of direct-form IIR filters (df1, 
df1t, df2, df2t), although customarily a(1) = 0.

However, when a(1) ≠ 1, the coefficient is needed to ensure accurate 
quantization analysis. For examples of instances where the leading 
denominator coefficient is not 1, check references [7] and [10] in the 
Bibliography.
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Quantized Filter Structures 
You can choose among several different filter structures when you create a 
quantized filter. You can also specify filters with single or multiple cascaded 
sections of the same type. Because quantization is a nonlinear process, 
different filter structures produce different results. 

You specify the filter structure by assigning a specific string to the 
FilterStructure property. Refer to the function reference listings for qfilt 
and set for information on setting property values.

The FilterStructure property value constrains the syntax you can use for 
specifying the filter reference coefficients. For details on the syntax to use for 
specifying a filter with either a single section, or multiple (L) cascaded sections, 
see Table 12-4, Syntax for Assigning Reference Filter Coefficients (Single 
Section), and Table 12-5, Syntax for Assigning Reference Filter Coefficients (L 
Sections). 

The figures in the following subsections of this section serve as visual aids to 
help you determine how to enter the reference filter coefficients for each filter 
structure. Each subsection contains a simple example for constructing a filter 
of a given structure. 

Scale factors for the inputs and output for the filters do not appear in the block 
diagrams. The default filter structures do not include, nor assume, the scale 
factors.
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Direct Form Antisymmetric FIR Filter Structure (Odd Order)
The following figure depicts a direct form antisymmetric FIR filter structure 
that directly realizes a fifth-order antisymmetric FIR filter. The filter 
coefficients are labeled b(i), i = 1, ..., 6, and the initial and final state values in 
filtering are labeled z(i).

Use the string 'antisymmetricfir' for the value of the FilterStructure 
property to design a quantized filter with this structure. 
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Example — Specifying an Odd-Order Direct Form Antisymmetric FIR Filter Structure.
Specify a fifth-order direct form antisymmetric FIR filter structure for a 
quantized filter Hq with the following code.

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
Hq = qfilt('antisymmetricfir',{b});

Antisymmetric FIR Filter Structure (Even Order)
The following figure depicts a direct form antisymmetric FIR filter structure 
that directly realizes a fourth-order antisymmetric FIR filter. The filter 
coefficients are labeled b(i), i = 1, ..., 5, and the states (used for initial and final 
state values in filtering) are labeled z(i).

antisymmetricfir 
(Antisymmetric FIR)

Odd number of coefficients, length(b) = 5.
Note that antisymmetry is defined as 

b(i) == −b(end − i + 1)
so that the middle coefficient is zero for odd length

b((end+1)/2) = 0

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(2)

b(1)

1

x



12 Property Reference

12-18

Use the string 'antisymmetricfir' to specify the value of the 
FilterStructure property for a quantized filter with this structure. 

Example — Specifying an Even-Order Direct Form Antisymmetric FIR Filter Structure. You 
can specify a fourth-order direct form antisymmetric FIR filter structure for a 
quantized filter Hq with the following code.

b = [-0.01 0.1 0.0 -0.1 0.01];
Hq = qfilt('antisymmetricfir',{b});

Direct Form I Filter Structure
The following figures depict direct form I filter structures that directly realize 
a transfer function with a second-order numerator and denominator. The 
numerator coefficients are labeled b(i), the denominator coefficients are labeled 
a(i), i = 1, 2, 3, and the states (used for initial and final state values in filtering) 
are labeled z(i). In the first figure, a(1) is not equal to one and appears in the 
structure. When a(1) is equal to one, the realized structure does not include the 
coefficient, as you see in the second figure.
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Use the string 'df1' to specify the value of the FilterStructure property for 
a quantized filter with this structure. 

Example — Specifying a Direct Form I Filter Structure. You can specify a second-order 
direct form I structure for a quantized filter Hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df1',{b,a});

df1
(Direct Form I)

1
y

z

1
z(4)

z

1
z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

a(3)

a(2)

1
x



12 Property Reference

12-20

Direct Form I Transposed Filter Structure
The following figures depict direct form I transposed filter structures that 
directly realize a transfer function with a second-order numerator and 
denominator. The numerator coefficients are labeled b(i), the denominator 
coefficients are labeled a(i), i = 1, 2, 3, and the states (used for initial and final 
state values in filtering) are labeled z(i). In the first figure, a(1) is not equal to 
one and appears in the structure. When a(1) is equal to one, the realized 
structure does not include the coefficient, as you see in the second figure.
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Use the string 'df1t' to specify the value of the FilterStructure property for 
a quantized filter with this structure. 

Example — Specifying a Direct Form I Transposed Filter Structure. You can specify a 
second-order direct form I transposed filter structure for a quantized filter Hq 
with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df1t',{b,a});
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Direct Form II Filter Structure
The following figures depict direct form II filter structures that directly realize 
a transfer function with a second-order numerator and denominator. The 
numerator coefficients are labeled b(i), the denominator coefficients are labeled 
a(i), i = 1, 2, 3, and the states (used for initial and final state values in filtering) 
are labeled z(i). In the first figure, a(1) is not equal to one and appears in the 
structure. When a(1) is equal to one, the realized structure does not include the 
coefficient, as you see in the second figure.
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Use the string 'df2' to specify the value of the FilterStructure property for 
a quantized filter with this structure. 

Example — Specifying a Direct Form II Filter Structure. You can specify a second-order 
direct form II filter structure for a quantized filter Hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df2',{b,a});
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Direct Form II Transposed Filter Structure
The following figures depict direct form II transposed filter structures that 
directly realize a transfer function with a second-order numerator and 
denominator. The numerator coefficients are labeled b(i), the denominator 
coefficients are labeled a(i), i = 1, 2, 3, and the states (used for initial and final 
state values in filtering) are labeled z(i). In the first figure, a(1) is not equal to 
one and appears in the structure. When a(1) is equal to one, the realized 
structure does not include the coefficient, as you see in the second figure.
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Use the string 'df2t' to specify the value of the FilterStructure property for 
a quantized filter with this structure. 

Example — Specifying a Direct Form II Transposed Filter Structure. You can specify a 
second-order direct form II transposed filter structure for a quantized filter Hq 
with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hq = qfilt('df2t',{b,a});

df2t
(Transposed Direct Form II)
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Direct Form Finite Impulse Response (FIR) Filter Structure
The following figure depicts a direct form finite impulse response (FIR) filter 
structure that directly realizes a second-order FIR filter. The filter coefficients 
are labeled b(i), i = 1, 2, 3, and the states (used for initial and final state values 
in filtering) are labeled z(i).

Use the string 'fir' to specify the value of the FilterStructure property for 
a quantized filter with this structure. 

Example — Specifying a Direct Form FIR Filter Structure. You can specify a 
second-order direct form FIR filter structure for a quantized filter Hq with the 
following code.

b = [0.05 0.9 0.05];
Hq = qfilt('fir',{b});

fir
(Direct Form FIR = Tapped delay line)
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Direct Form FIR Transposed Filter Structure
The following figure depicts a direct form finite impulse response (FIR) 
transposed filter structure that directly realizes a second-order FIR filter. The 
filter coefficients are labeled b(i), i = 1, 2, 3, and the states (used for initial and 
final state values in filtering) are labeled z(i).

Use the string 'firt' to specify the value of the FilterStructure property for 
a quantized filter with this structure. 

Example — Specifying a Direct Forn FIR Transposed Filter Structure. You can specify a 
second-order direct form FIR transposed filter structure for a quantized filter 
Hq with the following code.

b = [0.05 0.9 0.05];
Hq = qfilt('firt',{b});

firt
(Transposed Direct Form FIR)
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Lattice Allpass Filter Structure
The following figure depicts a lattice allpass filter structure. The pictured 
structure directly realizes third-order lattice allpass filters. The filter reflection 
coefficients are labeled k1(i), i = 1, 2, 3. The states (used for initial and final 
state values in filtering) are labeled z(i).

Use the string 'latcallpass' to specify the value of the FilterStructure 
property for a quantized filter with this structure. 

Example — Specifying a Lattice Allpass Filter Structure. You can specify a third-order 
lattice allpass filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44];
Hq = qfilt('latcallpass',{k});

latcallpass
(Lattice AR All−Pass)
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Lattice Moving Average Maximum Phase Filter Structure
The following figure depicts a lattice moving average maximum phase filter 
structure that directly realizes a third-order lattice moving average (MA) filter 
with the following phase form depending on the initial transfer function:

• When you start with a minimum phase transfer function, the upper branch 
of the resulting lattice structure returns a minimum phase filter. The lower 
branch returns a maximum phase filter.

• When your transfer function is neither minimum phase nor maximum 
phase, the lattice moving average maximum phase structure will not be 
maximum phase.

• When you start with a maximum phase filter, the resulting lattice filter is 
maximum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for 
initial and final state values in filtering) are labeled z(i).

Use the string 'latcmax' to specify the value of the FilterStructure property 
for a quantized filter with this structure. 

Example—Specifying a Lattice Moving Average Maximum Phase Filter Structure. You can 
specify a fourth-order lattice MA maximum phase filter structure for a 
quantized filter Hq with the following code.

k = [.66 .7 .44 .33];

latcmax
(Lattice MA Max phase)
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Hq = qfilt('latcmax',{k});

Lattice Coupled-Allpass Filter Structure
The following figure depicts a lattice coupled-allpass filter structure. The filter 
is composed of two third-order allpass lattice filters. The filter reflection 
coefficients for the first filter are labeled k1(i), i = 1, 2, 3. The filter reflection 
coefficients for the second filter are labeled k2(i), i = 1, 2, 3. The unity gain 
complex coupling coefficient is beta. The states (used for initial and final state 
values in filtering) are labeled z(i).

Use the string 'latticeca' to specify the value of the FilterStructure 
property for a quantized filter with this structure. 

Example — Specifying a Lattice Coupled-Allpass Filter Structure. You can specify a 
third-order lattice coupled allpass filter structure for a quantized filter Hq with 
the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hq = qfilt('latticeca',{k1,k2,beta});
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(Coupled Allpass Lattice)
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Lattice Coupled-Allpass Power Complementary Filter Structure
The following figure depicts a lattice coupled-allpass power complementary 
filter structure. The filter is composed of two third-order allpass lattice filters. 
The filter reflection coefficients for the first filter are labeled k1(i), i = 1, 2, 3. 
The filter reflection coefficients for the second filter are labeled k2(i), i = 1, 2, 3. 
The unity gain complex coupling coefficient is beta. The states used for initial 
and final state values in filtering are labeled z(i). The resulting filter transfer 
function is the power-complementary transfer function of the coupled allpass 
lattice filter (formed from the same coefficients).

Use the string 'latticecapc' to specify the value of the FilterStructure 
property for a quantized filter with this structure. 

Example — Specifying a Lattice Coupled-Allpass Power Complementary Filter Structure.
Specify a third-order lattice coupled-allpass power complementary filter 
structure for a quantized filter Hq with the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hq = qfilt('latticecapc',{k1,k2,beta});

latticecapc
(Coupled Allpass Lattice, Power Complementary output)
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Lattice Autoregressive (AR) Filter Structure
The following figure depicts a lattice autoregressive (AR) filter structure that 
directly realizes a third-order lattice AR filter. The filter reflection coefficients 
are labeled k(i), i = 1, 2, 3, and the states (used for initial and final state values 
in filtering) are labeled z(i).

Use the string 'latticear' to specify the value of the FilterStructure 
property for a quantized filter with this structure. 

Example — Specifying an Lattice AR Filter Structure. You can specify a third-order 
lattice AR filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44];
Hq = qfilt('latticear',{k});

latticear
(Autoregressive Lattice)
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Lattice Moving Average (MA) Filter Structure
The following figure depicts a lattice moving average (MA) filter structure that 
directly realizes a third-order lattice MA filter. The filter reflection coefficients 
are labeled k(i), i = 1, 2, 3, and the states (used for initial and final state values 
in filtering) are labeled z(i).

Use the string 'latticema' to specify the value of the FilterStructure 
property for a quantized filter with this structure.

Example — Specifying an Lattice MA Filter Structure. You can specify a third-order 
lattice MA filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44];
Hq = qfilt('latticema',{k});

latticema
(Moving Average Lattice)
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Lattice Autoregressive Moving Average (ARMA) Filter Structure
The following figure depicts a lattice autoregressive moving average (ARMA) 
filter structure that directly realizes a fourth-order lattice ARMA filter. The 
filter reflection coefficients are labeled k(i), i = 1, ..., 4, the ladder coefficients 
are labeled v(i), i = 1, 2, 3, and the states (used for initial and final state values 
in filtering) are labeled z(i).

Use the string 'latticearma' to specify the value of the FilterStructure 
property for a quantized filter with this structure. 

Example — Specifying an Lattice ARMA Filter Structure. You can specify a fourth-order 
lattice ARMA filter structure for a quantized filter Hq with the following code.

k = [.66 .7 .44 .66];
v = [1 0 0];
Hq = qfilt('latticearma',{k,v});

latticearma
(ARMA Lattice)
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State-Space Filter Structure
State-space models with input sequence xk and output sequence yk have the 
following form.

If the states zk are vectors of length n, then the matrices A, B, C, and D are 
n-by-n, n-by-1, 1-by-n, and 1-by-1 respectively.

Use the string 'statespace' to specify the value of the FilterStructure 
property for a quantized filter with this structure.

Example — Specifying a State-Space Filter Structure. You can specify a second-order 
state-space filter structure for a quantized filter Hq with the following code.

[A,B,C,D] = butter(2,0.5);
Hq = qfilt('statespace',{A,B,C,D});

zk 1+ Azk Bxk+=

yk Czk Dxk+=

Statespace
x(k+1) = Ax(k) + Bu(k)
    y(k) = Cx(k) + Du(k)
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Direct Form Symmetric FIR Filter Structure (Odd Order)
The following figure depicts a direct form symmetric FIR filter structure that 
directly realizes a fifth-order direct form symmetric FIR filter. The filter 
coefficients are labeled b(i), i = 1, ..., 6, and the states (used for initial and final 
state values in filtering) are labeled z(i).

Use the string 'symmetricfir' to specify the value of the FilterStructure 
property for a quantized filter with this structure. 

Example — Specifying an Odd-Order Direct Form Symmetric FIR Filter Structure. You can 
specify a fifth-order direct form symmetric FIR filter structure for a quantized 
filter Hq with the following code.

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
Hq = qfilt('symmetricfir',{b});

symmetricfir 
(Symmetric FIR)

Even number of coefficients, length(b) = 6.
b(i) == b(end − i + 1)

1
y

z

1
z(5)

z

1
z(4)

z

1

z(3)

z

1
z(2)

z

1
z(1)

b(3)

b(2)

b(1)

1

x



Quantized Filter Properties Reference

12-37

Direct Form Symmetric FIR Filter Structure (Even Order)
The following figure depicts a direct form symmetric FIR filter structure that 
directly realizes a fourth-order direct form symmetric FIR filter. The filter 
coefficients are labeled b(i), i = 1, ..., 5, and the states (used for initial and final 
state values in filtering) are labeled z(i).

Use the string 'symmetricfir' to specify the value of the FilterStructure 
property for a quantized filter with this structure. 

Example — Specifying an Even-Order Direct Form Symmetric FIR Filter Structure. You can 
specify a fourth-order direct form symmetric FIR filter structure for 
a quantized filter Hq with the following code.

b = [-0.01 0.1 0.8 0.1 -0.01];
Hq = qfilt('symmetricfir',{b});

symmetricfir
(Symmetric FIR) 

Odd number of coefficients, length(b) = 5.
b(i) == b(end − i + 1)
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InputFormat
The InputFormat property values specify how inputs are quantized during the 
filtering operation. You specify these values with a quantizer. You set them 
according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15]) 

NumberOfSections
The value of this read-only property is a scalar that specifies the number of 
cascaded sections in your quantized filter. You specify the number of sections 
for your filter by the way you specify the ReferenceCoefficients property 
value.

Default value: 1

MultiplicandFormat
Products in quantized filters always involve two types of multiplicands:

• Inputs (data)

• Coefficients

MultiplicandFormat property values specify how inputs that are multiplied by 
coefficients are quantized during the filtering operation. 

multiplicandFormat property values specify how to quantize the filter 
multiplicands. Multiplicands are the inputs to multiply operations.

Not all inputs to multiplications are directly from the input to the filter. 
Sometimes, as in the direct form I filter, the input to one multiplication may be 
the output of another multiplication or addition. The output of a multiplication 
(a product) and the output of an addition (a sum) is usually double the 
wordlength of their inputs. For example, multiplying a 16-bit multiplicand by 
a 16-bit multiplier (here a coefficient in a filter) yields a 32-bit product. Also, 
sums are usually kept in double-wordlength accumulators. If any one of these 
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double-wordlength numbers is fed back into another multiplication as a 
multiplicand, they need to be quantized back into a single-wordlength (16-bit) 
number before using them in another calculation. Not quantizing the result 
back to single word length causes (16-bit * 16-bit) = 32-bit result, then 
(32-bit result * 16-bit) = 48-bit result, and so on. Hence the multiplicand 
quantizer prevents the result from growing beyond 32 bits.

When multiplicand quantizers are not necessary, as in direct-form FIR filters, 
multiplicandFormat should be set to be the same as the inputFormat because 
the inputs to the multiplications are exactly the input to the filter. 

Although multiplicand quantizers are not always necessary for a given filter 
structure, filter structures in FD Toolbox have them available to provide full 
generality in the specification of the arithmetic of any filter. 

You specify these values with a quantizer. You set them according to the 
property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15]) 

OutputFormat
The OutputFormat property values specify how outputs are quantized during 
the filtering operation. You specify these values with a quantizer. You set them 
according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15]) 
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ProductFormat
The ProductFormat property values specify how the results of multiplication 
are quantized during the filtering operation. You specify these values with a 
quantizer. You set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30]) 

QuantizedCoefficients
The values for this read-only property are stored in a cell array containing the 
quantized filter coefficients calculated from the value of the 
ReferenceCoefficients property. The quantization is specified by the value of 
the CoefficientFormat property.

Default value: {1 1}

Remarks: If any filter coefficient overflows occur as a result of quantization, a 
warning is displayed. 

The cell array for the QuantizedCoefficients property value has the same 
form as that of the corresponding ReferenceCoefficients property value, 
described in “Assigning Reference Filter Coefficients” on page 12-40.

ReferenceCoefficients
The ReferenceCoefficients property values are specified as a cell array that 
specifies the original (unquantized) reference filter coefficients. You specify 
these in double-precision, using a syntax specific to the value of the 
FilterStructure property. 

Default value: {1 1}

Assigning Reference Filter Coefficients 
To assign the coefficients that specify the filter that serves as the reference for 
your quantized filter, specify the value of the ReferenceCoefficients 
property. The syntax you use to assign reference filter coefficients for your 
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quantized filter depends on the value you assign to the FilterStructure 
property. These syntaxes are described in the following two tables. The first 
table explains the syntax for the ReferenceCoefficients property value when 
you want to specify one section for your filter. The next table explains how to 
specify the coefficients for filters with L cascaded sections.

Table 12-4:  Syntax for Assigning Reference Filter
Coefficients (Single Section)

FilterStructure Property 
Value

Syntax for ReferenceCoefficients Property 
Value

'antisymmetricfir' {b}: 

• This is a cell array containing one vector.

• b(i) = -b(n-i+1); i = 1, ..., n

• n-1 is the order of the polynomial represented 
by b.

• When n is odd, the center coefficient, 
b((n+1)/2) should be 0.

If you don’t supply an antisymmetric vector b, it 
is converted to be antisymmetric automatically.

'df1' {b,a}: 

• This is a cell array of vectors.

• b is the vector representing the coefficients of 
the transfer function numerator polynomial. 

• a is the vector representing the coefficients of 
the transfer function denominator polynomial.

'df1t' {b,a}: This is a cell array of vectors.

'df2' {b,a}: This is a cell array of vectors.

'df2t' {b,a}: This is a cell array of vectors.

'fir' {b}: This is a cell array containing one vector.
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'firt' {b}: This is a cell array containing one vector.

'latticeca' {k1,k2,beta}: 

• This is a cell array of vectors.

• k1 and k2 are the vectors of reflection 
coefficients for the two lattice allpass filters in 
the coupled allpass structure.

• beta is the unity gain complex scalar coupling 
coefficient.

'latticecapc' {k1,k2,beta}: 

• This is a cell array of vectors.

• k1 and k2 are the vectors of reflection 
coefficients for the two lattice allpass filters in 
the coupled allpass structure.

• beta is the unity gain complex scalar coupling 
coefficient.

'latticear' {k}: 

• This is a cell array containing one vector.

• k is the vector of reflection coefficients for an 
all-pole (AR) lattice filter.

'latticema' {k}: 

• This is a cell array containing one vector.

• k is the vector of reflection coefficients for an 
FIR (MA) lattice filter.

Table 12-4:  Syntax for Assigning Reference Filter
Coefficients (Single Section) (Continued)

FilterStructure Property 
Value

Syntax for ReferenceCoefficients Property 
Value
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You can specify quantized filters with multiple sections for all of the filter 
structures.

'latticearma' {k,v}: 

• This is a cell array of vectors.

• k is the vector of reflection coefficients for an 
IIR (ARMA) lattice filter.

• v is the vector of ladder coefficients for an IIR 
lattice filter.

'statespace' {A,B,C,D}: 

• This is a cell array of matrices.

• A is the n-by-n state transition matrix (n 
states).

• B is the n-by-1 input to state transmission 
vector.

• C is the 1-by-n state to output transmission 
vector.

• D is the input to output transmission scalar.

'symmetricfir' {b}: 

• This is a cell array containing one vector.

• b(i) = b(n-i+1); i = 1, ..., n

• n-1 is the order of the polynomial represented 
by b.

• If you don’t supply a symmetric vector b, it is 
converted to be symmetric automatically.

Table 12-4:  Syntax for Assigning Reference Filter
Coefficients (Single Section) (Continued)

FilterStructure Property 
Value

Syntax for ReferenceCoefficients Property 
Value
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The following table describes the syntax for entering reference coefficients to 
specify a quantized filter with L second-order or arbitrary-order sections.

Table 12-5:  Syntax for Assigning Reference Filter
Coefficients (L Sections)

Section 
Structure

Syntax for ReferenceCoefficients Property Value

L second-order 
sections

{ {b1 a1} {b2 a2} ... {bL aL} }

• This is a 1-by-L cell array of 1-by-2 cell arrays.

• bi is a 1-by-3 row vector for the numerator of the ith 
section, i=1, ... , L.

• ai is a 1-by-3 row vector for the denominator of the ith 
section, i=1, ... , L.

You can use tf2sos and sos2cell to covert a transfer 
function directly into this format (a cell array of cells). 
You can also use sos to convert quantized filters with 
other topologies directly to a second-order sections form.

L sections, 
each of 
arbitrary order 
(except FIR 
filters)

{ {b1 a1} {b2 a2} ... {bL aL} }

• This is a 1-by-L cell array of 1-by-2 cell arrays.

• bi is a 1-by-nbi row vector for the numerator of the ith 
section, i=1, ... , L.

• ai is a 1-by-nai row vector for the denominator of the 
ith section, i=1, ... , L.

• nbi is the order of the numerator of the ith section.

• nai is the order of the denominator of the ith section.

L sections, 
each of 
arbitrary order 
(only FIR)

{ {b1} {b2} ... {bL} }

• This is a 1-by-L cell array of one-dimensional cell 
arrays.

• bi is a 1-by-nbi row vector for the numerator of the ith 
FIR section, i=1, ... , L.

• nbi is the order of the ith FIR section.
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L sections of 
coupled allpass 
lattice filters

{{k11,k21,beta1},...,{k1L,k2L,betaL)}: 

• This is a 1-by-L cell array of 1-by-3 cell arrays.

• k1i and k2i are the vectors of reflection coefficients for 
the two lattice allpass filters in the ith coupled allpass 
structure, i=1, ... , L.

• betai is the unity gain complex scalar coupling 
coefficient in the ith coupled allpass structure, i=1, ... , 
L.

L sections of 
lattice ARMA 
filters 

{{k1,v1},...,{kL,vL}}: 

• This is a 1-by-L cell array of 1-by-2 cell arrays.

• ki is the vector of reflection coefficients for the ith IIR 
lattice (ARMA) filter in the cascade, i=1, ... , L.

• vi is the vector of ladder coefficients for ith IIR lattice 
(ARMA) filter in the cascade, i=1, ... , L.

Table 12-5:  Syntax for Assigning Reference Filter
Coefficients (L Sections) (Continued)

Section 
Structure

Syntax for ReferenceCoefficients Property Value
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Conversion functions in this toolbox and in Signal Processing Toolbox let you 
convert transfer functions to other filter forms and from filter forms to transfer 
functions. Relevant conversion functions include the following functions.

L sections of 
lattice AR or 
MA filters 

{{k1},...,{kL}}: 

• This is a 1-by-L cell array of one-dimensional cell 
arrays.

• ki is the vector of reflection coefficients for the ith 
lattice AR or MA filter in the cascade, i=1, ... , L.

L sections of 
state-space 
filters

{{A1,B1,C1,D1},...,{AL,BL,CL,DL}}: 

• This is a cell array of 1-by4 cell arrays.

• Ai is the ni-by-ni state transition matrix (ni states) of 
the ith state-space filter in the cascade, i=1, ... , L.

• Bi is the ni-by-1 input to state transmission vector of 
the ith state-space filter in the cascade, i=1, ... , L.

• Ci is the 1-by-ni state to output transmission vector of 
the ith state-space filter in the cascade, i=1, ... , L.

• Di is the input to output transmission scalar of the ith 
state-space filter in the cascade, i=1, ... , L.

Conversion Function Description

ca2tf Converts from a coupled allpass filter to a 
transfer function.

cl2tf Converts from a lattice coupled allpass filter to 
a transfer function.

Table 12-5:  Syntax for Assigning Reference Filter
Coefficients (L Sections) (Continued)

Section 
Structure

Syntax for ReferenceCoefficients Property Value
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You can specify a filter with L sections of arbitrary order by:

1 Factoring your entire transfer function with tf2zp.

2 Using zp2tf to compose the transfer function for each section from the 
selected first-order factors obtained in step 1.

sos Converts quantized filters to create 
second-order sections. This is the 
recommended method for converting quantized 
filters to second-order sections.

tf2ca Converts from a transfer function to a coupled 
allpass filter.

tf2cl Converts from a transfer function to a lattice 
coupled allpass filter.

tf2latc Converts from a transfer function to a lattice 
filter.

tf2sos Converts from a transfer function to a 
second-order section form.

tf2ss Converts from a transfer function to 
state-space form.

tf2zp Converts from a rational transfer function to 
its factored (single section) form 
(zero-pole-gain form).

zp2sos Converts a zero-pole-gain form to a 
second-order section form.

zp2ss Conversion of zero-pole-gain form to a 
state-space form.

zp2tf Conversion of zero-pole-gain form to transfer 
functions of multiple order sections.

Conversion Function
 (Continued)

Description
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Note  You are not required to normalize the leading coefficients of each 
section’s denominator polynomial when specifying second-order sections, 
though tf2sos does.

ScaleValues
The ScaleValues property values are specified as a scalar (or vector) that 
introduces scaling for inputs (and the outputs from cascaded sections in the 
vector case) during filtering:

• When you only have a single section in your filter:

- Specify the ScaleValues property value as a scalar if you only want to 
scale the input to your filter.

- Specify the ScaleValues property as a vector of length 2 if you want to 
specify scaling to the input (scaled with the first entry in the vector) and 
the output (scaled with the last entry in the vector).

• When you have L cascaded sections in your filter:

- Specify the ScaleValues property value as a scalar if you only want to 
scale the input to your filter.

- Specify the value for the ScaleValues property as a vector of length L+1 if 
you want to scale the inputs to every stage in your filter, along with the 
output:

-The first entry of your vector specifies the input scaling

- Each successive entry specifies the scaling at the output of the next section

- The final entry specifies the scaling for the filter output. 

The interpretation of this property is described below with diagrams in 
“Interpreting the ScaleValues Property”.

Default value: 1

Remarks: The value of the ScaleValues property is not quantized. Data 
affected by the presence of a scaling factor in the filter is quantized according 
to the appropriate data format.
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When you apply normalize to a quantized filter, the value for the ScaleValues 
property is changed accordingly.

It is good practice to choose values for this property that are either positive or 
negative powers of two.

Interpreting the ScaleValues Property
When you specify the values of the ScaleValues property of a quantized filter, 
the values are entered as a vector, the length of which is determined by the 
number of cascaded sections in your filter:

• When you have only one section, the value of the Scalevalues property can 
be a a scalar or a two-element vector.

• When you have L cascaded sections in your filter, the value of the 
Scalevalues property can be a scalar or an L+1-element vector.

The following diagram shows how the ScaleValues property values are applied 
to a quantized filter with only one section.

Application of ScaleValues
to a Single Section

1
Output

−K−

ScaleValues(2)

−K−

ScaleValues(1)

Input Output

Filter

1
Input
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The following diagram shows how the ScaleValues property values are applied 
to a quantized filter with two sections.

StatesPerSection
This read-only property value is an 1-by-L vector that specifies the number of 
states (delays) in each section of a quantized filter with L cascaded sections.

Default value: 0

SumFormat
The SumFormat property values specify how the results of addition are 
quantized during the filtering operation. You specify these values with a 
quantizer. You set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30]) 

Application of ScaleValues
to Multiple Sections

1
Output

−K−

ScaleValues(3)

−K−

ScaleValues(2)

−K−

ScaleValues(1)

Input Output

Filter2

Input Output

Filter1

1
Input
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A Quick Guide to Quantized FFT Properties
The following table summarizes the quantized FFT properties and provides a 
brief description of each. These properties are implemented when you use a 
quantized FFT in conjunction with an FFT or inverse FFT (IFFT)) algorithm 
(fft or ifft). A table providing a full description of each property follows in the 
next section.

Table 12-6:  Quick Guide to Quantized FFT Properties

Property Brief Description of What the Property Specifies

CoefficientFormat Quantization format for FFT or IFFT coefficients (twiddle factors)

InputFormat Quantization format applied to inputs to the FFT or IFFT algorithm

Length Length of the quantized FFT or IFFT

NumberOfSections Number of sections used in the quantized FFT algorithm

MultiplicandFormat Quantization format for inputs that are multiplied by coefficients in 
the FFT or IFFT algorithm

OutputFormat Quantization format applied to outputs of the FFT or IFFT algorithm

ProductFormat Quantization format for results of multiplication within the FFT or 
IFFT algorithm

Radix Radix value for the FFT algorithm

ScaleValues Scaling for the inputs and stages of the FFT or IFFT algorithm

SumFormat Quantization format for results of addition within the FFT or IFFT 
algorithm
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Quantized FFT Properties Reference
To implement an FFT or inverse FFT (IFFT) algorithm, you specify a quantized 
FFT, along with its property values. When you create a quantized FFT, you are 
creating a MATLAB object. You specify the FFT quantization parameters as 
values assigned to the quantized FFT properties. With these property values, 
you specify the quantized FFT:

• Data formats

• Length

• Radix number (2 or 4)

• Scaling values for each stage

For a quick reference to properties, see “A Quick Guide to Quantized FFT 
Properties” on page 12-51. Details of all of the properties associated with 
quantized FFTs are described in the following sections in alphabetical order.

CoefficientFormat 
The CoefficientFormat property values specify how FFT coefficients (twiddle 
factors) are quantized in the FFT algorithm. You specify these values with a 
quantizer. You set them according to the quantizer property values:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','round','saturate',[16,15]) 

InputFormat
The InputFormat property values specify how inputs are quantized in the FFT 
algorithm. You specify these values with a quantizer. You set them according 
to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode
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• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15]) 

Length
The Length property value is a scalar integer indicating the length of the FFT. 
Specify the length as a power of the radix number.

Default value: 16

NumberOfSections
The value of this read-only property is a scalar that specifies the number of 
sections (stages) in your FFT algorithm. This number is computed from the 
Length and the Radix property values as

log2(Length)/log2(Radix)

Default value: 4

MultiplicandFormat
Products in quantized FFTs always involve two types of multiplicands:

• Inputs (data)

• Coefficients

The MultiplicandFormat property values specify how inputs that are 
multiplied by coefficients are quantized in the FFT algorithm. You specify 
these values with a quantizer. You set them according to the property values 
of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15])
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OutputFormat
The OutputFormat property values specify how outputs are quantized in the 
FFT algorithm. You specify these values with a quantizer. You set them 
according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[16,15]) 

ProductFormat
The ProductFormat property values specify how the results of multiplication 
are quantized in the FFT algorithm. You specify these values with a quantizer. 
You set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30]) 

Radix
The Radix property indicates the form of the FFT algorithm you want to apply. 
The Radix property value can be either:

• 2 (default)

• 4

ScaleValues
The ScaleValues property values are specified as a scalar (or vector) that 
introduces scaling for inputs (and the outputs from each FFT section in the 
vector case) to the FFT algorithm:
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• Specify the ScaleValues property value as a scalar if you only want to scale 
the input to the FFT algorithm.

• Specify the ScaleValues property as a vector of length L if you have L 
sections in your FFT, and you want to scale:

- The input to the first section (with the first entry in the vector you supply) 

- The input to each subsequent section (with each corresponding entry in 
the vector you supply) 

Default value: 1

Remarks: The value of the ScaleValues property is not quantized. Data 
affected by the presence of a scaling factor within the FFT algorithm is 
quantized according to the appropriate data format.

It is good practice to choose values for this property that are positive or 
negative powers of two.

SumFormat
The SumFormat property values specify how the results of addition are 
quantized in the FFT algorithm. You specify these values with a quantizer. You 
set them according to the property values of a quantizer’s:

• Format (except when the Mode property value is set to 'double' or 'single')

• Mode

• OverflowMode

• RoundMode

Default value: quantizer('fixed','floor','saturate',[32,30]) 
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13

Function Reference

Functions—By Category (p. 13-2) Lists the functions in the toolbox, by category, such as 
object constructors or analysis functions

Functions Operating on Quantized 
Filters (p. 13-10)

Lists the functions used on quantized filters

Functions Operating on Quantizers 
(p. 13-12)

Lists the functions used on quantizers

Functions Operating on Quantized 
FFTs (p. 13-14)

Lists the functions used on quantized FFTs

Functions for Designing Digital Filters 
(p. 13-16)

List the filter design functions

Functions—Alphabetical List (p. 13-19) Introduces the alphabetical listing of reference pages for 
every function in the toolbox
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Functions—By Category
With the Filter Design (FD) Toolbox, you can create, apply, and analyze 
quantized filters, quantizers, and quantized fast Fourier transforms (FFTs). 
This chapter contains brief descriptions of all FD Toolbox functions grouped by 
subject area, and continues with the detailed reference entries listed 
alphabetically. The following tables list the functions in the FD Toolbox, 
separated by quantization application—quantized filter, quantizer, or 
quantized FFT. In many instances, you can apply a function to more than one 
application; those functions are called overloaded functions and they appear in 
more than one table.

Quantized Filter Construction and Property 
Functions

Function Description

get Get properties of a quantized filter

isreal Test if filter coefficients are real

num2bin Convert a number to two’s-complement binary string

num2hex Convert a number to hexadecimal string

qfilt Construct a quantized filter (Qfilt object)

qreport Returns the listing of a quantize filter and its properties

reset Reset the properties of a quantized filter to their initial 
values

set Set properties of a quantized filter

setbits Set the data format property values for a quantized filter
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Quantized Filter Analysis Functions
Function Description

freqz Compute the frequency response for a quantized filter

impz Compute the impulse response for a quantized filter

isallpass Test quantized filters to determine if they are allpass 
structures

isfir Test quantized filters to see if they are FIR filters

islinphase Test quantized filters to see if they are linear phase 

ismaxphase Test quantized filters to see if they are maximum phase 
filters

isminphase Test quantized filters to see if they are minimum phase 
filters

isreal Test qauntized filters for purely real coefficients

issos Test whether quantized filters are composed of 
second-order sections

isstable Test for stability of quantized filters

limitcycle Detect limit cycles in a quantized filter

nlm Use the Noise Loading Method to estimate the frequency 
response of a quantized filter

zplane Compute a pole-zero plot for a quantized filter

Table 13-1:  Quantized Filtering Functions

Function Description

filter Filter data with a quantized filter

normalize Normalize quantized filter coefficients
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Second-Order Sections Conversion Functions
Function Description

cell2sos Convert a cell array to a second-order sections matrix

sos Convert a quantized filter to second-order sections form, 
order, and scale

sos2cell Convert a second-order sections matrix to a cell array

Quantizer Construction and Property Functions
Function Description

bin2num Convert binary string to number

get Return the property values for a quantizer

num2bin Convert a number to two’s-complement binary string

num2hex Convert a number to hexadecimal string

qreport Returns the listing of a quantizer and its properties

quantize Apply a quantizer to a data set

quantizer Construct a quantizer object

reset Reset the properties of a quantizer to their initial 
values

set Set and display the property values of a quantizer

unitquantize Set numbers between eps(q) and 1 equal to 1

wordlength Return the wordlength of a quantizer



Functions—By Category

13-5

Quantizer Analysis Functions
Function Description

denormalmax Return the largest denormalized quantized number

denormalmin Return the smallest denormalized quantized number

eps Return the quantized relative accuracy of a quantizer

errmean Return the mean of the quantization error resulting 
from quantizing a signal

errpdf Calculate the probability density function (pdf) of the 
quantization error

errvar Return the variance of the quantization error resulting 
from quantizing a signal

exponentbias Return the exponent bias for a quantizer

exponentlength Return the exponent length for a quantizer

exponentmax Return the maximum exponent for a quantizer

exponentmin Return the minimum exponent for a quantizer

fractionlength Return the fraction length for a quantizer

isfixed Test whether quantizers are fixed point

isfloat Test whether quantizers are floating point

isnone Test whether a quantizer has quantization mode equal 
to none

noverflows Return the number of overflows encountered while 
using a quantizer on one or more data sets

range Return the numerical range of a quantizer

realmax Return the largest positive quantized number
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realmin Return the smallest positive quantized number

nunderflows Return the number of underflows encountered while 
using a quantizer on one or more data sets

Quantized FFT Construction and Property Functions
Function Description

fft Apply a quantized FFT to a data set

get Return the property values for a quantized FFT

ifft Apply an inverse quantized FFT to a data set

qfft Construct a quantized FFT

qreport Returns the listing of a quantized FFT and its 
properties

quantizer Return all the quantizers associated with a quantized 
FFT

reset Reset the properties of a quantized FFT to their initial 
values

set Set and display the property values of a quantized FFT

setbits Set and one or more property values of a quantized FFT

Quantized FFT Analysis Functions
Function Description

noverflows Return the number of overflows resulting from the 
most recent application of a quantized FFT

Quantizer Analysis Functions
Function Description
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range Return the numerical range of a quantized FFT

twiddles Return the twiddle factors for a quantized FFT

Filter Design Functions
Function Description

cicdecimate Use a cascaded integrator-comb (CIC) decimation filter 
to decrease the sampling rate for a signal

cicinterpolate Use a cascaded integrator-comb (CIC) interpolation 
filter to increase the sampling rate for a signal

firceqrip Design constrained, equiripple, finite impulse response 
(FIR) filters

firlpnorm Design least-pth norm optimal FIR filters

firhalfband Design half-band FIR filters

firminphase Compute the minimum phase FIR spectral factor of 
linear phase FIR filters

firnyquist Design lowpass Nyquist (L-th band) FIR filters

gremez Design optimal equiripple FIR (finite impulse 
response) digital filters based on the Parks-McClellan 
algorithm

ifir Design interpolated FIR filters

iircomb Design comb IIR filters with periodic frequency 
response

iirgrpdelay Design least-pth norm IIR filters with given group 
delay

iirlpnorm Design least-pth norm IIR filters

Quantized FFT Analysis Functions
Function Description
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iirlpnormc Design constrained least-pth norm IIR filters

iirnotch Design notch IIR filters to attenuate a fixed frequency

iirpeak Design peaking IIR filters for boosting or cutting 
specific frequencies

Filter Conversion Functions
Function Description

ca2tf Convert coupled allpass filters to transfer function form

cl2tf Convert lattice coupled allpass filters to transfer 
function form

firlp2lp Transform lowpass FIR filters to lowpass filters with 
different passband specifications

firlp2hp Transform lowpass FIR filters to highpass FIR filters

iirlp2bp Transform lowpass IIR filters to bandpass filters

iirlp2bs Transform lowpass IIR filters to bandstop filters

iirlp2hp Transform lowpass IIR filters to highpass filters

iirlp2lp Transform lowpass IIR filters to lowpass filters

iirpowcomp Compute the power complementary IIR filter

tf2ca Convert transfer function form to coupled allpass form

tf2cl Convert transfer function form to lattice coupled 
allpass form

Filter Design Functions
Function Description
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Adaptive Filter Design Functions and Their 
Initialization Functions

Function Initializing 
Function

Description

adaptkalman initkalman Use a Kalman filter in an adaptive 
filtering application

adaptlms initlms Use a least mean squares (LMS) 
algorithm filter in an adaptive filtering 
application

adaptnlms initnlms Use a normalized LMS algorithm filter 
in an adaptive filtering application

adaptrls initrls Use a recursive least squares algorithm 
filter in an adaptive filtering 
application

adaptsd initsd Use a sign-data variant of the LMS 
algorithm filter in an adaptive filtering 
application

adaptse initse Use a sign-error variant of the LMS 
algorithm filter in an adaptive filtering 
application

adaptss initss Use a sign-sign variant of the LMS 
algorithm filter in an adaptive filtering 
application
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Functions Operating on Quantized Filters
The following table lists functions that operate directly on quantized filters. 
Some are overloaded and operate on other quantized objects, such as quantized 
FFTs as well. Overloaded functions are marked in the table.

Functions Functions That Operate 
Directly on Quantized Filters

Overloaded 
Functions

convert ÷

copyobj ÷ ÷

disp ÷ ÷

eps ÷ ÷

filter ÷ ÷

freqz ÷ ÷

get ÷ ÷

impz ÷ ÷

isallpass ÷

isfir ÷

islinphase ÷

ismaxphase ÷

isminphase ÷

isreal ÷ ÷

issos ÷

isstable ÷

limitcycle ÷

nlm ÷
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To get command line help on an overloaded function FunctionName for 
quantized filters, type

help qfilt/FunctionName

noperations ÷ ÷

normalize ÷

noverflows ÷ ÷

num2bin ÷

num2hex ÷

optimizeunitygains ÷

order ÷

qfilt ÷

qfilt2tf ÷

range ÷ ÷

reset ÷ ÷

set ÷ ÷

setbits ÷ ÷

sos ÷

zplane ÷ ÷

Functions Functions That Operate 
Directly on Quantized Filters

Overloaded 
Functions
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Functions Operating on Quantizers
The following table lists functions that operate directly on quantizers. Some 
are overloaded and operate on other quantized objects, such as quantized FFTs 
as well. Overloaded functions are marked in the table

Functions Functions That Operate 
Directly on Quantizers

Overloaded Functions

bin2num ÷ ÷

copyobj ÷ ÷

denormalmax ÷

denormalmin ÷

disp ÷ ÷

eps ÷ ÷

exponentbias ÷

exponentlength ÷

exponentmax ÷

exponentmin ÷

fractionlength ÷

get ÷ ÷

hex2num ÷

max ÷

min ÷

noperations ÷ ÷

noverflows ÷ ÷

num2bin ÷ ÷
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To get command line help for an overloaded function FunctionName for 
quantizers, type

help quantizer/FunctionName

num2hex ÷ ÷

nunderflows ÷

qreport ÷ ÷

quantize ÷

quantizer ÷

randquant ÷

range ÷ ÷

realmax ÷

realmin ÷

reset ÷ ÷

set ÷ ÷

tostring ÷ ÷

unitquantize ÷

unitquantizer ÷

wordlength ÷

Functions Functions That Operate 
Directly on Quantizers

Overloaded Functions
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Functions Operating on Quantized FFTs 
The following table lists functions that operate directly on quantized FFTs. 
Some are overloaded and operate on other quantized objects, such as quantized 
filters as well. Overloaded functions are marked in the table

Functions Functions That Operate 
Directly on Quantized FFTs

Overloaded 
Functions

copyobj ÷ ÷

disp ÷ ÷

eps ÷ ÷

fft ÷

get ÷ ÷

ifft ÷

noperations ÷ ÷

noverflows ÷ ÷

optimizeunitygains ÷ ÷

qfft ÷

qreport ÷ ÷

quantizer ÷ ÷

range ÷ ÷

reset ÷ ÷

set ÷ ÷

setbits ÷ ÷

tostring ÷ ÷

twiddles ÷÷
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To get command line help on an overloaded function FunctionName for 
quantized FFTs, type

help qfft/FunctionName
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Functions for Designing Digital Filters
The following functions design digital FIR filters:

• firceqrip

• firlpnorm

• firhalfband

• firminphase

• firnyquist

• gremez

• ifir

The following functions design digital IIR filters:

• cicdecimate

• cicinterpolate

• iircomb

• iirgrpdelay

• iirlpnorm

• iirlpnormc

• iirnotch

• iirpeak

The following functions design adaptive filters:

• adaptkalman

• adaptlms

• adaptrls

• adaptsd

• adaptse

• adaptss

The following functions transform the frequency response of digital filters from 
one type to another, such as lowpass to highpass:
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IIR transforms

• firlp2lp

• firlp2hp

• iirlp2bp

• iirlp2bs

• iirlp2hp

• iirlp2lp

• iirlp2mb

• iirlp2xn

• iirlp2bpc

• iirlp2bsc

• iirshiftc

• iirlp2mbc

• iirlp2xc

• iirbpc2bpc

• iirrateup

• iirftransf

ZPK transforms

• zpklp2lp

• zpklp2hp

• zpklp2bp

• zpklp2bs

• zpkshift

• zpklp2mb

• zpklp2xn

• zpklp2bpc

• zpklp2bsc

• zpkshiftc

• zpklp2mbc

• zpklp2xc
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• zpkbpc2bpc

• zpkrateup

• zpkftransf

The following functions convert the structures of digital filters:

• ca2tf

• cl2tf

• iirpowcomp

• qfilt2tf

• tf2ca

• tf2cl

To get command line help on a design or conversion function such as gremez or 
quantizer, type either

• help gremez 

• help objecttype/quantizer where objecttype is one of the following 
strings that specify the version of help to see:

- qfilt

- qfft

- quant
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Functions—Alphabetical List
The following reference pages list the functions included in the Filter Design 
Toolbox. Each function listing provides a purpose, syntax, description, 
algorithm (optional), and examples for the function.
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13adaptkalmanPurpose Use a discrete-time Kalman filter in an adaptive filtering application

Syntax y = adaptkalman(x,d,s)
[y,e] = adaptkalman(x,d,s)
[y,e,s] = adaptkalman(x,d,s)

Description y = adaptkalman(x,d,s)  applies a Kalman adaptive filter to the data vector 
x and the desired signal d. The filtered data is returned in y. To return the filter 
states after adaptation, specify the output argument s. 

s is a structure containing the initialization settings that define the Kalman 
filter you are using and some output results, as shown in the table that follows. 
In the third column of the table, you see a list showing how the input 
arguments to initkalman correspond to elements in s. 

Structure 
Element

Element Description initkalman 
argument

s.coeffs Kalman adaptive filter coefficients.  Should be 
initialized with the initial values for the FIR 
filter coefficients. Updated coefficients are 
returned when you use s as an output 
argument. Contains filter order plus one 
elements in a vector.

w0

s.errcov The state error covariance matrix. Initialize 
this element with the initial error state 
covariance matrix. An updated matrix is 
returned when you use s as an output 
argument. This is a square matrix of 
dimension filter order plus one. For example, 
for a 32nd-order filter, s.errcov is a 33-by-33 
matrix.

k0
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Use initkalman to configure the elements of input argument structure s. 

[y,e] = adaptkalman(...) also returns the prediction error e.

[y,e,s] = adaptkalman(...) returns the updated structure s.

In applications where you need to know the intermediate filter states as the 
filter adapts to the unknown system, call adaptkalman inside a conditional 
program statement such as the following for-loop example. 

for n = 1:length(x)
[y(n),e(n),s] = adaptkalman(x(n),d(n),s);
% States (The fields of s) here may be modified here. 

s.measvar Contains the measurement noise variance 
matrix. Use the same value for all the 
elements in the matrix and adaptkalman 
returns a matrix of noise variance values — a 
square matrix of dimension filter order plus 
one. For example, for a 32nd-order filter, 
s.measvar is a 33-by-33 matrix.

qm

s.procov Contains the process noise covariance matrix. 
This is a square matrix of dimension filter 
order plus one. For example, for a 32nd-order 
filter, s.procov is a 33-by-33 matrix.

qp

s.states Returns the states of the FIR filter when use 
s as an output argument. This is an optional 
input element.  If omitted on input, it defaults 
to a zero vector of length equal to the filter 
order. 

zi

s.gain Kalman gain vector. Computed and returned  
after every iteration. This is a read-only value.

s.iter Total number of iterations in adaptive filter 
run. This is a read-only value.

Structure 
Element

Element Description initkalman 
argument
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end

In lieu of assigning the structure fields for s manually, use initkalman to 
populate structure s.

Examples Use an adaptive Kalman filter to identify an unknown 32nd-order FIR filter 
(500 iterations). From Signal Processing Toolbox we use fir1 to create our 
unknown windowed lowpass FIR filter.

x = 0.1*randn(1,500); % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
d = filter(b,1,x);    % Desired signal
w0 = zeros(1,32);      % Intial filter coefficients
k0 = 0.5*eye(32);      % Initial state error correlation matrix
qm = 2;                % Measurement noise covariance
qp = 0.1*eye(32);      % Process noise covariance  
s = initkalman(w0,k0,qm,qp);
[y,e,s] = adaptkalman(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR filter via Kalman Filter');
grid on;

In the stem plot, you see that the original filter and the Kalman 
approximation/identification filter have identical response characteristics.
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See Also initkalman, adaptlms, adaptnlms, adaptrls, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.
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13adaptlmsPurpose Use a least mean squared (LMS) FIR adaptive filter in an adaptive filtering 
application

Syntax y = adaptlms(x,d,s)
[y,e] = adaptlms(x,d,s)
[y,e,s] = adaptlms(x,d,s)

Description Y = adaptlms(x,d,s) applies an FIR LMS adaptive filter to the data vector x 
and the desired signal d. The filtered data is returned in y. s is a structure that 
contains initialization settings that define the LMS adaptive algorithm you 
plan to use, as well as some output from the filter adaptation process. The 
following table details the contents of s, both input and output.The column 
headed initlms Element shows you which element in s corresponds to each 
input argument to initlms. 

Structure 
Element

Element Contents initlms 
Element

s.coeffs LMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

wo

s.step  Sets the LMS algorithm step size. Determines 
both how quickly and how closely the adative 
filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use adaptlms 
in a loop structure, use this element to specify 
the initial filter states for the adapting FIR 
filter.

zi
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[y,e] = adaptlms(...) also returns the prediction error e. Ultimately this 
shows you how well the filter adapted to the desired signal and input data. Or 
how well y approximates d.

[y,e,s] = adaptlms(...) returns the updated structure s. 

adaptlms can be called for a block of data, when x and d are vectors, or in 
“sample by sample mode” using programming constructs such as the following 
for-loop code. 

for n = 1:length(x)
[y(n),e(n),s] = adaptlms(x(n),d(n),s);
 % The fields of s may be modified here. 
end

In lieu of assigning the structure fields manually, call initlms to populate the 
structure s more easily. 

Examples System Identification of a 31st-order FIR filter (500 iterations). Identifying the 
characteristics of an unknown filter is a classic problem for adaptive filtering. 
This example uses an FIR filter as the unknown, and uses the LMS algorithm 
to calculate weights for the adapting filter. The stem plot that follows the 

 s.leakage Specifies the LMS leakage parameter. Allows 
you to implement a leaky LMS algorithm. 
Including a leakage factor can improve the 
results of the algorithm by forcing the LMS 
algorithm to continue to adapt even after it 
reaches a minimum value. Ranges between 0 
and 1. This is an optional field. Defaults to one 
if omitted (specifying no leakage) or set to 
empty, [ ].

lf

s.iter Total number of iterations in the adaptive filter 
run. Although you can set this in s, you should 
not. Consider it a read-only value.

Structure 
Element

Element Contents initlms 
Element
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example code demonstrates that the adapted filter matches the unknown quite 
closely.

x = 0.1*randn(1,500); % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
d = filter(b,1,x);    % Desired signal
w0 = zeros(1,32);      % Intial filter coefficients
mu = 0.8;              % LMS step size.
s = initlms(w0,mu);
[y,e,s] = adaptlms(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR filter');grid on;
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Algorithm In vector form, the LMS algorithm is

with vector w containing the weights applied to the filter coefficients (s.coeffs) 
and vector x containing the input data. e(k) (equal to desired signal - filtered 
signal) is the error at time k and is the quantity the LMS algorithm seeks to 
minimize. µ (mu, and s.step)) is the step size. As you specify mu smaller, the 
correction to the filter weights gets smaller for each sample and the LMS error 
falls more slowly. Larger mu changes the weights more for each step so the error 
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falls more rapidly, but the resulting error does not approach the ideal solution 
as closely. To ensure good convergence rate and stability, select mu within the 
following practical bounds:

where N is the number of samples in the signal.

When you add a leakage factor lf, the algorithm changes to

with c representing lf.

See Also initlms, adaptkalman, adaptnlms, adaptrls, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.
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13adaptnlmsPurpose Use a normalized least mean squared (NLMS) FIR adaptive filter in an 
adaptive filtering application

Syntax y = adaptnlms(x,d,s)
[y,e] = adaptnlms(x,d,s)
[y,e,s] = adaptnlms(x,d,s)

Description y = adaptlms(x,d,s) applies an FIR normalized LMS adaptive filter to the 
data vector x and the desired signal d. The filtered data is returned in y. 
Structure s contains initialization settings that define the NLMS adaptive 
algorithm you plan to use, as well as some output from the filter adaptation 
process. The following table details the contents of s, both input and output. 
The column headed initnlms Element shows you which element in s 
corresponds to each input argument to initlms. 

Structure 
Element

Element Contents initnlms 
Element

s.coeffs NLMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

wo

s.offset Specifies an optional offset for the 
normalization term. Use this to avoid divide by 
zero (or by very small numbers) when the 
square of input data norm becomes very small. 
When omitted, it defaults to zero.

offset

s.step  Sets the NLMS algorithm step size. Determines 
both how quickly and how closely the adative 
filter adapts to the filter solution.

mu
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[y,e] = adaptnlms(...) also returns the prediction error e. Ultimately this 
shows you how well the filter adapted to the desired signal and input data —  
how well y approximates d.

[y,e,s] = adaptnlms(...) returns the updated structure s. 

adaptlms can be called for a block of data, when x and d are vectors, or 
in“sample by sample mode” using conditional program statements such as the 
following For-loop code. 

for n = 1:length(x)
[y(n),e(n),s] = adaptnlms(x(n),d(n),s);
 % The fields of s may be modified here. 
end

In lieu of assigning the structure fields manually, call initlms to populate the 
structure s more easily. 

s.states Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use adaptlms 
in a loop structure, use this element to specify 
the initial filter states for the adapting FIR 
filter.

zi

 s.leakage Specifies the NLMS leakage parameter. Allows 
you to implement a leaky NLMS algorithm. 
Including a leakage factor can improve the 
results of the algorithm by forcing the NLMS 
algorithm to continue to adapt even after it 
reaches a minimum value. This is an optional 
field. Defaults to one if omitted (specifying no 
leakage) or set to empty, [ ].

lf

s.iter Returns the total number of iterations in the 
adaptive filter run. Although you can set this in 
s, you should not. Consider it a read-only value.

Structure 
Element

Element Contents initnlms 
Element
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Examples System Identification of a 31st-order FIR filter (500 iterations). Identifying the 
characteristics of an unknown filter is a classic problem for adaptive filtering. 
This example uses an FIR filter as the unknown, and uses the normalized LMS 
algorithm to calculate weights for the adapting filter. The stem plot that 
follows the example code demonstrates that the adapted filter matches the 
unknown quite closely.

x = 0.1*randn(1,500); % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
d = filter(b,1,x);    % Desired signal
w0 = zeros(1,32);      % Intial filter coefficients
mu = 0.8;              % NLMS step size.
s = initnlms(w0,mu);
[y,e,s] = adaptnlms(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification of an FIR filter');grid on;
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Algorithm In vector form, the NLMS algorithm is

where
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and ε is the offset that prevents divide by zero situations and  is the 
2-norm of vector x(k). 

Vector w contains the weights applied to the filter coefficients (s.coeffs) and 
vector x contains the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the NLMS algorithm seeks to 
minimize. µ (mu) is the normalized step size (s.step). As you specify mu smaller, 
the correction to the filter weights gets smaller for each sample and the NLMS 
error falls more slowly. Larger mu changes the weights more for each step so the 
error falls more rapidly, but the resulting error does not approach the ideal 
solution as closely. To ensure good convergence rate and stability, select mu 
within the following practical bounds:

where N is the number of samples in the signal.

When you add a leakage factor, the NLMS algorithm changes to

with c representing the leakage factor.

See Also initnlms, adaptkalman, adaptlms, adaptrls, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

x k( )

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <

w k 1+( ) cw k( ) µne k( )x k( )+=



adaptrls

13-34

13adaptrlsPurpose Use a recursive least-squares (RLS) FIR adaptive filter in an adaptive filtering 
application

Syntax y = adaptrls(x,d,s)
[y,e] = adaptrls(x,d,s)
[y,e,s] = adaptrls(x,d,s)

Description y = adaptrls(x,d,s) applies an FIR RLS adaptive filter to the data vector x    
and the desired signal d.  The filtered data is returned in y.  Structure 
s contains the RLS adaptive filter information that defines the algorithm being 
used. In addition, the final states of the adapted filter appear in s.states when 
you use s as an output argument. 

Structure 
Element

initrls 
Element

Element Contents

s.coeffs w0 RLS adaptive filter coefficients. Initialize 
s.coeffs with the initial values for the FIR 
filter coefficients. Updated filter coefficients 
after adapting are returned when s is an 
output argument.

s.invcov p0 The inverse of the input covariance matrix.  
Initialize with the initial input covariance  
matrix inverse. The updated covariance matrix 
is returned when s is an output argument and 
you specify the 'direct' RLS algorithm.

s.lambda lambda The forgetting factor. Determines how the RLS 
algorithm handles past input data — whether 
all data weighs equally in the algorithm or 
earlier data loses weight as it falls farther into 
the past.
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[y,e] = adaptrls(x,d,s) also returns the prediction error e. Ultimately this 
shows you how well the filter adapted to the desired signal and input data —  
how well y approximates d.

[y,e,s] = adaptrls(x,d,s) returns the updated structure s.

In an application where the intermediate states are important, call this 
function in a “sample by sample mode” using a For-loop.

for n = 1:length(x)
[y(n),e(n),s] = adaptrls(x(n),d(n),s);
% States (The fields of S) here may be modified here. 
end

In lieu of assigning the strucure fields manually, the initrls function can be 
called to populate the structure S.

s.states zi Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use 
adaptrls in a loop structure, use this element 
to specify the initial filter states for the 
adapting FIR filter.

s.gain RLS algorithm gain value. Computed and 
returned  after every iteration. This is a 
read-only value.

s.iter Returns the total number of iterations in the 
adaptive filter run. Although you can set this in 
s, you should not. Consider it a read-only value.

s.alg alg Algorithm to use. Optional field. Can be one of 
'direct' for the conventional RLS algorithm or 
'sqrt' for the more stable square root (QR) 
method.

Structure 
Element

initrls 
Element

Element Contents
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Examples System Identification of a 32nd-order FIR filter (500 iterations). Identifying 
the characteristics of an unknown filter is a classic problem for adaptive 
filtering. This example uses an FIR filter as the unknown, and uses the RLS 
algorithm to calculate weights for the adapting filter. The stem plot that 
follows the example code demonstrates that the adapted filter matches the 
unknown quite closely.

x = 0.1*randn(1,500); % Desired signal.
b = fir1(32,0.55);     % FIR system to be identified.
d = filter(b,1,x);    % Input to the adapting filter.
w0 = zeros(1,33);      % Intial filter coefficients.
p0 = 5*eye(33);        % Initial input correlation matrix inverse.
lambda = 1.0;         % Exponential memory weighting factor.
s = initrls(w0,p0,lambda);
[y,e,s] = adaptrls(x,d,s);
stem([b.',s.coeffs.']);
legend('Actual','Estimated');
title('System Identification via RLS'); grid on;
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Notice that the estimated filter misses on the actual coefficients between 15 
and 20. By changing lambda from 1.0 to 0.9, we can make the actual and 
estimated match more closely, as shown in the next figure.
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Algorithm In vector form, the RLS algorithm, using exponential weighting, is]

where mk and Pk are defined as
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Compared to the LMS algorithm used by adaptlms, adaptnlms, and others, the 
RLS algorithm can provide smaller error and faster convergence.

See Also initrls, adaptkalman, adaptlms, adaptnlms, adaptsd, adaptse, adaptss

References Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

A.H. Sayed and Kailath, T., “A State-space Approach to RLS Adaptive 
Filtering,” IEEE Signal Processing Magazine, July 1994, pp. 18-60.

Pk

Pk 1– mkxT
kPk 1––

λ
------------------------------------------------=
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13adaptsdPurpose Use a sign-data FIR adaptive filter in an adaptive filter application

Syntax y = adaptsd(x,d,s)
[y,e] = adaptsd(x,d,s)
[y,e,s] = adaptsd(x,d,s)

Description y = adaptsd(x,d,s) applies an FIR LMS adaptive filter to the data vector 
x and the desired signal d. In this variation of the LMS algorithm, called 
sign-data LMS, the filtered data is returned in y. Structure s contains 
initialization settings that define the SDLMS adaptive algorithm you plan to 
use, as well as some output from the filter adaptation process. The following 
table details the contents of s, both input and output. The column initlms 
Element shows you which element in s corresponds to each input argument to 
initsd. 

Structure 
Element

Element Contents initlms 
Element

s.coeffs      SDLMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

wo

s.step        Sets the SDLMS algorithm step size. 
Determines both how quickly and how closely 
the adaptive filter adapts to the filter solution.

mu

s.states      Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use adaptsd 
in a loop structure, use this element to specify 
the initial filter states for the adapting FIR 
filter.

zi
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[y,e] = adaptsd(...) also returns the prediction error e. Ultimately this 
shows you how well the filter adapted to the desired signal and input data. Or 
how well y approximates d.

[y,e,s] = adaptsd(...) returns the updated structure s. 

adaptsd can be called for a block of data, when x and d are vectors, or in a 
“sample by sample mode” using conditional program statements such as the 
following for-loop code. 

for n = 1:length(x)
[y(n),e(n),s] = adaptsd(x(n),d(n),s);
 % The fields of s may be modified here. 
end

In lieu of assigning the structure fields manually, call initsd to populate the 
structure s more easily. 

Examples To demonstrate the effects of using different step sizes, we use adaptive linear 
prediction with two different step sizes to identify an FIR filter whose 
coefficients change with time. This example generates two sets of filter 
coefficients to compare to the ideal coefficients. 

u = randn(1,2000); % Input
y1 = filter(1,[1,-.5],u(1:1000)); 

 s.leakage     Specifies the SDLMS leakage parameter. Allows 
you to implement a leaky LMS algorithm. 
Including a leakage factor can improve the 
results of the algorithm by forcing the LMS 
algorithm to continue to adapt even after it 
reaches a minimum value. This is an optional 
field. Defaults to one if omitted (specifying no 
leakage) or set to empty, [ ].

lf

s.iter        Total number of iterations in the adaptive filter 
run. Although you can set this in s, you should 
not. Consider it a read-only value.

Structure 
Element

Element Contents initlms 
Element
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y2 = filter(1,[1,-.7],u(1001:2000)); 
y = [y1,y2]; % Construct a filter with non-stationary 
coefficients
mu1 = 0.005; mu2 = 0.015; w0 = zeros(1,2);
s1 = initsd(w0,mu1); s2 = initsd(w0,mu2);
for n = 1:length(y),

[z1(n),e1(n),s1] = adaptsd(u(n),y(n),s1);
[z2(n),e2(n),s2] = adaptsd(u(n),y(n),s2);
coeffs1(n,:) = s1.coeffs; coeffs2(n,:) = s2.coeffs;

end
plot([coeffs1(:,2),coeffs2(:,2),[.5*ones(1000,1);...
0.7*ones(1000,1)]])
legend('Actual coefficient value, mu = 0.005',...
'Actual coefficient value, mu = 0.015','Optimal value',4);
xlabel('Sample index n'),ylabel('Coefficient value');

In the figure, the coefficients generated using mu=0.005 converge more closely 
to the ideal; the mu=0.015 case coefficients converge more quickly but less 
closely. In the end, the resulting coefficients for both cases are quite similar if 
not the same. When the FIR filter coefficients change at sample index = 1000, 
the adapting SDLMS algorithm changes to match the new filter.
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Algorithm In vector form, the SDLMS algorithm is

,  

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SDLMS algorithm seeks to 
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the SDLMS error falls more 
slowly. Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
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To ensure good convergence rate and stability, select mu within the following 
practical bounds:

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computing.

See Also initsd, adaptse, adaptss, adaptkalman, adaptlms, adaptnlms, adaptrls

References Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley 
and Sons, 1996

Diniz, P, “Adaptive Filtering. Algorithms and Practical Implementation,” 
Kluwer Academic Publishers, Bostom, 1997.
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13adaptsePurpose Apply a sign-error FIR adaptive filter in an adaptive filter application

Syntax y = adaptse(x,d,s)
[y,e] = adaptse(x,d,s)
[y,e,s] = adaptse(x,d,s)

Description y = adaptse(x,d,s) applies a sign-error LMS (SELMS) FIR adaptive filter to 
the data vector x and the desired signal d. Note that for this algorithm both x 
and d must be real. The filtered data is returned in y. Structure s contains the 
adaptive filter algorithm information. 

Structure 
Element

Element Contents Description initse 
Element

s.coeffs      SELMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

w0

s.step        Sets the SELMS algorithm step size. 
Determines both how quickly and how closely 
the adaptive filter adapts to the filter solution.

mu

s.states      Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use adaptse 
in a loop structure, use this element to specify 
the initial filter states for the adapting FIR 
filter.

zi
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[y,e] = adaptse(x,d,s) also returns the prediction error e. Ultimately this 
shows you how well the filter adapted to the desired signal and input data. Or 
how well y approximates d.

[y,e,s] = adaptse(x,d,s) returns the updated structure S.

adaptse can be called for a block of data, when x and d are vectors, or in 
a 'sample by sample mode' using a for loop:

for n = 1:length(x)
[y(n),e(n),s] = adaptse(x(n),d(n),s);
% The fields of S may be modified here. 
end

In lieu of assigning the structure fields manually, function initse can be called 
to populate the structure s. 

Examples To demonstrate the effects of using different step sizes, we use adaptive linear 
prediction with two different step sizes to identify an FIR filter whose 
coefficients change with time. This example generates two sets of filter 
coefficients to compare to the ideal coefficients. 

u = randn(1,2000); % Input
y1 = filter(1,[1,-.5],u(1:1000)); 
y2 = filter(1,[1,-.7],u(1001:2000)); 

 s.leakage     Specifies the SELMS leakage parameter. 
Allows you to implement a leaky SELMS 
algorithm. Including a leakage factor can 
improve the results of the algorithm by forcing 
the SELMS algorithm to continue to adapt 
even after it reaches a minimum value. This is 
an optional field. Defaults to one specifying no 
leakage if omitted or set to empty, [ ].

lf

s.iter        Total number of iterations in the adaptive filter 
run. Although you can set this in s, you should 
not. Consider it a read-only value.

Structure 
Element

Element Contents Description initse 
Element
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y = [y1,y2]; % Construct a filter with non-stationary 
coefficients
mu1 = 0.005; mu2 = 0.015; w0 = zeros(1,2);
s1 = initse(w0,mu1); s2 = initse(w0,mu2);
for n = 1:length(y),

[z1(n),e1(n),s1] = adaptse(u(n),y(n),s1);
[z2(n),e2(n),s2] = adaptse(u(n),y(n),s2);
coeffs1(n,:) = s1.coeffs; coeffs2(n,:) = s2.coeffs;

end
plot([coeffs1(:,2),coeffs2(:,2),[.5*ones(1000,1);...
0.7*ones(1000,1)]])
legend('Actual coefficient value, mu = 0.005',...
'Actual coefficient value, mu = 0.015','Optimal value',4);
xlabel('Sample index n'),ylabel('Coefficient value');

In the figure, the coefficients generated using mu=0.005 converge more closely 
to the ideal; the mu=0.015 case coefficients converge more quickly but less 
closely. In the end, the resulting coefficients for both cases are quite similar if 
not the same. When the FIR filter coefficients change at sample index = 1000, 
the adapting SELMS algorithm changes to match the new filter.
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Algorithm In vector form, the SELMS algorithm is

,  

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SELMS algorithm seeks to 
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minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the SELMS error falls more 
slowly. Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following   
practical bounds:

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computation.

See Also initse, adaptsd, adaptss, adaptkalman, adaptlms, adaptnlms, adaptrls

References Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley 
and Sons, 1996

Diniz, P, “Adaptive Filtering. Algorithms and Practical Implementation,” 
Kluwer Academic Publishers, Bostom, 1997.

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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13adaptssPurpose Sign-sign FIR adaptive filter.

Syntax y = adaptss(x,d,s)
[y,e] = adaptss(x,d,s)
[y,e,s] = adaptss(x,d,s)

Description y = adaptss(x,d,s) applies a sign-sign FIR adaptive filter to the data vector 
x and the desired signal d. Note that for this  algorithm both x and d must be 
real. The filtered data is returned in y. s is a structure that contains the 
adaptive filter information. 

Structure 
Element

Element Contents Description initss 
Element

s.coeffs SSLMS FIR filter coefficients.  Initialize with 
the initial coefficients for the FIR filter prior to 
adapting.  You need [adapting filter order + 1] 
entries in s.coeffs. Updated filter coefficients 
are returned in s.coeffs when you use s as an 
output argument.

w0

s.step Sets the SSLMS algorithm step size. 
Determines both how quickly and how closely 
the adaptive filter adapts to the filter solution.

mu

s.states Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use adaptss 
in a loop structure, use this element to specify 
the initial filter states for the adapting FIR 
filter.

zi
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[y,e] = adaptss(x,d,s) also returns the prediction error e. Ultimately this 
shows you how well the filter adapted to the desired signal and input data. Or 
how well y approximates d.

[y,e,s] = adaptss(x,d,s) returns the updated structure s.

adaptss can be called for a block of data, when x and d are vectors, or in 
“sample by sample mode” using a For-loop:

for n = 1:length(x)
[y(n),e(n),s] = adaptss(x(n),d(n),s);
% The fields of S may be modified here. 
end

In lieu of assigning the structure fields manually, function initss can be called 
to populate the structure s. 

Examples To demonstrate the effects of using different step sizes, we use adaptive linear 
prediction with two different step sizes to identify an FIR filter whose 
coefficients change with time. This example generates two sets of filter 
coefficients to compare to the ideal coefficients. 

u = randn(1,2000); % Input
y1 = filter(1,[1,-.5],u(1:1000)); 
y2 = filter(1,[1,-.7],u(1001:2000)); 

s.leakage Specifies the SSLMS leakage parameter. 
Allows you to implement a leaky SSLMS 
algorithm. Including a leakage factor can 
improve the results of the algorithm by forcing 
the SSLMS algorithm to continue to adapt even 
after it reaches a minimum value. This is an 
optional field. Defaults to one if omitted 
(specifying no leakage) or set to empty, [ ].

lf

s.iter Total number of iterations in the adaptive filter 
run. Although you can set this in s, you should 
not. Consider it a read-only value.

Structure 
Element

Element Contents Description initss 
Element
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y = [y1,y2]; % Construct a filter with non-stationary 
coefficients
mu1 = 0.005; mu2 = 0.015; w0 = zeros(1,2);
s1 = initss(w0,mu1); s2 = initss(w0,mu2);
for n = 1:length(y),

[z1(n),e1(n),s1] = adaptss(u(n),y(n),s1);
[z2(n),e2(n),s2] = adaptss(u(n),y(n),s2);
coeffs1(n,:) = s1.coeffs; coeffs2(n,:) = s2.coeffs;

end
plot([coeffs1(:,2),coeffs2(:,2),[.5*ones(1000,1);...
0.7*ones(1000,1)]])
legend('Actual coefficient value, mu = 0.005',...
'Actual coefficient value, mu = 0.015','Optimal value',4);
xlabel('Sample index n'),ylabel('Coefficient value');
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In the figure, the coefficients generated using mu=0.005 converge more closely 
to the ideal; the mu=0.015 case coefficients converge more quickly but less 
closely. In the end, the resulting coefficients for both cases are quite similar if 
not the same. When the FIR filter coefficients change at sample index = 1000, 
the adapting SSLMS algorithm changes to match the new filter.

Algorithm In vector form, the SSLMS algorithm is
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,

where, for convenience,

Vector w contains the weights applied to the filter coefficients and vector 
x contains the input data. e(k) ( = desired signal - filtered signal) is the error at 
time k and is the quantity the SSLMS algorithm seeks to minimize. µ (mu) is 
the step size. As you specify mu smaller, the correction to the filter weights gets 
smaller for each sample and the SSLMS error falls more slowly. Larger mu 
changes the weights more for each step so the error falls more rapidly, but the 
resulting error does not approach the ideal solution as closely. To ensure good 
convergence rate and stability, select mu within the following practical bounds:

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computation.

See Also initss, adaptsd, adaptse, adaptkalman, adaptlms, adaptnlms, adaptrls

References Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley 
and Sons, 1996

Diniz, P, “Adaptive Filtering. Algorithms and Practical Implementation,” 
Kluwer Academic Publishers, Bostom, 1997.
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13allpassbpc2bpcPurpose Return an allpass filter for complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)  returns the 
numerator, AllpassNum, and the denominator, AllpassDen, of the first-order 
allpass mapping filter for performing a complex bandpass to complex bandpass 
frequency transformation. This transformation effectively places two features 
of an original filter, located at frequencies Wo1 and Wo2, at the required target 
frequency locations Wt1 and Wt2.  It is assumed that Wt2 is greater than Wt1. In 
most of the cases the features selected for the transformation are the band 
edges of the filter passbands. In general it is possible to select any feature; e.g., 
the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., complex notch filters or resonators can be repositioned at two distinct 
desired frequencies at any place around the unit circle. This is very attractive 
for adaptive systems.

Examples Design the allpass filter changing the complex bandpass filter with the band 
edges originally at Wo1=0.2 and Wo2=0.4  to the new band edges of Wt1=0.3 and  
Wt2=0.6 precisely defined:

Wo = [0.2, 0.4];
Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
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title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirbpc2bpc, zpkbpc2bpc
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13allpasslp2bpPurpose Return an allpass filter for lowpass to bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the second-order allpass 
mapping filter for performing a real lowpass to real bandpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.  
It is assumed that Wt2 is greater than Wt1. This transformation implements the 
“DC mobility,” which means that the Nyquist feature stays at Nyquist, but the 
DC feature moves to a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and  
repositioned at two distinct desired frequencies.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at 
Wo=0.5 to the real bandpass filter with cutoff frequencies at Wt1=0.25 and 
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2bp,  zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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13allpasslp2bpcPurpose Return an allpass filter for lowpass to complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to complex bandpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.  
It is assumed that Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and  
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandpass filters for radio receivers from the high-quality 
prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a complex bandpass filter with band edges of Wt1=0.2 
and  Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[-1,1], 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bpc, zpklp2bpc
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13allpasslp2bsPurpose Return an allpass filter for lowpass to bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the second-order allpass 
mapping filter for performing a real lowpass to real bandstop frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2. 
It is assumed that Wt2 is greater than Wt1. This transformation implements the 
“Nyquist Mobility,” which means that the DC feature stays at DC, but the 
Nyquist feature moves to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at 
Wo=0.5 to the real bandstop filter with cutoff frequencies at Wt1=0.25 and 
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:
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plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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13allpasslp2bscPurpose Return an allpass filter for lowpass to complex bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to complex bandstop frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.  
It is assumed that Wt2 is greater than Wt1. Additionally the transformation 
swaps passbands with stopbands in the target filter. 

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and  
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandstop filters for band attenuation or frequency 
equalizers, from the high-quality prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a complex bandstop filter with band edges of Wt1=0.2 
and  Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:
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[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[1,-1], 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bsc, zpklp2bsc
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13allpasslp2hpPurpose Return an allpass filter for lowpass to highpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to real highpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located originally at frequency, Wo, at the required target 
frequency location, Wt, at the same time rotating the whole frequency response 
by half of the sampling frequency. Result is that the DC and Nyquist features 
swap places.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way by using the lowpass to highpass transformation.

Examples Design the allpass filter changing the lowpass filter to the highpass filter with 
its cutoff frequency moved from Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2hp, zpklp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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13allpasslp2lpPurpose Return an allpass filter for lowpass to lowpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt) returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to real lowpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located originally at frequency Wo, at the required target 
frequency location, Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband and so on.

Lowpass to lowpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way by applying the lowpass to lowpass transformation.

Examples Design the allpass filter changing the lowpass filter cutoff frequency originally 
at Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
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title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2lp, zpklp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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13allpasslp2mbPurpose Return an allpass filter for lowpass to M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass 
mapping filter for performing a real lowpass to real multipassband frequency 
transformation. Parameter M is the number of times an original feature is 
replicated in the target filter. This transformation effectively places one 
feature of an original filter, located at frequency Wo, at the required target 
frequency locations, Wt1,...,WtM.  By default the DC feature is kept at its original 
location.

[AllpassNum,AllpassDen]=allpasslp2mb(Wo,Wt,Pass)  allows you to specify 
an additional parameter, Pass, which chooses between using the “DC Mobility” 
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its 
original location and the DC feature is free to move. In the second case the DC 
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations without redesigning them. A good application would be an 
adaptive tone cancellation circuit reacting to the changing number and location 
of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a real multiband filter with band edges of 
Wt=[1:2:9]/10 precisely defined:



allpasslp2mb

13-70

Wo = 0.5;
Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass  being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation 
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering, 
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and 
frequency transformation problem,” Proceedings 20th Asilomar Conference on 
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Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, 
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, 
Reading, Massachussetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm 
for frequency transformations, Linear Circuits, Systems and Signal Processing: 
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.
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13allpasslp2mbcPurpose Return an allpass filter for lowpass to complex M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass 
mapping filter for performing a real lowpass to complex multipassband 
frequency transformation. Parameter M is the number of times an original 
feature is replicated in the target filter. This transformation effectively places 
one feature of an original filter, located at frequency Wo, at the required target 
frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations without the need to design them again. A good application 
would be an adaptive tone cancellation circuit reacting to the changing number 
and location of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a complex multiband filter with band edges of 
Wt=[-3+1:2:9]/10 precisely defined:

Wo = 0.5;
Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2mbc, zpklp2mbc
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13allpasslp2xcPurpose Return an allpass filter for lowpass to complex N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass 
mapping filter, where N is the allpass filter order, for performing a real lowpass 
to complex multipoint frequency transformation. Parameter N also specifies the 
number of replicas of the prototype filter created around the unit circle after 
the transformation.  This transformation effectively places N features of the, 
original filter located at frequencies Wo1,...,WoN, at the required target frequency 
locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.  The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design the allpass filter moving four features of an original complex filter given 
in Wo to the new independent frequency locations Wt. Please note that the 
transformation creates N replicas of an original filter around the unit circle, 
where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7, 0.4];
Wt = [ 0.3, 0.5,  0.7, 0.9];
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[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);

Calculate the frequency responsefrequency response of the mapping filter in 
the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2xc, zpklp2xc
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13allpasslp2xnPurpose Return an allpass filter for lowpass to N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass 
mapping filter, where N is the allpass filter order, for performing a real lowpass 
to real multipoint frequency transformation. Parameter N also specifies the 
number of replicas of the prototype filter created around the unit circle after 
the transformation.  This transformation effectively places N features of an 
original filter, located at frequencies Wo1,...,WoN, at the required target frequency 
locations, Wt1,...,WtM.  By default the DC feature is kept at its original location.

[AllpassNum,AllpassDen]=allpasslp2xn(Wo,Wt,Pass)  allows you to specify 
an additional parameter, Pass, which chooses between using the “DC Mobility” 
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its 
original location and the DC feature is free to move. In the second case the DC 
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.  The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations without the need of designing them again. A good 
application would be an adaptive tone cancellation circuit reacting to the 
changing number and location of tones.
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Examples Design the allpass filter moving three features of an original filter given in Wo 
to the new independent frequency locations Wt. Please note that the 
transformation creates N replicas of an original filter around the unit circle, 
where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7];
Wt = [ 0.3, 0.5,  0.8];
[AllpassNum, AllpassDen] = allpasslp2xn(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass  being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2xn, zpklp2xn

References [1] Cain, G.D. , A. Krukowski and I. Kale, “High Order Transformations for 
Flexible IIR Filter Design,” VII European Signal Processing Conference 
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(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order 
frequency transformations for IIR filters,” 38th Midwest Symposium on 
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
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13allpassrateupPurpose Return an allpass filter for integer upsample transformation

Syntax [AllpassNum,AllpassDen] = allpassrateup(N)

Description [AllpassNum,AllpassDen] = allpassrateup(N)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass 
mapping filter for performing the rateup frequency transformation, which 
creates N equal replicas of the prototype filter frequency response.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Examples Design the allpass filter creating the effect of upsampling the digital filter four 
times:

N = 4;

Choose any feature from an original filter, say at Wo=0.2:

Wo = 0.2;
Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments N
Frequency replication ratio (upsampling ratio)
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AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirrateup, zpkrateup



allpassshift

13-81

13allpassshiftPurpose  Return an allpass filter for real shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshift(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshift(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the second-order allpass 
mapping filter for performing a real frequency shift transformation. This 
transformation places one selected feature of an original filter, located at 
frequency Wo, at the required target frequency location, Wt. This transformation 
implements the “DC mobility,” which means that the Nyquist feature stays at 
Nyquist, but the DC feature moves to a location dependent on the selection of 
Wo and Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to 
the cutoff frequency of an original lowpass filter. In general it is possible to 
select any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be moved to a different frequency by 
applying a shift transformation. In such a way you can avoid designing the 
filter from the beginning.

Examples Design the allpass filter precisely shifting one feature of the lowpass filter 
originally at Wo=0.5 to the new frequencies of Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirshift, zpkshift
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13allpassshiftcPurpose Return an allpass filter for complex shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)  returns the numerator, 
AllpassNum, and denominator, AllpassDen, vectors of the allpass mapping 
filter for performing a complex frequency shift of the frequency response of the 
digital filter by an arbitrary amount.

[AllpassNum,AllpassDen]=allpassshiftc(0,0.5)  calculates the allpass 
filter for doing the Hilbert transformation, i.e. a 90 degree counterclockwise 
rotation of an original filter in the frequency domain.

[AllpassNum,AllpassDen]=allpassshiftc(0,-0.5)  calculates the allpass 
filter for doing an inverse Hilbert transformation, i.e. a 90 degree clockwise 
rotation of an original filter in the frequency domain.

Examples Design the allpass filter precisely rotating the whole filter by the amount 
defined by the location of the selected feature from an original filter, Wo=0.5, 
and its required position in the target filter, Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping function Wo(Wt)');
xlabel('New frequency, Wt');
ylabel('Old frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter
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Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirshiftc, zpkshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal 
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert 
transformers, and half-band low-pass filters,” IEEE Transactions on 
Education, vol. 32, pp. 314-318, August 1989.
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13bin2numPurpose Convert a two’s complement binary string to a number

Syntax y = bin2num(q,b)

Description y = bin2num(q,b) uses the properties of quantizer q to convert binary string 
b to numeric array y. When b is a cell array containing binary strings, y will be 
a cell array of the same dimension containing numeric arrays. The fixed-point 
binary representation is two’s complement. The floating-point binary 
representation is in IEEE Standard 754 style.

bin2num and num2bin are inverses of one another. Note that num2bin always 
returns columnwise.

Examples Create a quantizer and an array of numeric strings. Convert the numeric 
strings to binary strings, then use bin2num to convert them back to numeric 
strings.

q=quantizer([4 3]); 
[a,b]=range(q); 
x=(b:-eps(q):a)'; 
b = num2bin(q,x) 

b =

0111    
0110    
0101    
0100    
0011    
0010    
0001    
0000    
1111    
1110    
1101    
1100    
1011    
1010    
1001    
1000    
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bin2num performs the inverse operation of num2bin.

y=bin2num(q,b) 

y =

    0.8750 
    0.7500 
    0.6250 
    0.5000 
    0.3750 
    0.2500 
    0.1250 
         0 
   -0.1250 
   -0.2500 
   -0.3750 
   -0.5000 
   -0.6250 
   -0.7500 
   -0.8750 
   -1.0000 

See Also num2bin



ca2tf

13-87

13ca2tfPurpose Convert coupled allpass filter form to transfer function forms

Syntax [b,a] = ca2tf(d1,d2)
[b,a] = ca2tf(d1,d2,beta)
[b,a,bp] = ca2tf(d1,d2)
[b,a,bp] = ca2tf(d1,d2,beta)

Description [b,a]=ca2tf(d1,d2) returns the vector of coefficients b and the vector of 
coefficients a corresponding to the numerator and the denominator of the 
transfer function

d1 and d2 are real vectors corresponding to the denominators of the allpass 
filters H1(z) and H2(z).

[b,a]=ca2tf(d1,d2,beta) where d1, d2 and beta are complex, returns the 
vector of coefficients b and the vector of coefficients a corresponding to the 
numerator and the denominator of the transfer function

[b,a,bp]=ca2tf(d1,d2), where d1 and d2 are real, returns the vector bp of real 
coefficients corresponding to the numerator of the power complementary filter 
G(z)

[b,a,bp]=ca2tf(d1,d2,beta), where d1, d2 and beta are complex, returns the 
vector of coefficients bp of real or complex coefficients that correspond to the 
numerator of the power complementary filter G(z)

H z( ) B z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )+[ ]= =

H z( ) B z( ) A z( )⁄ 1
2
--- β( )– H1 z( )• β H2 z( )•+[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )–[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2j
----- β( )– H1 z( )• β H2 z( )•+[ ]= =
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Examples Create a filter, convert the filter to coupled allpass form, and convert the result 
back to the original structure (create the power complementary filter as well).

See Also cl2tf, iirpowcomp, tf2ca, tf2cl

[b,a]=cheby1(10,.5,.4);
[d1,d2,beta]=tf2ca(b,a); % tf2ca returns the 

% denominators of the 
% allpasses.

[num,den,numpc]=ca2tf(d1,d2,beta); % Reconstruct the original 
% filter plus the power 
% complementary one.

[h,w,s]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
freqzplot([h hpc],w,s); % Plot the mag response of the 

% original filter and the 
% power complementary one.
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13cell2sosPurpose Convert cell array to second-order-section matrix

Syntax s = cell2sos(c)
[s,g] = cell2sos(c)

Description s = cell2sos(c) converts cell array c of the form

      c = { {b1,a1}, {b2,a2}, ... {bi,ai} }

where each numerator vector bi and denominator vector ai contains the 
coefficients of a linear or quadratic polynomial, to an L-by-6 second-order 
section matrix s of the form

s = [b1 a1
b2 a2
...
bi ai]

When cell2sos encounters linear sections, it zero-pads the sections on the 
right. 

[s,g] = cell2sos(c) when the first element of c is a pair of scalars, forms the 
scalar gain g with the first pair and uses the remaining elements of c to build 
the s matrix.

Examples c = {{[0.0181 0.0181],[1.0000 -0.5095]},{[1 2 1],[1 -1.2505  
0.5457]}}

c =
{1x2 cell}    {1x2 cell}

s = cell2sos(c)
s =

    0.0181    0.0181         0    1.0000   -0.5095         0
    1.0000    2.0000    1.0000    1.0000   -1.2505    0.5457 

See Also sos2ss, sos2tf, sos2zp, ss2sos, tf2sos, zp2sos
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13cicdecimatePurpose Use a cascaded integrator-comb (CIC) decimation filter to decrease the 
sampling rate for a signal

Syntax y = cicdecimate(m,n,r,x,q)

Description y = cicdecimate(m,n,r,x,q) filters the data in input vector x, applying 
a decimation factor (or sample rate reduction) r to the signal. r must be a 
positive integer. For example, when r = 5, the decimation filter reduces the 
signal length to one-fifth of the original length. 

Input arguments m and n define the number of integrator and comb stages (n) 
and the number of differential delays (m) in the CIC decimation filter. Although 
m can be any positive integer, most often it is 1 or 2. Each integrator stage in 
the CIC filter comprises a single-pole infinite impulse response (IIR) filter with 
a unity feedback coefficient. 

q represents a quantizer operating in signed fixed-point mode, as specified by 
the fixed keyword argument to the function quantizer.

cicdecimate uses the int32 data type for all arithmetic operations it performs 
while decimating the input signal. Limiting the data type to int32 means when 
the most significant bit (MSB) at the filter output is greater than 32, the overall 
sum can overflow causing the result to be wrong. When the MSB exceeds 32, 
cicdecimate generates a warning message that the MSB is too large.

With reference to the high sampling rate, the transfer function for the 
composite CIC filter is

Design Considerations
When you design your CIC decimation filter, remember the following general 
points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of stages in the filter, determines the passband attentuation. 
Increasing n improves the filter ability to reject aliasing and imaging, but it 
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also increases the droop (or rolloff) in the filter passband. Using an 
appropriate FIR filter in series after the CIC decimation filter can help you 
compensate for the induced droop.

• The DC gain for the filter is a function of the decimation factor. Raising the 
decimation factor increases the DC gain.

Examples This example applies a decimation factor r equal to 8 to a 160-point impulse 
signal. The signal output from the filter has 160/r, or 20, points or samples. 
Choosing 10 bits for the quantizer wordlength represents a fairly common 
setting for analog to digital converters. The plot shown after the code presents 
the stem plot of the decimated signal, with 20 samples remaining after 
decimation:

m = 4;  % Differential delays in the filter
n = 4;  % filter stages
r = 8   % decimation factor
x = zeros(160,1); x(1) = 1;  % Create a 160-point impulse signal
q = quantizer([10 0],'fixed'); % Define the quantizer
y = cicdecimate(m,n,r,x,q)
stem(y)  % Plot the output as a stem plot
xlabel('Samples'); ylabel('Amplitude');
title('Decimated Signal');
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This example demonstrates one way to compute the frequency response, using 
a 4-stage decimation filter with the decimation factor set to 7:

m = 1;n = 4; r = 7; % Define the filter parameters
w = linspace(0,pi,1024); % Set the frequency in radians
% Calculate the frequency response of the filter
h = exp(i*n*w/2*(1-r*m)).*(sin(r*m*w/2)./sin(w/2)).^n;
plot(w/pi,20*log10(abs(h))); grid on;
xlabel('Normalized Frequency Relative to the High Sampling...
Rate (\times\pi rad/sample)');
ylabel('Magnitude (dB)');
title('Frequency Response for the Example CIC...
Decimation Filter');
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Here’s the frequency response plot for the filter. For details about the transfer 
function used to produce the frequency response, refer to [1] in the References 
section.

Algorithm To show how the CIC decimation filter is constructed, the following figure 
presents a block diagram of the filter structure for a two-stage CIC decimation 
filter (n = 2).  fs is the high sampling rate, the input to the decimation process.
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See Also cicinterpolate, filterdesign

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation 
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal 
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing 
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172
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13cicinterpolatePurpose Use a cascaded integrator-comb (CIC) interpolation filter to increase the  
sampling rate for a signal

Syntax y = cicinterpolate(m,n,r,x,q)

Description y = cicinterpolate(m,n,r,x,q) filters the data in input vector x, applying 
an interpolation factor (or sample rate increase) r to the signal. For example, 
when r = 5, the CIC interpolation filter increases the signal length to five times 
the original length.

Input arguments m and n define the number of integrator and comb stages (n) 
and the number of differential delays (m) in the CIC interpolation filter. 
Although m can be any positive integer, most often it is 1 or 2. Each integrator 
stage comprises a single-pole infinite impulse response (IIR) filter with a unity 
feedback coefficient.

q represents a quantizer operating in signed fixed-point mode, as specified by 
the fixed keyword argument to the function quantizer.

cicinterpolate uses the int32 data type for all arithmetic operations it 
performs while interpolating the input signal. Limiting the data type to int32 
means when the most significant bit (MSB) at the filter output is greater than 
32, the overall sum can overflow causing the result to be wrong. When the MSB 
exceeds 32, cicinterpolate generates a warning message that the MSB is too 
large.

With reference to the high, sampling rate, the transfer function for the 
composite CIC filter is

Design Considerations
When you design your CIC interpolation filter, remember the following general 
points:

• The filter output spectrum has nulls at  ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.
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• n, the number of stages in the filter, determines the passband attentuation. 
Increasing n improves the filter ability to reject aliasing and imaging, but it 
also increases the droop or rolloff in the filter passband. Using an 
appropriate FIR filter in series after the CIC interpolation filter can help you 
compensate for the induced droop.

• The DC gain for the filter is a function of the interpolation factor. Raising the 
interpolation factor increases the DC gain.

Examples This example applies an interpolation factor r equal to 8 to a 160 point impulse 
signal. The signal output from the filter has 160*r, or 1280, points or samples. 
Choosing 10 bits for the quantizer wordlength represents a fairly common 
setting for analog to digital converters:

m = 4;  % Differential delays in the filter
n = 4;  % Filter stages
r = 8   % Interpolation factor
x = zeros(160,1); x(1) = 1;    % Create a 160-point impulse signal
q = quantizer([10 0],'fixed'); % Define the quantizer
y = cicinterpole(m,n,r,x,q)
stem(y)  % Plot the output as a stem plot
xlabel('Samples'); ylabel('Amplitude');
title('Interpolated Signal');

After interpolating the signal, y contains 1280 samples, as you see in the figure 
shown.



cicinterpolate

13-97

Computing and plotting the frequency response of an interpolating filter can be 
valuable. This example demonstrates one way to compute and display the 
frequency response, using a 4-stage CIC interpolation filter with the 
interpolation factor set to 7:

m = 1;n = 4; r = 7; % Define the filter parameters
w = linspace(0,pi,1024); % Set the frequency in radians
% Calculate the frequency response of the filter
h = exp(i*n*w/2*(1-r*m)).*(sin(r*m*w/2)./sin(w/2)).^n;
plot(w/pi,20*log10(abs(h))); grid on;
xlabel('Normalized Frequency Relative to the High Sampling'...
'Rate (\times\pi rad/sample)');
ylabel('Magnitude (dB)');
title('Frequency Response for the Example CIC'...
'Interpolation Filter');
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As with the CIC decimation filter, the figure shows the clear comb nature of the 
interpolation filter.For details about the transfer function used to produce this 
frequency response plot, refer to [2] the References section.

Algorithm To show how the CIC interpolation filter is constructed, the following figure 
provides a block diagram of the filter structure for a two-stage CIC 
interpolation filter (n = 2). fs is the high sampling rate, the output from the 
interpolation process.
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See Also cicdecimate, filterdesign

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation 
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal 
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing 
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172
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13cl2tfPurpose Convert coupled allpass lattice to transfer function form

Syntax [b,a] = cl2tf(k1,k2)
[b,a] = cl2tf(k1,k2,beta)
[b,a,bp] = cl2tf(k1,k2) 
[b,a,bp] = cl2tf(k1,k2,beta)

Description [b,a] = cl2tf(k1,k2) returns the numerator and denominator vectors of 
coefficients b and a corresponding to the transfer function

where H1(z) and H2(z) are the transfer functions of the allpass filters 
determined by k1 and k2, and k1 and k2 are real vectors of reflection 
coefficients corresponding to allpass lattice structures.

[b,a] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns the 
numerator and denominator vectors of coefficients b and a corresponding to the 
transfer function

[b,a,bp] = cl2tf(k1,k2) where k1 and k2 are real, returns the vector bp of 
real coefficients corresponding to the numerator of the power complementary 
filter G(z)

[b,a,bp] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns 
the vector of coefficients bp of possibly complex coefficients corresponding to 
the numerator of the power complementary filter G(z)

Examples [b,a]=cheby1(10,.5,.4);
[k1,k2,beta]=tf2cl(b,a); %TF2CL returns the reflection coeffs

H z( ) B z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )+[ ]= =

H z( ) B z( ) A z( )⁄ 1
2
--- β( )– H1 z( )• β H2 z( )•+[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )–[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2j
----- β( )– H1 z( )• β H2 z( )•+[ ]= =
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% Reconstruct the original filter
% plus the power complementary one.
[num,den,numpc]=cl2tf(k1,k2,beta); 
[h,w,s1]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
% Plot the mag response of the original filter and the power 
% complementary one.
freqzplot([h hpc],w,s1); 

See Also tf2cl, tf2ca, ca2tf, tf2latc, latc2tf, iirpowcomp
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13coereadPurpose Read a XILINX CORE Generator™ coefficient (.COE) file

Syntax hq = coeread('filename')

Description hq = coeread(filename) extracts the Distributed Arithmetic FIR filter 
coefficients defined in the XILINX CORE Generator .COE file specified by 
filename. It returns the quantized filter object hq. If you do not provide the file 
type extension .coe with the filename, the function assumes the .coe 
extension.

See Also coewrite
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13coewritePurpose Write a Xilinx CORE Generator™ coefficient (.COE) file

Syntax coewrite(h)
coewrite(hq,radix)
coewrite(...,filename)

Description coewrite(hq) writes a XILINX Distributed Arithmetic FIR filter coefficient 
.COE file which can be loaded into the XILINX CORE Generator. The 
coefficients are extracted from the quantized filter object hq. Your quantized 
filter must be a direct-form FIR structure with one section. You cannot export 
nonquantized filters as .coe files, nor multiple-section filters. To enable you to 
provide a name for the file, coewrite displays a dialog where you fill in the file 
name. If you do not specify the name of the output file, the default file name is 
untitled.coe. 

coewrite(hq,radix) indicates the radix (number base)  used to specify the 
FIR filter coefficients. Valid radix values are 2 for binary, 10 for decimal, and 
16 for hexadecimal (default).

coewrite(...,filename) writes a XILINX.COE file to filename. If you omit 
the file extension, coewrite adds the .coe extension to the name of the file.

Examples coewrite generates an ASCII text file that contains the filter coefficents in a 
format the XILINX CORE Generator can read and load. In this example, you 
create a 30th-order quantized filter and generate the .coe file that include the 
filter coefficients as well as associated information about the filter.

b = firceqrip(30,0.4,[0.05 0.03]);
hq = qfilt('fir',{b});
coewrite(hq,10,'mycoefile');

when you look at mycoefile.coe, you see the following:

;
; XILINX CORE Generator(tm) Distributed Arithmetic FIR filter 
coefficient (.COE) File
; Generated by MATLAB(tm) and the Filter Design Toolbox.
;
; Generated on: 15-Mar-2002 13:47:15
;
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Radix = 10; 
Coefficient_Width = 16; 
CoefData =   -41,
 -851,
 -366,
  308,
  651,
   22,
 -873,
 -658,
  749,
 1504,
   21,
-2367,
-2012,
 3014,
 9900,
....

coewrite puts the filter coefficients in column-major order and reports the 
radix, the coefficient width, and the coefficients. These represent the minimum 
set of data needed in a .coe file.

See Also coeread
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13convergentPurpose Apply convergent rounding

Syntax convergent(x)

Description convergent(x) rounds the elements of x to the nearest integer, except in a tie, 
then round to the nearest even integer.

Examples round and convergent differ in the way they treat values whose fractional part 
is 0.5. In round, every tie is rounded up in absolute value. convergent rounds 
ties to the nearest even integer. 

x=[-3.5:3.5]';
[x convergent(x) round(x)]
ans =

   -3.5000   -4.0000   -4.0000
   -2.5000   -2.0000   -3.0000
   -1.5000   -2.0000   -2.0000
   -0.5000         0   -1.0000
    0.5000         0    1.0000
    1.5000    2.0000    2.0000
    2.5000    2.0000    3.0000
    3.5000    4.0000    4.0000

See Also quantizer/quantize
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13convertPurpose Convert filter structures of quantized filters

Syntax hq = convert(hq,newstruct)

Description hq = convert(hq,newstruct) returns a quantized filter whose structure has 
been transformed to the filter structure specified by string newstruct. You can 
enter any one of the following quantized filter structures:

• 'antisymmetricfir': Antisymmetric finite impulse response (FIR).

• 'df1': Direct form I.

• 'df1t': Direct form I transposed.

• 'df2': Direct form II.

• 'df2t': Direct form II transposed. Default filter structure.

• 'fir': FIR.

• 'firt': Direct form FIR transposed.

• 'latcallpass': Lattice allpass.

• 'latticeca': Lattice coupled-allpass.

• 'latticecapc': Lattice coupled-allpass power-complementary.

• 'latticear': Lattice autoregressive (AR).

• 'latticema': Lattice moving average (MA) minimum phase.

• 'latcmax': Lattice moving average (MA) maximum phase.

• 'latticearma': Lattice ARMA.

• 'statespace': Single-input/single-output state-space.

• 'symmetricfir': Symmetric FIR. Even and odd forms.

All filters can be converted to the following structures:

• df1
• df1t
• df2
• df2t
• statespace
• latticearma
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For the following filter classes, you can specify other conversions as well:

• Minimum phase FIR filters can be converted to latticema

• Maximum phase FIR filters can be converted to latcmax

• Allpass filters can be converted to latcallpass

convert generates an error if you specify a conversion that is not possible.

Examples [b,a]=ellip(5,3,40,.7);
Hq = qfilt('df2t',{b,a});
Hq2 = convert(Hq,'statespace')
Hq2 =
Quantized State-space filter 
...
FilterStructure = statespace                                       
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
  StatesPerSection = [5]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
Warning: 9 overflows in coefficients.

See Also qfilt
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13copyobjPurpose Make an independent copy of a quantizer, quantized filter, or quantized FFT

Syntax obj1 = copyobj(obj)
[obj1,obj2,...] = copyobj(obja,objb,...)

Description obj1 = copyobj(obj) makes a copy of obj and returns it in obj1. obj can be a 
quantizer, quantized filter, or quantized FFT.

[obj1,obj2,...] = copyobj(obja,objb,...) copies obja into obj1, objb 
into obj2, and so on. All objects can be quantizers, quantized filters, or 
quantized FFTs.

Using copyobj to copy a quantizer, quantized filter, or quantized FFT is not the 
same as using the command syntax object1 = object to copy a quantized 
object. Quantized filters, quantized FFTs, and quantizers have memory (their 
read-only properties). When you use copyobj, the resulting copy is 
independent of the original item—it does not share the original object’s 
memory, such as the values of the properties min, max, noverflows, or 
noperations. Using object1 = object creates a new object that is an alias for 
the original and shares the original object’s memory, and thus its property 
values.

Examples q = quantizer('CoefficientFormat',[8 7]);
q1 = copyobj(q);

You can combine quantizers and quantized filters in the same copyobj 
command. You cannot include quantized FFTs with other quantized objects in 
one copyobj command.

hq = qfilt;
q=quantizer;
[hq1,q1] = copyobj(hq,q)

See Also qfilt, qfft, quantizer, get, set
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13denormalmaxPurpose Return the largest denormalized quantized number for a quantizer

Syntax x = denormalmax(q)

Description x = denormalmax(q) is the largest positive denormalized quantized number 
where q is a quantizer. Anything larger than x is a normalized number. 
Denormalized numbers apply only to floating-point format. When q represents 
fixed-point numbers, this function returns eps(q).

Examples q = quantizer('float',[6 3]); 
x = denormalmax(q) 

returns the value x = 0.1875 = 3/16.

Algorithm When q is a floating-point quantizer, 
denormalmax(q) = realmin(q) - denormalmin(q).

When q is a fixed-point quantizer, denormalmax(q) = eps(q).

See Also denormalmin, eps, quantizer
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13denormalminPurpose Return the smallest denormalized quantized number for a quantizer

Syntax x = denormalmin(q)

Description x = denormalmin(q) is the smallest positive denormalized quantized number 
where q is a quantizer. Anything smaller than x underflows to zero with 
respect to the quantizer q. Denormalized numbers apply only to floating-point 
format. When q represents a fixed-point number, denormalmin returns eps(q).

Examples q = quantizer('float',[6 3]); 
denormalmin(q) 

returns the value 0.0625 = 1/16.

Algorithm When q is a floating-point quantizer, , where Emin is equal to 
exponent(q).

When q is a fixed-point quantizer, , where f is equal to 
fractionlength(q).

See Also denormalmax, eps, quantizer
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13dfilt.calatticePurpose Construct a discrete-time, coupled-allpass, lattice filter object

Syntax Hd = dfilt.calattice(k1,k2,beta)
Hd = dfilt.calattice

Description Hd = dfilt.calattice(k1,k2,beta) returns a discrete-time, coupled-allpass, 
lattice filter object, Hd, which is two allpass, lattice filter structures coupled 
together. The lattice coefficients for each structure are vectors, k1 and k2. Input 
argument beta is  shown in the diagram below

Hd = dfilt.calattice returns a default, discrete-time coupled-allpass, 
lattice filter object, Hd. The default values are k1 = k2 = [ ], which is the 
default value for dfilt.latticeallpass, and beta = 1. This filter passes the 
input through to the output unchanged.
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Example Specify a third-order lattice coupled-allpass filter structure for a dfilt filter, Hd 
with the following code. 

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hd = dfilt.calattice(k1,k2,beta)

k1 =
   0.9511 + 0.3088i
   0.7511 + 0.1158i
k2 =
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   0.7502 - 0.1218i
beta =
   0.1385 + 0.9904i
Hd =
     FilterStructure: 'Lattice Coupled Allpass'
           Allpass1: [1x1 dfilt.latticeallpass]
           Allpass2: [1x1 dfilt.latticeallpass]
               Beta: 0.1385+ 0.9904i

See Also dfilt.calatticepc

dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox 
documentation
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13dfilt.calatticepcPurpose Construct a discrete-time, coupled-allpass, power-complementary lattice filter 
object

Syntax Hd = dfilt.calatticepc(k1,k2,beta)
Hd = dfilt.calatticepc

Description Hd = dfilt.calatticepc(k1,k2) returns a discrete-time, coupled-allpass, 
lattice filter object, Hd, with power-complementary output. This object is two 
allpass lattice filter structures coupled together to produce complementary 
output. The lattice coefficients for each structure are vectors, k1 and k2, 
respectively. beta is  shown in the diagram below

Hd = dfilt.calatticepc returns a default, discrete-time, coupled-allpass, 
lattice filter object, Hd, with power-complementary output. The default values 
are k1=k2=[ ], which is the default value for the dfilt.latticeallpass. The 
default for beta=1. This filter passes the input through to the output 
unchanged.
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Example Specify a third-order lattice coupled-allpass power complementary filter 
structure for a filter Hd with the following code. 

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
Hd = dfilt.calattice(k1,k2,beta)

k1 =
   0.9511 + 0.3088i
   0.7511 + 0.1158i
k2 =
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   0.7502 - 0.1218i
beta =
   0.1385 + 0.9904i
Hd =
    FilterStructure: 'Coupled-Allpass Lattice, Power 
                        Complementary Output'
           Allpass1: [1x1 dfilt.latticeallpass]
           Allpass2: [1x1 dfilt.latticeallpass]
               Beta: 0.1385+ 0.9904i

See Also dfilt.calattice

dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox 
documentation
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13dispPurpose Display a quantizer, quantized FFT, or quantized filter

Description Similar to omitting the closing semicolon from an expression on the command 
line, except that disp does not display the variable name. disp lists the 
property names and property values for a quantizer, quantized filter, or 
quantized FFT.

The following examples illustrate the default display for a quantized FFT F and 
a quantizer q. 

F = qfft;
disp(F)

 Radix = 2
            Length = 16
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     OperandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
  NumberOfSections = 4
       ScaleValues = [1]

q = quantizer
q =
            Mode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [16  15]
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0

See Also set
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13epsPurpose Return the quantized relative accuracy for quantized filters, quantizers, and 
quantized FFTs

Syntax eps(q)
eps(hq)
eps(f)

Description eps(q) returns the quantization level of quantizer object q, or the distance 
from 1.0 to the next largest floating-point number when q is a floating-point 
quantizer object.

eps(hq) returns the quantization level of quantized filter hq, or the distance 
from 1.0 to the next largest floating-point number when hq is a floating-point 
quantized filter.

eps(f) returns the quantization level of quantized FFT f, or the distance from 
1.0 to the next largest floating-point number when f is a floating-point 
quantized FFT.

Examples q = quantizer('float',[6 3]); 
eps(q) 

returns the value 0.25. The following code

hq = qfilt;
f = qfft;
eps(hq)
eps(f)

returns the values 

coefficient   3.051757813e-005
       input   3.051757813e-005
      output   3.051757813e-005
multiplicand   3.051757813e-005
     product   9.313225746e-010
         sum   9.313225746e-010

for the quantizers in the quantized filter, and 
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 coefficient   3.051757813e-005
       input   3.051757813e-005
      output   3.051757813e-005
multiplicand   3.051757813e-005
     product   9.313225746e-010
         sum   9.313225746e-010

for the quantizers in the quantized FFT.

Algorithm For fixed-point or floating-point numbers,  where e is the relative 
accuracy of the quantizer and f is the fraction length of the quantizer.

See Also eps, exponentbias, exponentlength, exponentmax, exponentmin

e 2 f–
=
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13errmeanPurpose Return the mean of the quantization error resulting from quantizing a signal

Syntax qerr = errmean(q)

Description qerr = errmean(q) returns the mean value of the uniformly distributed 
random quantization error that results when you use quantizer q to quantize 
a signal. 

The value of qerr does not depend on the signal quantized unless the precision 
(the value of the least significant bit) of your signal and your quantizer are very 
nearly the same. Use eps to determine the precision for quantizers or varied 
wordlengths.

When the precision of your signal is close to the precision of your quantizer, 
qerr may  not match the theoretical value. When your signal has infinite 
extent and infinite precision, the value calculated for qerr matches the 
theoretical value of the mean of the uniformly distributed quantization error. 

For most purposes, when the difference in precision between a signal and the 
quantizers is greater then 16 bits, the result calculated by errmean is exact. 
When you reduce the wordlength by three or four bits through quantization, 
errmean generates an excellent approximation. For wordlength changes that 
exceed four bits, errmean provides a less good match to the theoretical mean. 
For fixed-point quantizers, the wordlength property defines the precision.

As you change the rounding mode for your quantizer, the mean error value 
changes as well, as shown in this table. 

Round Mode Probability Density Function 
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ceil 1/ε;   ; 0 otherwise ε/2 ε2/12 -6.02f - 10.79

convergent 1/ε;  ; 0 otherwise 0 ε2/12 -6.02f - 10.79

fix 1/(2ε);  ; 0 otherwise 0 ε2/3 -6.02f - 4.77

floor 1/ε;  ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

round 1/ε;  ; 0 otherwise 0 ε2/12 -6.02f - 10.79

0 x ε<≤

ε– 2⁄ x ε 2⁄≤ ≤

ε– x ε< <

ε– x 0≤<

ε– 2⁄ x ε 2⁄≤<
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In the table, ε represents the quantization level (eps(q)) for your quantizer, x is 
the uniformly distributed random quantization error, and f is the wordlength 
of the quantizer.

For more information about the errmean algorithm, and for a discussion about 
correction factors for quantizing from one fixed-point format and precision to 
another, refer to [1] in the References section.

Examples Compare the mean value determined by Monte Carlo methods to the mean 
value computed by errmean. In this example, the fraction length for q equals 15 
bits (eps = 3.0518e-005) and the fraction length for the signal u is 31 bits 
(eps = 4.6566e-010) .

q = quantizer('fixed','floor',[16 15]);
m = errmean(q)
m =

 -1.5259e-005 % =-eps(q/2) from the table
% Compare m to the sample mean from a Monte Carlo experiment
r = realmax(q);
u = 2*r*rand(1000,1)-r;  % Original signal
y = quantize(q,u);       % Quantized signal
e = y - u;               % Error
m_est = mean(e)          % Estimate of the error mean
m_est =

 -1.5471e-005
abs(m-m_est)

ans =

  2.1174e-007 % Difference between the error estimates

Algorithm You use similar equations to calculate the mean value for the five rounding 
modes. In the following equations, x = y-u, where u is the original signal and y 
is the signal value after quantization. ε is the minimum quantization step for 
the quantizer. For all of the following, f(x) denotes the probability density 
function of the error.
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Ceil mode

Convergent mode

Fix mode

Floor mode

Round mode

f x( )
1 ε 0 x ε<≤,⁄
0 otherwise,



=

µ E x( ) xf x( ) xd
∞–

∞

∫ ε 2⁄= = =

f x( )
1 ε ε– 2⁄ x ε 2⁄≤ ≤,⁄

0 otherwise,



=

µ E x( ) xf x( ) xd
∞–

∞

∫ 0= = =

f x( )
1 2ε( ) ε– x ε< <,⁄

0 otherwise,



=

µ E x( ) xf x( ) xd
∞–

∞

∫ 0= = =

f x( )
1 ε ε– x 0≤<,⁄
0 otherwise,




=

µ E x( ) xf x( ) xd
∞–

∞

∫ ε 2⁄–= = =
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See Also quantizer/errpdf, quantizer/errvar

References [1] Schlichthärle, Dietrich, Digital Filter, Springer, 2000, Section 8.3 
“Quantization,” pp. 233-240

f x( )
1 ε ε– 2⁄ x< ε 2⁄≤,⁄

0 otherwise,



=

µ E x( ) xf x( ) xd
∞–

∞

∫ 0= = =
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13errpdfPurpose Calculate the probability density function (pdf) of the quantization error

Syntax (qf,x) = errpdf(q)
(qf) = errpdf(q,x)

Description (qf,x) = errpdf(q) returns qf, the pdf of the quantization error, evaluated 
at the values returned in x. When you do not provide x as an input vector to 
define the values at which to calculate qf, errpdf uses 128 equally spaced 
points between (-2*eps) and (2*eps) as the values at which it calculates qf.

(qf) = errpdf(q,x) returns qf, the pdf of the quantization error, evaluated 
at the values specified in vector x. Values in qf result from using q to quantize 
a signal. The error generated by the quantization process is random and 
uniformly distributed around zero.

When the precision of your signal is close to the precision of your quantizer, qf 
may  not match the theoretical precision. When your signal has infinite extent 
and infinite precision, the value calculated for qf matches the theoretical value 
of the pdf of the uniformly distributed quantization error.

For most purposes, when the difference in precision between a signal and the 
quantizers is greater then 16 bits, the result calculated by errpdf is exact. 
When you reduce the wordlength by 3 or 4 bits through quantization, errpdf 
generates an excellent approximation. For wordlength changes that exceed 
four bits, errpdf provides a less good match to the theoretical mean. For 
fixed-point quantizers, the wordlength property defines the precision.

As you change the rounding mode for your quantizer, the pdf changes as well, 
as shown in this table. 

Round Mode Probability Density Function 
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ceil 1/ε;   ; 0 otherwise ε/2 ε2/12 -6.02f - 10.79

convergent 1/ε;  ; 0 otherwise 0 ε2/12 -6.02f - 10.79

fix 1/(2ε);  ; 0 otherwise 0 ε2/3 -6.02f - 4.77

0 x ε<≤

ε– 2⁄ x ε 2⁄≤ ≤

ε– x ε< <
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In the table, ε represents the quantization level (eps(q)) for your quantizer, x is 
the uniformly distributed random quantization error, and f is the wordlength 
of the quantizer.

Examples Using a quantizer on a signal, compare the pdf calculated by errpdf to the 
error generated by a Monte Carlo experiment. Notice that the quantizer uses 
4 bits with 3 bits for the fraction length. Signal u in the Monte Carlo 
experiment is a double array.

q = quantizer('round',[4 3]);
[f,x] = errpdf(q);
subplot(211)
plot(x,f)
title('Computed PDF of the quantization error.')

% Compare f to the sample pdf from a Monte Carlo experiment
r = realmax(q);
u = 2*r*rand(10000,1)-r;  % Original signal
y = quantize(q,u);        % Quantized signal
e = y - u;                % Error
subplot(212)
hist(e,20);set(gca,'xlim',[min(x) max(x)])
title('Estimate of the PDF of the quantization error.')

Looking at the plot shown here you see that the computed, or theoretical, and 
estimated pdfs agree closely.

floor 1/ε;  ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

round 1/ε;  ; 0 otherwise 0 ε2/12 -6.02f - 10.79

Round Mode Probability Density Function 
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ε– x 0≤<

ε– 2⁄ x ε 2⁄≤<
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Algorithm Here are the methods for calculating the pdf  for the five rounding modes. In 
the equations, x = y-u, where u is the original signal and y is the signal value 
after quantization. ε is the minimum quantization step for the quantizer. For 
all of the following, f(x) denotes the probability density function of the error.

Ceil mode

Convergent mode
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f x( )
1 ε 0 x ε<≤,⁄
0 otherwise,



=

f x( )
1 ε ε– 2⁄ x ε 2⁄≤ ≤,⁄

0 otherwise,



=
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Fix mode

Floor mode

Round mode

See Also quantizer/errmean, quantizer/errvar

References [1] Schlichthärle, Dietrich, Digital Filter, Springer, 2000, Section 8.3 
“Quantization,” pp. 233-240

f x( )
1 2ε( ) ε– x ε< <,⁄

0 otherwise,



=

f x( )
1 ε ε– x 0≤<,⁄
0 otherwise,




=

f x( )
1 ε ε– 2⁄ x< ε 2⁄≤,⁄

0 otherwise,



=
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13errvarPurpose Return the variance of the quantization error resulting from quantizing a 
signal

Syntax qvar = errvar(q)

Description qvar = errvar(q) returns the variance of the uniformly distributed random 
quantization error that results when you use quantizer q to quantize a signal. 

The value of errvar does not depend on the signal quantized unless the 
precision (the value of the least significant bit) of your signal and your 
quantizer are very nearly the same. Use eps to determine the precision for 
quantizers or various wordlengths.

When the precision of your signal is close to the precision of your quantizer, 
qvar may not match the theoretical value. When your signal has infinite extent 
and infinite precision, the value calculated for qvar matches the theoretical 
value of the variance of the uniformly distributed quantization error. 

For most purposes, when the difference in precision between a signal and the 
quantizers is greater then 16 bits, the result calculated by errvar is exact. 
When you reduce the wordlength by 3 or 4 bits through quantization, errvar 
generates an excellent approximation. For wordlength changes that exceed 
4 bits, errvar provides a less good match to the theoretical mean. For 
fixed-point quantizers, the wordlength property defines the precision.

As you change the rounding mode for your quantizer, the variance changes as 
well, as shown in this table. 

Round Mode Probability Density Function 
(f(x) = pdf)

Mean (µ) Variance (σ2) dB = 10log10σ2

ceil 1/ε;   ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

convergent 1/ε;  ; 0 otherwise 0 ε2/12 -6.02f - 10.79

fix 1/(2ε);  ; 0 otherwise 0 ε2/3 -6.02f - 4.77

floor 1/ε;  ; 0 otherwise -ε/2 ε2/12 -6.02f - 10.79

round 1/ε;  ; 0 otherwise 0 ε2/12 -6.02f - 10.79

0 x ε<≤

ε– 2⁄ x ε 2⁄≤ ≤

ε– x ε< <

ε– x 0≤<

ε– 2⁄ x ε 2⁄≤<
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In the table, ε represents the quantization level (eps(q)) for your quantizer, x is 
the uniformly distributed random quantization error, and f is the wordlength 
of the quantizer.

Examples To demonstrate the accuracy of errvar, compare the theoretical variance for 
the quantization error as determined by Monte Carlo analysis using a signal to 
the result from errvar:

q = quantizer;
v = errvar(q)

% Compare to the sample variance from a Monte Carlo experiment
r = realmax(q);
u = 2*r*rand(1000,1)-r;  % Original signal
y = quantize(q,u);       % Quantized signal
e = y - u;               % Error
v_est = var(e)           % Estimate of the error variance
v =

  7.7610e-011 % =eps(q)^2/12 from the table

v_est =

  7.5534e-011

v_est-v

ans =

 -2.0758e-012

Algorithm The variance depends on the rounding mode of the quantizer. Ceil, convergent, 
floor, and round share the same variance through different calculations. Fix 
differs by a factor of four. For the definition and derivation of µ for each mode, 
refer to errvar. E(x) is the expected value of the random variable; the variance 
is σ2. In the equations, x = y-u, where u is the original signal and y is the signal 
value after quantization. ε is the minimum quantization step for the quantizer. 
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Ceil and floor modes

Convergent and round modes

Fix mode

See Also quantizer/errmean, quantizer/errpdf

References [1] Schlichthärle, Dietrich, Digital Filter, Springer, 2000, Section 8.3 
“Quantization,” pp. 233-240

E x( )2 1 ε x2 xd
ε–

0

∫⁄=

ε2 3⁄=

σ2 E x2( ) µ2
– ε2 3⁄ ε2 4⁄– ε2 12⁄= = =

E x( )2 1 ε x2 xd
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13exponentbiasPurpose Return the exponent bias for a quantizer

Syntax b = exponentbias(q)

Description b = exponentbias(q) returns the exponent bias of the quantizer q. For 
fixed-point quantizers, exponentbias(q) returns 0.

Examples q = quantizer('double'); 
b = exponentbias(q) 

returns the value b = 1023.

Algorithm For floating-point quantizers, , where e = eps(q), and 
exponentbias is the same as the exponent maximum.

For fixed-point quantizers, b = 0 by definition.

See Also eps, exponentlength, exponentmax, exponentmin

b 2e 1– 1–=
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13exponentlengthPurpose Return the exponent length of a quantizer

Syntax e = exponentlength(q)

Description e = exponentlength(q) returns the exponent length of quantizer q. When q is 
a fixed-point quantizer, exponentlength(q) returns 0. This is useful because 
exponent length is valid whether the quantizer mode is floating-point or 
fixed-point.

Examples q = quantizer('double'); 
e = exponentlength(q); 

returns the value e = 11.

Algorithm The exponent length is part of the format of a floating-point quantizer [w, e]. 
For fixed-point quantizers, e = 0 by definition.

See Also eps, exponentbias, exponentmax, exponentmin
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13exponentmaxPurpose  Return the maximum exponent for a quantizer

Syntax exponentmax(q)

Description exponentmax(q) returns the maximum exponent for quantizer q. When q is a 
fixed-point quantizer, it returns 0. 

q = quantizer('double'); 
exponentmax(q) 

returns the value ans = 1023.

Algorithm For floating-point quantizers, .

For fixed-point quantizers,  by definition.

See Also eps, exponentbias, exponentlength, exponentmin

Emax 2e 1– 1–=

Emax 0=
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13exponentminPurpose Return the minimum exponent for a quantizer

Syntax emin = exponentmin(q)

Description emin = exponentmin(q) returns the minimum exponent for quantizer q. If q is 
a fixed-point quantizer, exponentmin returns 0.

Examples q = quantizer('double'); 
emin = exponentmin(q) 

returns the value emin = 1022.

Algorithm For floating-point quantizers, .

For fixed-point quantizers, .

See Also eps, exponentbias, exponentlength, exponentmax

Emin 2–
e 1– 2+=

Emin 0=
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13fdatoolPurpose Open the Filter Design and Analysis Tool.

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to:

• Design filters

• Quantize filters

• Analyze filters

• Modify existing filter designs

• Realize Simulink models of quantized, direct form, FIR filters

• Perform digital frequency transformations of filters

Refer to “Using FDATool with the Filter Design Toolbox” for more information 
about using the quantization features of FDATool. For general information 
about using FDATool, refer to “Filter Design and Analysis Tool” in your Signal 
Processing Toolbox documentation.

When you open FDATool and you have Filter Design Toolbox installed, 
FDATool incorporates additional features that are provided by Filter Design 
Toolbox. With Filter Design Toolbox installed, FDATool lets you design and 
analyze quantized filters, as well as convert quantized filters to various filter 
structures, transform filters, and realize models of filters.
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Use the Set Quantization Parameters option to configure the quantization 
settings for a quantized filter, or to access the tools to scale the filter 
coefficients.

Set Quantization Parameters — provides access to the properties of the 
quantizers that compose a quantized filter. When you click Set Quantization 
Parameters, you see FDATool displaying the quantization parameters at the 
bottom of the dialog, as shown in the figure.
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Transform Filter—clicking this button opens the Frequency 
Transformations pane so you can use digital frequency transformations to 
change the magnitude response of your filter.

Realize Model—starting from your quantized, direct form, FIR  filter, clicking 
this button creates a Simulink model of your filter structure in new model 
window.

Turn quantization on—enables the Quantized Filter panel and quantizes 
the current filter. Select this option when you want to quantize a filter or set 
the quantization properties for a filter.

Optimize…—opens the Quantized Optimizations dialog to let you specify 
how to quantize and scale your filter.
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Remarks By incorporating many advanced filter design methods from Filter Design 
Toolbox,FDATool provides more design methods than the SPTool Filter 
Designer.

See Also fdatool, fvtool, sptool in your Signal Processing Toolbox documentation
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13fftPurpose Apply a quantized fast Fourier transform to data

Syntax y = fft(F,x)
y = fft(F,x,dim)

Description y = fft(F,x) uses quantized FFT (fast Fourier transform) F to compute the 
FFT of vector x. The parameters of the quantized FFT are specified in 
quantized FFT F. The radix is specified by F.radix. The decimation is specified 
by F.decimation. The length of the FFT is specified by F.length. When the 
length of x is less than F.length, x is padded with zeros. When x is longer than 
F.length, x is truncated. For matrices, the FFT operation is applied to each 
column. For N-D arrays, the FFT operation operates on the first nonsingleton 
dimension.

y = fft(F,x,dim) applies the quantized FFT operation across the dimension 
dim.

Examples When you quantize a sinusoid, you generate errors as a result of the 
quantization process. This example demonstrates this effect. We create a 
sinusoid, quantize it, and look at the error between the quantized and 
unquantized sinusoids. Then we plot the FFTs for both signals.

n = 128;
t = (0:n-1/n);
x = sin(2*pi*16*t)/16;% Reference sinusoid
q = quantizer([5 4]);
f = qfft('length',n,'inputformat',q);
plot(t,[quantize(q,x);x]);% Plot both signals
plot(t,[quantize(q,x)-x]);% Plot the error
plot(t,[20*log10(abs(fft(f,x)));...
(20*log10(abs(fft(x)))/20)])% Plot the FFTs for both signals
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The following figure presents the results.

Looking at the subplot of the error between the reference and quantized 
sinusoids, you see that the error is periodic. Because the error is periodic, the 
FFT of the quantized sinusoid includes periodic frequency content not in the 
reference signal, as seen in the FFTs subplot.

See Also get, ifft, qreport, qfft, set
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13filterPurpose Apply a quantized filter to data and access states and filtering information

Syntax y = filter(Hq,x)
[y,zf] = filter(Hq,x)
[...] = filter(Hq,x,zi)
[...] = filter(Hq,x,zi,dim)
[y,zf,s,z,v] = filter(Hq,x...)

Description y = filter(Hq,x) filters a vector of real or complex input data x through a 
quantized filter Hq, producing filtered output data y. The vectors x and y have 
the same length. 

If x is a matrix, y = filter(Hq,x) filters each column of x to produce a matrix 
y. If x is a multidimensional array, y = filter(Hq,x) filters x along the first 
nonsingleton dimension of x.

[y,zf] = filter(Hq,x) produces an additional output argument zf. 
zf contains the final values for the state vector calculated from zero initial 
conditions for the state. The form zf takes depends on the data to be filtered 
and the number of stages in the filter, as detailed in Table 13-3, Final State 
Form Depends on Filtered Data and Filter Structure.

[...] = filter(Hq,x,zi) specifies the initial conditions for the state vector 
in zi. The form for specifying zi is described in Table 13-2, Initial State 
Format Depends on the Filter Structure. To specify the same initial condition 
for all state components, enter zi as a scalar. You can set zi to zero, [], or {} 
to specify zero (the default) initial conditions.

The form of the initial and final states associated with a quantized filter Hq 
depends on the filter structure and the data to be filtered. The following tables 



filter

13-142

give the form for either entering the initial states or retrieving the final states 
of the quantized filter.

The variables in these tables are described as follows:

• si is the number of states in the ith section of the filter.

• c is prod(size(x))/size(x,dim), where dim is the first nonsingleton 
dimension into which you are filtering.

To figure out the dimensions of the initial or final conditions, run the filter once 
with empty initial conditions. Then the final conditions are the right size for 
the initial conditions:

[y,zf] = filter(Hq,x);

Look at the size and data type of zf. The initial conditions, zi, will be the same 
size as zf.

Table 13-2:  Initial State Format Depends on the Filter Structure

Number of Filter 
Sections

Format of the Initial State

1 A column vector of length s1

n A 1-by-n cell array of vectors of length si,
i=1, 2,...,n

Table 13-3:  Final State Form Depends on Filtered Data and Filter Structure

Filtered Data Number of 
Filter Sections

Form of the Final State

Vector 1 A column vector of length s1

Vector n A 1-by-n cell array of vectors of 
length si, i=1, 2,...,n

Multidimensional 
array

1 An s1-by-c matrix 

Multidimensional 
array

n 1-by-n cell array of si-by-c 
matrices, i=1, 2,...,n
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Use the StatesPerSection property of the quantized filter Hq to access the 
number of states in each section. See “Quantized Filter Properties Reference” 
on page 12-11 for more information on filter properties.

[...] = filter(Hq,x,zi,dim) applies the quantized filter Hq to the input 
data located along the specific dimension of x specified by dim. 

[y,zf,s,z,v] = filter(Hq,x...) returns s, a MATLAB structure 
containing quantization information (refer to qreport for details); z, the filter’s 
state sequence; and v, the number of overflows at each time step of the filter. 
When you include four or five output arguments, the input argument x must 
be a vector. z is a cell array containing the sequence of states at each time step, 
having 1 element per filter and 1 column per time step. The initial conditions 
of the kth filter section are in the first column of z{k}:zi{k}=z{k}(:,1). The 
final conditions of the kth filter section are in the last column of 
z{k}:zf{k} = z{k}(:,end). Overflows for the kth section are in v{k}.

Examples Find the response of a quantized digital filter.

randn('state',0);
x = randn(100,1);
warning on;
[b,a] = butter(3,.9,'high');
Hq = sos(qfilt('referencecoefficients',{b,a}))
Warning: 3 overflows in coefficients.

y = filter(Hq,x);

Warning: 27 overflows in QFILT/FILTER.

Max            Min     NOverflows    NUnderflows    NOperations
 Coefficient              1        -0.7419              0              0              4
                     0.8238             -1              0              0              6
       Input          2.183         -2.171             27              0            100
      Output         0.4361          -0.45              0              0            100
Multiplicand              1             -1              0              2            600
                     0.4361          -0.45              0              0            700
     Product        0.01276       -0.01227              0              0            600
                     0.4361          -0.45              0              0            700
         Sum        0.01278       -0.01221              0              0            300
                     0.2181         -0.225              0              0            500
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Hq.filterstructure

ans =

df2t

Notice the warnings returned during filter quantization and application. The 
first warning indicates that one of the filter coefficients overflowed during 
quantization before converting the filter to second-order section form. Applying 
the function sos to the filter removed the coefficient overflows. The second 
warning displays the overflow report, listing details about the filtering 
operation. 

Note  Use qreport to display the information logged during a filtering 
operation.

Algorithm The filter command implements fixed- or floating-point arithmetic on the 
quantized filter structure you specify. The state vector z associated with the 
filter is a vector whose components are derived from the values of each of the 
input signals to each delay in the filter. The length of z is the same as the 
number of delays in the filter. 

The implementation of filter depends on the filter structure. For example, 
the operation of filter at sample m for a direct form II transposed filter is 
given by the quantized time domain difference equations for y and the states zi 
shown below. Square brackets denote the quantization that takes place for the 
input data x, the output data y, the coefficients, the products, and the sums.

y m( )
b 1( )[ ] x m( )[ ][ ] z1 m 1–( )+[ ]

a 1( )[ ]
-------------------------------------------------------------------------=

z1 m( ) b 2( )[ ] x m( )[ ][ ] z+ 2 m 1–( ) a 2( )[ ] y m( )[ ]–[ ]=

! !=

zn 2– m( ) b n 1–( )[ ] x m( )[ ][ ] zn 1– m 1–( )+[ ] a n 1–( )[ ] y m( )[ ]–[ ]=

zn 1– m( ) b n( )[ ] x m( )[ ][ ] a n( )[ ] y m( )[ ]–[ ]=
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Notice that for this df2t filter structure, you divide by a(1). For efficient 
computation, choose a(1) to be a power of 2.

Note  qfilt/filter does not normalize the filter coefficients automatically. 
Function filter supplied by MATLAB does normalize the coefficients.

See Also impz, qfilt, qreport

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Pren-
tice-Hall, 1989.
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13firceqripPurpose Design constrained, equiripple, finite impulse response (FIR) filters

Syntax h = firceqrip(n,wo,del)
h = firceqrip(..., slope ,r)
h = firceqrip(...,'passedge')
h = firceqrip(...,'stopedge')
h = firceqrip(...,'high')
h = firceqrip(...,'min')
h = firceqrip(...,'invsinc',c)

Description h = firceqrip(n,wo,del) design an order n filter (filter length equal n+1) 
lowpass FIR filter with linear phase.

firceqrip produces the same equiripple lowpass filters that remez produces 
using the Parks-McClellan algorithm. The difference is how you specify the 
filter characteristics for the function.

Input argument wo specifies the cutoff frequency. The two-element vector del 
specifies the peak or maximum error allowed in the passband and stopbands. 
Enter [d1 d2] for del where d1 sets the passband error and d2 sets the 
stopband error. Since firceqrip works in the normalized frequency domain, 
you must set wo to be between 0 and 1 (0 < wo < 1). 

h = firceqrip(..., slope ,r) uses the input keyword 'slope' and input 
argument r to design a filter with a stopband that does not demonstrate 
equiripple characteristics. r determines the slope of the stopband in dB when 
r > 0. Try setting r to 10 to see the effect on the filter frequency response. In 
the Examples section, Example 3 designs a filter with r equal to 20.

h = firceqrip(...,'passedge') designs a filter where wo specifies the 
frequency at which the passband starts to roll off. 

h = firceqrip(...,'stopedge') designs a filter where wo specifies the 
frequency at which the stopband begins.

h = firceqrip(...,'high') designs a high pass FIR filter instead of 
a lowpass filter.

h = firceqrip(...,'min') designs an FIR  filter with minimum phase.
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h = firceqrip(...,'invsinc',c)) designs a lowpass filter whose passband 
has the shape of the inverse sinc function. For this syntax, keyword invsinc 
applies the inverse sinc function as defined by whether c is a scalar or a 
two-element vector:

• When you use c as a scalar with the invsinc keyword, firceqrip applies the 
function 1/sinc(c*w), where w is the normalized frequency, to the passband.

• When you use c as a two-element vector entered as [c p],with the invsinc 
keyword, firceqrip applies the function 1/sinc(c*w)p to the passband, where 
w is the normalized frequency. 

In both cases, c must meet the condition c < 1/wo.

When you use a cascaded-integrated comb (CIC)  filter in series with this FIR 
filter, argument p lets you compensate for the droop in the passband of the CIC 
filter. Setting p equal to the number of stages in your CIC generally produces  
an FIR filter whose passband neatly compensates for the CIC passband shape.

To let you specify precisely the FIR filter to design, use any or all of the optional 
input arguments together. Any ordering of the optional arguments works—
order is not important in the function call. Refer to Examples 3 and 4 to see 
multiple optional input arguments being used.

Note  If the wo you specify is too small or too large, or if either c or p is too 
large, your filter specifications may be unfeasible, causing the design 
algorithm to fail to generate your filter.

Examples To introduce a few of the variations on FIR filters that you design with 
firceqrip, these five examples cover both the default syntax 
h = firceqrip(n,wo,del) and some of the optional input arguments. For each 
example, the input arguments n, wo, and del remain the same.

Example 1—Design an order = 30 FIR filter without using optional input 
arguments or keywords.

h = firceqrip(n,wo,del); fvtool(h)

Both the phase and magnitude response for the resulting lowpass filter appear 
in the plot shown here.
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Example 2—Design an order = 30 FIR filter with the stopedge keyword to 
define the response at the edge of the filter stopband.

h = firceqrip(n,wo,del,'stopedge'); fvtool(h)

Example 3—Design an order = 30 FIR filter with the slope keyword and 
r = 20.

h = firceqrip(n,wo,del,'slope',20,'stopedge'); fvtool(h)

Example 4—Design an order = 30 FIR filter defining the stopband and 
specifying that the resulting filter is minimum phase with the min keyword.

h = firceqrip(n,wo,del,'stopedge','min'); fvtool(h)
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Comparing this filter to the filter in Example 1, notice that the cutoff frequency 
wo = 0.4 now applies to the edge of the stopband rather than the point at which 
the frequency response magnitude is 0.5.

Viewing the zero-pole plot shown here reveals this is a minimum phase FIR 
filter—the zeros lie on or inside the unit circle, z = 1.

Example 5—Design an order = 30 FIR filter with the invsinc keyword to 
shape the filter passband with an inverse sinc function.

h = firceqrip(n,wo,del,'invsinc',[2 1.5]); fvtool(h)
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With the inverse sinc function being applied defined as 1/sinc(2*w)1.5, the figure 
shows the reshaping of the passband that results from using the invsinc 
keyword option, and entering c as the two-element vector [2 1.5].

See Also firhalfband, firnyquist, gremez, ifir, iirgrpdelay, iirlpnorm, iirlpnormc

fircls,  firls, remez in your Signal Processing Toolbox documentation
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13firhalfbandPurpose Design a halfband FIR filter

Syntax b = firhalfband(n,fp)
b = firhalfband(n,win)
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')

Description b = firhalfband(n,fp) designs a lowpass halfband FIR filter of order N with 
an equiripple characteristic. N must be selected such that N/2 is an odd integer. 
fp determines the passband edge frequency, and it must satisfy 0 < fp < 1/2, 
where 1/2 corresponds to  rad/sample.

b = firhalfband(n,win) designs a lowpass Nth-order filter using the 
truncated, windowed-impulse response method instead of the equiripple 
method. win is an n+1 length vector. The ideal impulse response is truncated to 
length n + 1, and then multiplied point-by-point with the window specified in 
win.

b = firhalfband('minorder',fp,dev) designs a lowpass minimum-order 
filter, with passband edge fp. The peak ripple is constrained by the scalar dev. 
This design uses the equiripple method.

b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass 
minimum-order filter, with passband edge fp. The peak ripple is constrained 
by the scalar dev. This design uses the Kaiser window method.

b = firhalfband(...,'high') returns a highpass halfband FIR filter.

Examples This example designs a minimum order halfband filter with specified 
maximum ripple:

b=firhalfband('minorder',.45,0.0001);
[h,w,s]=freqz(b); s.plot='mag'; s.yunits = 'li';
fvtool(h,w,s); % Plot magnitude only in linear units
figure;
impz(b) % Impulse response is zero for every other sample

See Also firnyquist, gremez

π 2⁄
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fir1, firls, remez in your Signal Processing Toolbox documentation

References Saramaki, T, “Finite Impulse Response Filter Design,” Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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13firlp2lpPurpose Convert FIR Type I lowpass to to FIR Type 1 lowpass with inverse band width.

Syntax g = firlp2lp(b)

Description g = firlp2lp(b) transforms the Type I lowpass FIR filter b with zero-phase 
response Hr(w) to a Type I lowpass FIR filter g with zero-phase response 
[1 - Hr(π-w)].

If b is a narrowband filter, g will be a wideband filter and vice versa. The 
passband and stopband ripples of g will be equal to the stopband and passband 
ripples of b.

Examples Overlay the original narrowband lowpass and the resulting wideband lowpass

b = gremez(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
zerophase(b);
hold on
h = firlp2lp(b); 
zerophase(h); hold off

See Also firlp2hp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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13firlp2hpPurpose Convert FIR Type I lowpass filter to Type I FIR highpass filter

 Syntax g = firlp2hp(b)
g = firlp2hp(b,'wide')

Description g = firlp2hp(b) transforms the type I lowpass FIR filter b with zero-phase 
response Hr(w) into a type I highpass FIR filter g with zero-phase response 
Hr(π-w).

The passband and stopband ripples of g will be equal to the passband and 
stopband ripples of b.

g = firlp2hp(b,'wide') transforms the Type I lowpass FIR filter b with 
zero-phase response Hr(w) into a Type I highpass FIR filter g with zero-phase 
response 1 - Hr(w).

For this case, the passband and stopband ripples of g will be equal to the 
stopband and passband ripples of b.

Examples Overlay the original narrowband lowpass and the resulting narrowband 
highpass and wideband highpass

b = gremez(36,[0 .2 .25 1],[1 1 0 0],[1 3]);
zerophase(b); hold on;
h = firlp2hp(b);
zerophase(h);
g = firlp2hp(b,'wide');
zerophase(g); hold off

See Also firlp2lp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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13firlpnormPurpose Least P-norm optimal FIR filter design

Syntax b = firlpnorm(n,f,edges,a)
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

Description b = firlpnorm(n,f,edges,a) returns a filter of numerator order n which 
represents the best approximation to the frequency response described by f 
and a in the least-Pth norm sense. P is set to 128 by default, which essentially 
equivalent to the infinity norm. Vector edges specifies the band-edge 
frequencies for multiband designs. firlpnorm uses an unconstrained 
quasi-Newton algorithm to design the specified filter.

f and a must have the same number of elements, which can exceed the number 
of elements in edges. This lets you specify filters with any gain contour within 
each band. However, the frequencies in edges must also be in vector f. Always 
use freqz to check the resulting filter.

b = firlpnorm(n,f,edges,a,w) uses the weights in w to weight the error. 
w has one entry per frequency point (the same length as f and a) which tells 
firlpnorm how much emphasis to put on minimizing the error in the vicinity 
of each frequency point relative to the other points. For example,

b = firlpnorm(20,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband, and with 
emphasis placed on minimizing the error in the stopband.

b = firlpnorm(n,f,edges,a,w,p) where p is a two-element vector [pmin 
pmax] lets you specify the minimum and maximum values of p used in the 
least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, 
or Chebyshev, norm. pmin and pmax should be even numbers. The design 
algorithm starts optimizing the filter with pmin and moves toward an optimal 
filter in the pmax sense.When p is the string 'inspect', firlpnorm does not 
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optimize the resulting filter. You might use this feature to inspect the initial 
zero placement.

b = firlpnorm(n,f,edges,a,w,p,dens) specifies the grid density dens used 
in the optimization. The number of grid points is [dens*(n+1)]. The default is 
20. You can specify dens as a single-element cell array. The grid is equally 
spaced.

b = firlpnorm(n,f,edges,a,w,p,dens,initnum) lets you determine the 
initial estimate of the filter numerator coefficients in vector initnum. This can 
prove helpful for difficult optimization problems. The pole-zero editor in the 
Signal Processing Toolbox can be used for generating initnum.

b = firlpnorm(...,'minphase') where string 'minphase' is the last 
argument in the argument list generates a minimum-phase FIR filter. By 
default, firlpnorm design mixed-phase filters. Specifying input option 
'minphase' causes firlpnorm to use a different optimization method to design 
the minimum-phase filter. As a result of the different optimization used, the 
minimum-phase filter can yield slightly different results.

[b,err] = firlpnorm(...) returns the least-pth approximation error err.

Examples To demonstrate firlpnorm, here are two examples — the first designs a 
lowpass filter and the second a highpass, minimum-phase filter.

% Lowpass filter with a peak of 1.4 in the passband.
b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...
[1 1 1 2 2]);
fvtool(b)
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From the figure you see the resulting filter is lowpass, with the desired 1.4 
peak in the passband (notice the 1.4 specified in vector a).

Now for the minimum-phase filter.

% Highpass minimum-phase filter optimized for the 4-norm.
b = firlpnorm(44,[0 .4 .45 1],[0 .4 .45 1],[0 0 1 1],[5 1 1 1],...
[2 4],'minphase');
fvtool(b)

As shown in the next figure, this is a minimum-phase, highpass filter. 
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The next zero-pole plot shows the minimum phase nature more clearly.
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See Also gremez, iirgrpdelay, iirlpnorm, iirlpnormc
filter, fvtool, freqz, zplane in your Signal Processing Toolbox 
documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Part

Im
ag

in
ar

y 
P

ar
t

Zero−Pole Plot of Minimum Phase FIR Filter

244



firminphase

13-160

13firminphasePurpose Compute the minimum-phase FIR spectral factor

Syntax h = firminphase(b)
h = firminphase(b,nz)

Description h = firminphase(b) computes the minimum-phase FIR spectral factor h of a 
linear-phase FIR filter b. Filter b must be real, have even order, and have  
nonnegative zero-phase response.

h = firminphase(b,nz) specifies the number of zeros, nz, of b that lie on the 
unit circle. You must specify nz as an even number to compute the 
minimum-phase spectral factor because every root on the unit circle must have 
even multiplicity. Including nz can help firminphase calculate the required 
FIR spectral factor. Zeros with multiplicity greter than two on the unit circle 
cause problems in the spectral factor determination.

Note  You can find the maximum-phase spectral factor, g, by reversing h, 
such that , and .

Example This example designs a constrained least squares filter with a nonnegative 
zero-phase response, and then uses firminphase to compute the 
minimum-phase spectral factor. 

f  = [0 0.4 0.8 1];
a  = [0 1 0];
up = [0.02 1.02  0.01];
lo = [0 0.98 0]; % The zeros insure nonnegative zero-phase resp.
n  = 32;
b  = fircls(n,f,a,up,lo);
h  = firminphase(b);

See Also gremez
fircls, zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.

g fliplr h( )= b conv h g,( )=
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13firnyquistPurpose Design a Lowpass Nyquist (L-th band) FIR filter

Syntax firnyquist(n,l,r,varargin)

Description b = firnyquist(n,l,r) designs an N-th order, L-th band, Nyquist FIR filter  
with a roll-off factor r and an equiripple characteristic.

The rolloff factor r is related to the normalized transition width tw by 
  (rad/sample). The order, n, must be even. l must be an integer 

greater than one. If l is not specified, it defaults to 4.  r must satisfy 0< r < 1. 
If r is not specified, it defaults to 0.5.

b = firnyquist('minorder',l,r,dev) designs a minimum-order, L-th band 
Nyquist FIR filter with a rolloff factor r using the Kaiser window. The peak 
ripple is constrained by the scalar dev.

b = firnyquist(n,l,r,decay) designs an N-th order, L-th band, Nyquist FIR 
filter where the scalar decay,  specifies the rate of decay in the stopband. decay 
must be nonnegative. If omitted or left empty, decay defaults to 0 which yields 
an equiripple stopband. A nonequiripple stopband may be desirable for 
decimation purposes.

b = firnyquist(n,l,r,'nonnegative') returns an FIR filter with 
nonnegative zero-phase response.  This filter can be spectrally factored into 
minimum-phase and maximum-phase “square-root” filters. This allows using  
the spectral factors in applications such as matched-filtering.

b = firnyquist(n,l,r,'minphase') returns the minimum-phase spectral 
factor bmin of order n. bmin meets the condition b=conv(bmin,bmax) so that b 
is an L-th band FIR Nyquist filter of order 2n with rolloff factor r. Obtain bmax, 
the maximum phase spectral factor by reversing the coefficients of bmin. For 
example, bmax = bmin(end:-1:1).

Example Example 1:  This example designs a minimum phase factor of a Nyquist filter.

bmin = firnyquist(47,10,.45,'minphase'); 
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

tw 2π r l⁄( )=
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Example 2: This example compares filters with different decays.

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,.5);
b3 = firnyquist(72,8,.3,1);
fvtool(b1,1,b2,1,b3,1);

See Also firhalfband, gremez, firminphase
firrcos, firls in your Signal Processing Toolbox documentation

References [1]  T. Saramaki, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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13fractionlengthPurpose Return the fraction length for a quantizer

Syntax f = fractionlength(q)

Description f = fractionlength(q) returns the fraction length of quantizer q. This is 
useful because fraction length is valid whether the quantizer mode is 
floating-point or fixed-point.

Examples For a floating-point quantizer

q = quantizer('float',[32 8]); 
f = fractionlength(q); 

returns .

For a fixed-point quantizer

q = quantizer('fixed',[6 4]) 
f = fractionlength(q); 

returns f = 4.

Algorithm For floating-point quantizers, f = w – e – 1, where w is the word length and e 
is the exponent length.

For fixed-point quantizers, f is part of the format [w f].

See Also quantizer

f 23 32= = 8– 1–
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13freqzPurpose Compute the frequency response of quantized filters

Syntax [h,w] = freqz(Hq,n)
h = freqz(Hq,w)
[h,w] = freqz(Hq,n,'whole')
[h,w,units,href] = freqz(Hq,...)
[h,f] = freqz(Hq,n,fs)
h = freqz(Hq,f,fs)
[h,f] = freqz(Hq,n,'whole',fs)
[h,f,s] = freqz(Hq,...)
[h,f,units,href] = freqz(Hq,...,fs)
freqz(Hq,...)

Description [h,w] = freqz(Hq,n) returns the frequency response vector h and the 
corresponding frequency vector w for the quantized filter Hq. freqz uses the 
transfer function associated with the quantized filter to calculate the frequency 
response of the filter. The vectors h and w are both of length n. The frequency 
vector w has values ranging from 0 to π radians per sample. If you do not specify 
the integer n, or you specify it as the empty vector [], the frequency response 
is calculated using the default value of 512 samples.

h = freqz(Hq,w) returns the frequency response vector h calculated at the 
frequencies (in radians per sample) supplied by the vector w. The vector w can 
have any length.

[h,w] = freqz(Hq,n,'whole') uses n sample points around the entire unit 
circle to calculate the frequency response. Frequency vector w has length n and 
values ranging from 0 to 2π radians per sample.

[h,w,units,href] = freqz(Hq,...) returns the optional string argument 
units, specifying the units for the frequency vector w. The string returned in 
units is 'rad/sample', denoting radians per sample. The optional output 
argument href is the frequency response of the transfer function associated 
with the reference filter used to specify the quantized filter Hq.

[h,f] = freqz(Hq,n,fs) returns the frequency response vector h and the 
corresponding frequency vector f for the quantized filter Hq. The vectors h and 
f are both of length n. The frequency response calculation uses the sampling 
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frequency specified by the scalar fs (in Hz). The frequency vector f has values 
ranging from 0 to (fs/2) Hz. 

h = freqz(Hq,f,fs) returns the frequency response vector h calculated at the 
frequencies (in Hz) supplied in the vector f. Vector f can be any length.

[h,f] = freqz(Hq,n,'whole',fs) uses n points around the entire unit circle 
to calculate the frequency response. Frequency vector f has length n and has 
values ranging from 0 to fs Hz. 

[h,f,s] = freqz(Hq,...) returns the structure s with the following fields:

• s.xunits—a string specifying the frequency axis units. The contents of 
s.xunits can be one of the following:

- 'rad/sample' (default)
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'

- A user-specified string

• s.yunits—a string specifying the vertical axis units. The contents of 
s.yunits can be one of the following:

- 'dB' (default)
- 'linear'
- 'squared'

• s.plot—a string specifying the type of plot to produce. The contents of 
s.plot can be one of the following:

- 'both' (default)
- 'mag'
- 'phase'

[h,f,units,href] = freqz(Hq,...,fs) returns the optional MATLAB 
structure units, that freqzplot uses for plotting. The string returned in units 
is 'Hz' for hertz. The optional output argument href is the frequency response 
of the transfer function associated with the reference filter used to specify the 
quantized filter Hq.
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freqz(Hq,...) plots the magnitude and unwrapped phase of the frequency 
response of the quantized filter Hq in the current figure window.

Remarks There are several ways of analyzing the frequency response of quantized 
filters. freqz accounts for quantization effects in the filter coefficients, but does 
not account for quantization effects in filtering arithmetic. To account for the 
quantization effects in filtering arithmetic, refer to function nlm.

Algorithm freqz calculates the frequency response for a quantized filter from the filter 
transfer function Hq(z). The complex-valued frequency response is calculated 

by evaluating Hq(ejω) at discrete values of w specified by the syntax you use. 
The integer input argument n determines the number of equally-spaced points 
around the upper half of the unit circle at which freqz evaluates the frequency 
response. The frequency ranges from 0 to π radians per sample when you do not 
supply a sampling frequency as an input argument. When you supply the 
scalar sampling frequency fs as an input argument to freqz, the frequency 
ranges from 0 to fs/2 Hz. 

To calculate the transfer function associated with a quantized filter, freqz 
uses the values of the QuantizedCoefficients and FilterStructure 
properties. 

When you include the optional output argument href in the command, freqz 
uses the value of the ReferenceCoefficients property to calculate the 
frequency response of the reference filter transfer function.

Examples Plot the estimated frequency response of a quantized filter.

b = fir1(80,0.5,kaiser(81,8));
Hq = qfilt('fir',{b});
[h,w,units,href] = freqz(Hq);
plot(w,20 * log10(abs(h)),'-',w,20 * log10(abs(href)),'--')
legend('Quantized filter','Reference filter',3)
xlabel('Frequency in rad/sample')
ylabel('Magnitude in dB')
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title('Magnitude of the Frequency Response Compared')

See Also qfilt
fvtool in your Signal Processing Toolbox documentation
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13getPurpose Return the property values for quantized filters, quantizers, and quantized 
FFTs

Syntax get(obj,pn,pv)
get(hq)
struct = get(hq)
v = get(hq,'propertyname')
value = get(f, 'propertyname')
structure = get(f)
value = get(q, 'propertyname')
structure = get(q)

Description get(obj,pn,pv) displays the property names and property values associated 
with obj, where obj is one of the following:

• A quantizer

• A quantized filter

• A quantized FFT

pn is the name of a property of the object obj, and pv is the value associated 
with pn.

get(hq) displays a list of the property names and property values associated 
with quantized filter hq.

struct = get(hq) returns the MATLAB structure struct, a list of the 
properties associated with the quantized filter hq, along with the properties’ 
associated values. Each field associated with struct is named according to the 
corresponding property name.

v = get(hq,'propertyname') returns the property value v associated with 
the property named in the string 'propertyname' for the quantized filter hq. If 
you replace the string 'propertyname' by a cell array of a vector of strings 
containing property names, get returns a cell array of a vector of corresponding 
values.

value = get(f, 'propertyname') returns the property value value 
associated with the property named in the string 'propertyname' for the 
quantized FFT f. If you replace the string 'propertyname' by a cell array of a 
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vector of strings containing property names, get returns a cell array of a vector 
of corresponding values.

structure = get(f) returns a structure containing the properties and states 
of quantized FFT f.

value = get(q, 'propertyname') returns the property value value 
associated with the property named in the string 'propertyname' for the 
quantizer q. If you replace the string 'propertyname' by a cell array of a vector 
of strings containing property names, get returns a cell array of a vector of 
corresponding values.

structure = get(q) returns a structure containing the properties and states 
of quantizer q.

Remarks For more information on the properties associated with quantized filters, see 
“A Quick Guide to Quantized Filter Properties” on page 12-10. For more 
information on the properties associated with quantized FFTs, see “A Quick 
Guide to Quantized FFT Properties” on page 12-51. For more information on 
the properties associated with quantizers, refer to “A Quick Guide to Quantizer 
Properties” on page 12-2.

Examples Use get to list the properties of quantized filter hq, along with the property 
values. Then retrieve the value associated with the OutputFormat property for 
this filter in a structure v.

hq = qfilt;
get(hq)

Quantized Direct form II transposed filter                            
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
+ (1)       0.999969482421875  1.000000000000000000                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
+ (1)       0.999969482421875  1.000000000000000000                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
  StatesPerSection = [0]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
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      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
Warning: 2 overflows in coefficients. 

v = get(hq,'OutputFormat')

v =

            Mode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [16  15]
 
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0
     NOperations = 0

q = quantizer('fixed', 'floor', 'saturate', [16 15]) 
struct     = get(q) 
mode       = get(q, 'mode') 
format     = get(q, 'format') 
noverflows = get(q, 'noverflows') 

get also supports the dot notation for setting and accessing properties.

q = quantizer('fixed', 'floor', 'saturate', [16 15]) 
struct     = get(q) 
mode       = q.mode 
format     = q.format 
noverflows = q.noverflows 

See Also qfft, qfilt, quantizer, set
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13gremezPurpose Use the Parks-McClellan technique to design digital FIR filters 

Syntax b = gremez(n,f,a,w)
b = gremez(n,f,a,'hilbert') 
b = gremez(n,f,a,'differentiator')
b = gremez(m,f,a,r)
b = gremez({m,ni},f,a,r)
b = gremez(n,f,a,w,c) 
b = gremez(n,f,a,w,e) 
b = gremez(n,f,a,s)
b = gremez(n,f,a,s,w,e) 

Description gremez is a minimax filter design algorithm you use to design the following 
types of real FIR filters: 

• Types 1-4 linear phase:

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase

• Minimum order (even or odd)

• Extra ripple

• Maximal ripple

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain 

• Arbitrary shape frequency response curve filters

b = gremez(n,f,a,w) returns a length n+1 linear phase FIR filter which has 
the best approximation to the desired frequency response described by f and 
a in the minimax sense. w is a vector of weights, one per band. When you omit 
w, all bands are weighted equally. For more information on the input 
arguments, refer to remez in Signal Processing Toolbox User’s Guide.
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b = gremez(n,f,a,'hilbert') and b = gremez(n,f,a,'differentiator') 
design FIR Hilbert transformers and differentiators. For more information on 
designing these filters, refer to remez in Signal Processing Toolbox User’s 
Guide. 

b = gremez(m,f,a,r), where m is one of 'minorder', 'mineven' or 'minodd', 
designs filters repeatedly until the minimum order filter, as specified in m, that 
meets the specifications is found. r is a vector containing the peak ripple per 
frequency band. You must specify r. When you specify 'mineven' or 'minodd', the 
minimum even or odd order filter is found. 

b = gremez({m,ni},f,a,r) where m is one of 'minorder', 'mineven' or 'minodd', 
uses ni as the initial estimate of the filter order. ni is optional for common filter 
designs, but it must be specified for designs in which remezord cannot be used, 
such as while designing differentiators or Hilbert transformers. 

b = gremez(n,f,a,w,c) designs filters having constrained error magnitudes 
(ripples). c is a cell array of strings of length w. The entries of c must be either 
'c' to indicate that the corresponding element in w is a constraint (the ripple for 
that band cannot exceed w) or 'w' indicating that the corresponding entry in w is 
a weight. There must be at least one unconstrained band—c must contain at 
least one 'w' entry. For example, 

b = gremez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2], {'w' 'c'}) uses a 
weight of one in the passband, and constrains the stopband ripple to 0.2 or less. 

A hint about using constrained values: if the resulting filter does not touch the 
constraints, increase the error weighting you apply to the unconstrained 
bands. 

b = gremez(n,f,a,w,e) specifies independent approximation errors for 
different bands. Use this syntax to design extra ripple or maximal ripple filters. 
These filters have interesting properties such as having the minimum 
transition width. e is a cell array of strings specifying the approximation errors 
to use. Its length must equal the number of bands. Entries of e must be in the 
form 'e#' where # indicates which approximation error to use for the 
corresponding band. For example, when e = {'e1','e2','e1'}, the first and 
third bands use the same approximation error 'e1' and the second band uses 
a different one 'e2'. Note that when all bands use the same approximation 
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error, such as {'e1','e1','e1',...}, it is equivalent to omitting e, as in 
b = gremez(n,f,a,w). 

b = gremez(n,f,a,s) is used to design filters with special properties at 
certain frequency points. s is a cell array of strings and must be the same 
length as f and a. Entries of s must be one of:

• 'n' - normal frequency point.

• 's' - single-point band. The frequency “band” is given by a single point. The 
corresponding gain at this frequency point must be specified in a.

• 'f' - forced frequency point. Forces the gain at the specified frequency band 
to be the value specified.

• 'i' - indeterminate frequency point. Use this argument when adjacent 
bands abut one another (no transition region). 

For example, the following command designs a bandstop filter with zero-valued 
single-point stop bands (notches) at 0.25 and 0.55.

b = gremez(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})

b = gremez(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'})
designs a highpass filter with the gain at 0.06 forced to be zero. The band edge 
at 0.055 is indeterminate since the first two bands actually touch. The other 
band edges are normal.

b = gremez(n,f,a,s,w,e) specifies weights and independent approximation 
errors for filters with special properties. The weights and properties are 
included in vectors w and e. Sometimes, you may need to use independent 
approximation errors to get designs with forced values to converge. For 
example,

b = gremez(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

b = gremez(...,'1') designs a type 1 filter (even-order symmetric). You can 
specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), and 
type 4 (odd-order antisymmetric) filters as well. Note that restrictions apply to 
a at f=0 or f=1 for FIR filter types 2, 3, and 4.



gremez

13-174

b = gremez(...,'minphase') designs a minimum-phase FIR filter. You can 
use the argument 'maxphase' to design a maximum phase FIR filter.

b = gremez(..., 'check') returns a warning when there are potential 
transition-region anomalies.

b = remez(...,{lgrid}), where {lgrid} is a scalar cell array. The value of 
the scalar controls the density of the frequency grid by setting the number of 
samples used along the frequency axis. 

[b,err] = gremez(...) returns the unweighted approximation error 
magnitudes. err contains one element for each independent approximation 
error returned by the function.

[b,err,res] = gremez(...) returns the structure res comprising optional 
results computed by gremez. res contains the following fields.

Structure Field Contents

res.fgrid Vector containing the frequency grid used in 
the filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency 
grid

res.error Error at each point (desired response - actual 
response) on the frequency grid 

res.iextr Vector of indices into fgrid of extremal 
frequencies

res.fextr Vector of extremal frequencies

res.order Filter order
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gremez is also a “function function”, allowing you to write a function that 
defines the desired frequency response. 

b = gremez(n,f,fresp,w) returns a length N+1 FIR filter which has the best 
approximation to the desired frequency response as returned by the 
user-defined function fresp. gremez uses the following syntax to call fresp

[dh,dw] = fresp(n,f,gf,w)

where: 

• fresp is the string variable that identifies the function that you use to define 
your desired filter frequency response. 

• n is the filter order. 

• f is the vector of frequency band edges which must appear monotonically 
between 0 and 1, where 1 is one-half of the sampling frequency. The 
frequency bands span f(k) to f(k+1) for k odd. The intervals f(k+1) to 
f(k+2) for k odd are “transition bands” or “don't care” regions during 
optimization. 

res.edgecheck Transition-region anomaly check. One element 
per band edge. Element values have the 
following meanings:

1 = OK
0 = probable transition-region anomaly
-1 = edge not checked

Computed when you specify the 'check' input 
option in the function syntax.

res.iterations  Number of Remez iterations for the 
optimization

res.evals  Number of function evaluations for the 
optimization

Structure Field Contents
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• gf is a vector of grid points that have been chosen over each specified 
frequency band by gremez, and determines the frequencies at which gremez 
evaluates the response function.

• w is a vector of real, positive weights, one per band, for use during 
optimization. w is optional in the call to gremez. If you do not specify w, it is 
set to unity weighting before being passed to fresp.

• dh and dw are the desired frequency response and optimization weight 
vectors, evaluated at each frequency in grid gf.

gremez includes a predefined frequency response function named 'remezfrf2'. 
You can write your own based on the simpler 'remezfrf'. See the help for 
private/remezfrf for more information. 

b = gremez(n,f,{fresp,p1,p2,...},w) specifies optional arguments p1, 
p2,..., pn to be passed to the response function fresp. 

b = gremez(n,f,a,w) is a synonym for 
b = gremez(n,f,{'remezfrf2',a},w), where a is a vector containing your 
specified response amplitudes at each band edge in f. By default, gremez 
designs symmetric (even) FIR filters. 'remezfrf2' is the predefined frequency 
response function. If you do not specify your own frequency response function 
(the fresp string variable), gremez uses 'remezfrf2'.

b = gremez(...,'h') and b = gremez(...,'d') design antisymmetric (odd) 
filters. When you omit the 'h' or 'd' arguments from the gremez command 
syntax, each frequency response function fresp can tell gremez to design either 
an even or odd filter. Use the command syntax 
sym = fresp('defaults',{n,f,[],w,p1,p2,...}). gremez expects fresp to 
return sym = 'even' or sym = 'odd'. If fresp does not support this call, 
gremez assumes even symmetry.

For more information about the input arguments to gremez, refer to remez.

See Also remez, cremez, butter, cheby1, cheby2, ellip, freqz, filter, firls, and 
fircls in your Signal Processing Toolbox documentation
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Reference Shpak, D.J. and A. Antoniou, "A generalized Remez method for the design

of FIR digital filters," IEEE Trans. Circuits and Systems, pp. 161-174,Feb. 
1990.
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13hex2numPurpose Convert hexadecimal string to a number

Syntax x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description x = hex2num(q,h) converts hexadecimal string h to numeric matrix x. The 
attributes of the numbers in x are specified by quantizer q. When h is a cell 
array containing hexadecimal strings, hex2num returns x as a cell array of the 
same dimension containing numbers. For fixed-point hexadecimal strings, 
hex2num uses two’s complement representation. For floating-point strings, the 
representation is IEEE Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, 
the fixed-point conversion zero fills on the left. Floating-point conversion zero 
fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal strings h1, h2,... 
to numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that 
num2hex returns the hexadecimal strings in a column.

Examples To create all of the 4-bit fixed-point two’s complement numbers fractional form, 
use the following code.

q = quantizer([4 3]);
h = '7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)
x =

    0.8750    0.3750   -0.1250   -0.6250
    0.7500    0.2500   -0.2500   -0.7500
    0.6250    0.1250   -0.3750   -0.8750
    0.5000         0   -0.5000   -1.0000

See Also num2hex, bin2num, num2bin
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13ifftPurpose Apply the inverse quantized FFT to data

Syntax y = ifft(f,x)
y = ifft(f,x,dim)

Description y = ifft(f,x) is the quantized inverse FFT of x. The parameters of the 
quantized FFT are specified in quantized FFT f.

y = ifft(f,x,dim) is the quantized inverse FFT of x across the dimension 
dim.

See Also fft, get, qfft, qreport, set 
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13ifirPurpose Design interpolated FIR filters

Syntax h = ifir(l,type,f,dev)
h = ifir(l,type,f,dev,str)

Description h = ifir(l,type,f,dev) finds a periodic filter  and an    
image-suppressor filter G(z) such that

l is the interpolation factor.

h represents the optimal minimax FIR approximation to the desired response 
specified by the string type. Specify the filter band edge frequencies in vector 
f. With ifir, you designs a filter that meets the response defined by type 
which does not exceed the peak ripple specified in vector dev.

type must be a string with either 'low' to generate lowpass filters or 'high' for 
highpass filters. f must be a two-element vector containing two values — the 
first defining the passband edge frequency and the second that defines the 
stopband edge frequency.  Vector dev must contain two values that specify the 
peak ripple or deviation allowed in the passband and stopband.

h = ifir(l,type,f,dev,str) uses the string specified in str to select the 
degree of optimization the interpolation algorithm uses. str can be one of three 
allowed strings: 

str lets you direct the filter design algorithm to trade between the time it takes 
to design the filter and optimizing the filter order. The 'advanced' option can 
substantially reduce the  filter order, especially for g(z).

str String Value Description

'simple'

'intermediate'

'advanced'

f zl( )

h f zl( )G z( )=
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Examples The first example creates a lowpass filter using ifir with an interpolation 
factor of 6. In example 2, the code designs a wideband highpass filter with the 
same interpolation factor. You can see the plots of the examples after the code 
sections.

Create a narrowband lowpass design using an interpolation factor of 6.

[h,g]=ifir(6,'low',[.12 .14],[.01 .001]);
[Hh,w]=freqz(h,1,1024); Hg=freqz(g,1,1024);
H = Hh.*Hg; % Compounded response
subplot(2,1,1), freqzplot([Hh,Hg],w,'mag'); 
legend('Periodic Filter','Image Suppressor Filter');
subplot(2,1,2), freqzplot(H,w,'mag'); 
legend('Overall Filter');

Use the 'high' option to create a wideband highpass design using an 
interpolation factor of 6.

[h,g,d]=ifir(6,'high',[.12 .14],[.001 .01]);
[Hh,w]=freqz(h,1,1024); Hg=freqz(g,1,1024);
H = Hh.*Hg; % Branch 1 compounded response
Hd = freqz(d,1,1024); % Branch 2 response 
Hoverall = H+Hd;
freqzplot(Hoverall,w,'mag'); 
title('Overall Filter');
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13iirbpc2bpcPurpose Transform an IIR complex bandpass filter to an IIR complex bandpass filter 
with different frequency response characteristics

Syntax [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the complex bandpass prototype by applying a 
first-order complex bandpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

This transformation effectively places two features of an original filter, located 
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and 
Wt2 respectively.  It is assumed that Wt2 is greater than Wt1. In most of the cases 
the features selected for the transformation are the band edges of the filter 
passbands. In general it is possible to select any feature; e.g., the stopband 
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., complex notch filters or resonators can be repositioned at two distinct 
desired frequencies at any place around the unit circle; e.g., in the adaptive 
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc (b, a, 0.5, [0.25,0.75]);
[num, den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.5]);

Verify the result by comparing the prototype filter with the target filter:
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fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpassbpc2bpc, zpkbpc2bpc
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See Also gremez

fir1, firls, remez in your Signal Processing Toolbox documentation

References [1] Saramaki, T,, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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13iircombPurpose Design an IIR comb notching or peaking digital filter

Syntax [num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb( , 'type')

Description [num,den] = iircomb(n,bw) returns a digital notching filter with order n and 
with the width of the filter notch at -3dB  set to bw, the filter bandwidth. The 
filter order must be a positive integer. n also defines the number of notches in 
the filter across the frequency range from 0 to 2π—the number of notches 
equals n+1.

For the notching filter, the transfer function takes the form

where a and b are the filter coefficients and n is the filter order or the number 
of notches in the filter minus 1.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by 
q = ω0/bw where ω0 is the frequency to remove from the signal. 

[num,den] = iircomb(n,bw,ab) returns a digital notching filter whose 
bandwidth, bw, is specified at a level of -ab decibels. Including the optional 
input argument ab lets you specify the magnitude response bandwidth at a 
level that is not the default -3dB point, such as -6 dB or 0 dB. 

[num,den] = iircomb( ,'type') returns a digital filter of the specified type. 
The input argument type can be either

• 'notch' to design an IIR notch filter. Notch filters attenuate the response at 
the specified frequencies. This is the default type. When you omit the type 
input argument, iircomb returns a notch filter.

• 'peak' to design an IIR peaking filter. Peaking filters boost the signal at the 
specified frequencies.

H z( ) b 1 z n–
–

1 az n–
–

---------------------×=
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The transfer function for peaking filters is

Examples Design and plot an IIR notch filter with 11 notches (equal to filter order plus 1)  
that removes a 60 Hz tone (f0) from a signal at 600 Hz (fs). For this example, 
set the Q factor for the filter to 35 and use it to specify the filter bandwidth.

fs = 600; fo = 60;  q = 35; bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note the type flag 'notch'
fvtool(b,a);

Using the Filter Visualization Tool (FVTool) generates the following plot 
showing the filter notches. Note the notches are evenly spaced and one falls at 
exactly 60 Hz.

H z( ) b 1 z n–
+

1 az n–
–

---------------------×=
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See Also gremez, iirnotch, iirpeak
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13iirftransfPurpose IIR frequency transformation of the digital filter

Syntax [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)

Description [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)  returns 
the numerator and denominator vectors, OutNum and OutDen, of the target 
filter, which is the result of transforming the prototype filter specified by the 
numerator, OrigNum, and denominator, OrigDen, with the mapping filter given 
by the numerator, FTFNum, and the denominator, FTFDen. If the allpass 
mapping filter is not specified, then the function returns an original filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments OrigNum
Numerator of the prototype lowpass filter

OrigDen
Denominator of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

OutNum
Numerator of the target filter

OutDen
Denominator of the target filter

See Also zpkftransf
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13iirgrpdelayPurpose Optimal IIR filter design with prescribed group-delay

Syntax [num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)

Description [num,den] = iirgrpdelay(n,f,edges,a) returns an allpass IIR filter of 
order n (n must be even) which is the best approximation to the relative 
group-delay response described by f and a in the least-pth sense. f is a vector 
of frequencies between 0 and 1 and a is specified in samples. The vector edges 
specifies the band-edge frequencies for multi-band designs. iirgrpdelay uses 
a constrained Newton-type algorithm. Always check your resulting filter using 
grpdelay or freqz.

[num,den] = iirgrpdelay(n,f,edges,a,w) uses the weights in w to weight 
the error. w has one entry per frequency point and must be the same length 
length as f and a). Entries in w tell iirgrpdelay how much emphasis to put on 
minimizing the error in the vicinity of each specified frequency point relative 
to the other points.

f and a must have the same number of elements. f and a can contains more 
elements than the vector edges contains. This lets you use f and a to specify a 
filter that has any group-delay contour within each band. 

[num,den] = iirgrpdelay(n,f,edges,a,w,radius) returns a filter having a 
maximum pole radius equal to radius, where 0<radius<1. radius defaults to 
0.999999. Filters whose pole radius you constrain to be less than 1.0 can better 
retain transfer function accuracy after quantization.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p), where p is a 
two-element vector [pmin pmax], lets you determine the minimum and 
maximum values of p used in the least-pth algorithm. p defaults to [2 128] 
which yields filters very similar to the L-infinity, or Chebyshev, norm. pmin and 
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pmax should be even. If p is the string 'inspect', no optimization occurs. You 
might use this feature to inspect the initial pole/zero placement.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens) specifies the 
grid density dens used in the optimization process. The number of grid points 
is (dens*(n+1)). The default is 20. dens can be specified as a single-element 
cell array. The grid is not equally spaced.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden) allows 
you to specify the initial estimate of the denominator coefficients in vector 
initden. This can be useful for difficult optimization problems. The pole-zero 
editor in the Signal Processing Toolbox can be used for generating initden. 

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
allows the initial estimate of the group delay offset to be specified by the value 
of tau, in samples. 

[num,den,tau] = iirgrpdelay(n,f,edges,a,w) returns the resulting group 
delay offset. In all cases, the resulting filter has a group delay that 
approximates [a + tau]. Allpass filters can have only positive group delay and 
a non-zero value of tau accounts for any additional group delay that is needed 
to meet the shape of the contour specified by (f,a). The default for tau is 
max(a). 

Hint: If the zeros or poles cluster together, your filter order may be too low or 
the pole radius may be too small (overly constrained). Try increasing n or 
radius.

For group-delay equalization of an IIR filter, compute a by subtracting the 
filter's group delay from its maximum group delay. For example,

[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2);   % Equalize only the passband.
a = max(g)-g;
[num,den]=iirgrpdelay(8, f, [0 0.2], a);

See Also freqz, filter, grpdelay, iirlpnorm, iirlpnormc, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second 
Edition, McGraw-Hill, Inc. 1993.
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13iirlp2bpPurpose Transform an IIR real lowpass filter to an IIR real bandpass filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a second-order 
real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2.  It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “DC Mobility,” which 
means that the Nyquist feature stays at Nyquist, but the DC feature moves to 
a location dependent on the selection of Wts.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming 
other types of filters; e.g., real notch filters or resonators can be doubled and  
positioned at two distinct desired frequencies.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409); 
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Create the real bandpass filter by placing the cutoff frequencies of the 
prototype filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num, den] = iirlp2bp(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2bp, zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.
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[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings, 
vol. 1, pp. 1129-1231, June 1969.
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13iirlp2bpcPurpose IIR lowpass to complex bandpass frequency transformation frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a first-order 
real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2.  It is assumed that Wt2 is 
greater than Wt1.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and  
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandpass filters for radio receivers from the high-quality 
prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
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Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and 
Wt2=0.75 creating a complex bandpass filter:

[num, den] = iirlp2bpc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also iirftransf, allpasslp2bpc, zpklp2bpc
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13iirlp2bsPurpose Transform an IIR real lowpass filter to an IIR real bandstop filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a second-order 
real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “Nyquist Mobility,” 
which means that the DC feature stays at DC, but the Nyquist feature moves 
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409); 

Create the real bandstop filter by placing the cutoff frequencies of the prototype 
filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num, den] = iirlp2bs(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:
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fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings, 
vol. 1, pp. 1129-1231, June 1969.
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13iirlp2bscPurpose Transform an IIR real lowpass filter to an IIR complex bandstop filter 
frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a first-order 
real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and the denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2.  It is assumed that Wt2 is 
greater than Wt1. Additionally the transformation swaps passbands with 
stopbands in the target filter. 

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and  
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandstop filters for band attenuation or frequency 
equalizers, from the high-quality prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
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Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and 
Wt2=0.75 creating a complex bandstop filter:

[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2bsc, zpklp2bsc.
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13iirlp2hpPurpose Transform a discrete time lowpass IIR filter to a highpass filter

Syntax [num,den] = iirlp2hp(b,a,wc,wd)

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the 
numerator and denominator coefficients (zeros and poles) for a lowpass IIR 
filter, iirlp2bp transforms the magnitude response from lowpass to highpass. 
num and den return the coefficients for the transformed highpass filter. For wc, 
enter a selected frequency from your lowpass filter. You use the chosen 
frequency to define the magnitude response value you want in the highpass 
filter. Enter one frequency for the highpass filter — the value that defines the 
location of the transformed point — in wd. Note that all frequencies are 
normalized between zero and one. Notice also that the filter order does not 
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the 
magnitude response at the wd values of your bandstop filter to be the same as 
the magnitude response of your lowpass filter at wc. Filter performance 
between the values in wd is not specified, except that the stopband retains the 
ripple nature of your original lowpass filter and the magnitude response in the 
stopband is equal to the peak response of your lowpass filter. To accurately 
specify the filter magnitude response across the stopband of your bandpass 
filter, use a frequency value from within the stopband of your lowpass filter as 
wc. Then your bandstop filter response is the same magnitude and ripple as 
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what 
makes this function useful. If you have a lowpass filter whose characteristics, 
such as rolloff or passband ripple, particularly meet your needs, the 
transformation function lets you create a new filter with the same 
characteristic performance features, but in a highpass version. Without 
designing the highpass filter from the beginning.

In some cases tranforming your filter may cause numerical problems, resulting 
in incorrect conversion to the highpass filter. Use fvtool to verify the response 
of your converted filter. 

Examples This example transforms an IIR filter from lowpass to high pass by moving the 
magnitude response at one frequency in the source filter to a new location in 
the transformed filter. To generate a highpass filter whose passband flattens 
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out at 0.4, we select the frequency in the lowpass filter where the passband 
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.4.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);
fvtool(b,a,num,den);

In the figure showing the magnitude responses for the two filters, the 
transition band for the highpass filter is essentially the mirror image of the 
transition for the lowpass filter from 0.0175 to 0.025, stretched out over a wider 
frequency range. In the passbands, the filter share common ripple 
characteristics and magnitude.
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See Also iirlp2bp, iirlp2bs, iirlp2lp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, 
Second Edition, McGraw-Hill, 2001.
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13iirlp2lpPurpose Transform a discrete time lowpass IIR filter to a different lowpass filter

Syntax [num,den] = iirlp2lp(b,a,wc,wd)

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the 
numerator and denominator coefficients (zeros and poles) for a lowpass IIR 
filter, iirlp2bp transforms the magnitude response from lowpass to highpass. 
num and den return the coefficients for the transformed highpass filter. For wc, 
enter a selected frequency from your lowpass filter. You use the chosen 
frequency to define the magnitude response value you want in the highpass 
filter. Enter one frequency for the highpass filter — the value that defines the 
location of the transformed point — in wd. Note that all frequencies are 
normalized between zero and one. Notice also that the filter order does not 
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the 
magnitude response at the wd values of your bandstop filter to be the same as 
the magnitude response of your lowpass filter at wc. Filter performance 
between the values in wd is not specified, except that the stopband retains the 
ripple nature of your original lowpass filter and the magnitude response in the 
stopband is equal to the peak response of your lowpass filter. To accurately 
specify the filter magnitude response across the stopband of your bandpass 
filter, use a frequency value from within the stopband of your lowpass filter as 
wc. Then your bandstop filter response is the same magnitude and ripple as 
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what 
makes this function useful. If you have a lowpass filter whose characteristics, 
such as rolloff or passband ripple, particularly meet your needs, the 
transformation function lets you create a new filter with the same 
characteristic performance features, but in a highpass version. Without 
designing the highpass filter from the beginning.

In some cases tranforming your filter may cause numerical problems, resulting 
in incorrect conversion to the highpass filter. Use fvtool to verify the response 
of your converted filter. 

Examples This example transforms an IIR filter from lowpass to high pass by moving the 
magnitude response at one frequency in the source filter to a new location in 
the transformed filter. To generate a lowpass filter whose passband extends 
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out to 0.2, we select the frequency in the lowpass filter where the passband 
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.2.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);
fvtool(b,a,num,den);

Moving the edge of the passband from 0.0175 to 0.2 results in a new lowpass 
filter whose peak response inband is the same as the original filter: same 
ripple, same absolute magnitude. 
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Notice that the rolloff is slightly less steep and the stopband profiles are the 
same for both filters; the new filter stopband is a “stretched” version of the 
original, as is the passband of the new filter.

See Also iirlp2bp, iirlp2bs, iirlp2hp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, 
Second Edition, McGraw-Hill, 2001.
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13iirlp2mbPurpose Transform an IIR real lowpass filter to an IIR real M-band filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)

[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Mth-order 
real lowpass to real multibandpass frequency mapping. By default the DC 
feature is kept at its original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2mb(B,A,Wo,Wt,Pass)  allows you 
to specify an additional parameter, Pass, which chooses between using the “DC 
Mobility” and the “Nyquist Mobility”. In the first case the Nyquist feature stays 
at its original location and the DC feature is free to move. In the second case 
the DC feature is kept at an original frequency and the Nyquist feature is 
movable.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.
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Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Example 1: Create the real multiband filter with two passbands:

[num1, den1] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10);
[num2, den2] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'pass');

Example 2: Create the real multiband filter with two stopbands:

[num3, den3] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with target filters:

fvtool(b, a, num1, den1, num2, den2, num3, den3);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass  being the default

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter
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Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation 
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering, 
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and 
frequency transformation problem,” Proceedings 20th Asilomar Conference on 
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, 
November 1986.

[3] Mullis, C.T. and R. A. Roberts, Digital Signal Processing, section 6.7, 
Reading, Mass., Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm 
for frequency transformations, Linear Circuits, Systems and Signal Processing: 
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.



iirlp2mbc

13-210

13iirlp2mbcPurpose Transform an IIR real lowpass filter to an IIR complex M-band filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Mth-order 
real lowpass to complex multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Example 1: Create the complex multiband filter with two passbands:

[num1, den1] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10);

Example 2: Create the complex multiband filter with two passbands:
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[num2, den2] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10, 'pass');

Example 3: Create the complex multiband filter with two stopbands:

[num3, den3] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num1, den1, num2, den2, num3, den3);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wc
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2mbc, zpklp2mbc
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13iirlp2xcPurpose Transform an IIR real lowpass filter to an IIR complex N-point filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Nth-order 
real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation.  This transformation 
effectively places N features of an original filter, located at frequencies 
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., a stopband edge, DC, the deep minimum in the stopband, or 
other ones.  The only condition is that the features must be selected in such a 
way that when creating N bands around the unit circle, there will be no band 
overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:
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[b, a] = ellip(3, 0.1, 30, 0.409);

Create the complex bandpass filter from the real lowpass filter:

[num, den] = iirlp2xc(b, a, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2xc, zpklp2xc
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13iirlp2xnPurpose Transform an IIR real lowpass filter to an IIR real N-point filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)

[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Nth-order 
real lowpass to real multipoint frequency transformation, where N is the 
number of features being mapped. By default the DC feature is kept at its 
original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2xn(B,A,Wo,Wt,Pass)  allows you 
to specify an additional parameter, Pass, which chooses between using the “DC 
Mobility” and the “Nyquist Mobility”. In the first case the Nyquist feature stays 
at its original location and the DC feature is free to move. In the second case 
the DC feature is kept at an original frequency and the Nyquist feature is 
allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation.  This transformation 
effectively places N features of an original filter, located at frequencies 
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
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stopband, or other ones.  The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and 
Wt2=0.75 creating a real bandpass filter:

[num, den] = iirlp2xn(b, a, [-0.5 0.5], [0.25 0.75], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass  being the default

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter
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AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2xn, zpklp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for 
Flexible IIR Filter Design,” VII European Signal Processing Conference 
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order 
frequency transformations for IIR filters,” 38th Midwest Symposium on 
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
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13iirlpnormPurpose Least P-norm optimal IIR filter design

Syntax [num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)

Description [num,den] = iirlpnorm(n,d,f,edges,a) returns a filter having a numerator 
order n and denominator order d which is the best approximation to the desired 
frequency response described by f and a in the least-pth sense. The vector 
edges specifies the band-edge frequencies for multi-band designs. An 
unconstrained quasi-Newton algorithm is employed and any poles or zeros that 
lie outside of the unit circle are reflected back inside. n and d should be chosen 
so that the zeros and poles are used effectively. See the “Hints” section. Always 
use freqz to check the resulting filter.

[num,den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in w to weight 
the error. w has one entry per frequency point (the same length as f and a) 
which tells iirlpnorm how much emphasis to put on minimizing the error in 
the vicinity of each frequency point relative to the other points. f and a must 
have the same number of elements, which may exceed the number of elements 
in edges. This allows for the specification of filters having any gain contour 
within each band. The frequencies specified in edges must also appear in the 
vector f. For example,

[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

is a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p) where p is a two-element 
vector [pmin pmax] allows for the specification of the minimum and maximum 
values of p used in the least-pth algorithm. Default is [2 128] which essentially 
yields the L-infinity, or Chebyshev, norm. Pmin and pmax should be even. If p is 
the string 'inspect', no optimization will occur. This can be used to inspect 
the initial pole/zero placement. 
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[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the grid density 
dens used in the optimization. The number of grid points is (dens*(n+d+1)). 
The default is 20. dens can be specified as a single-element cell array. The grid 
is not equally spaced.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)
allows for the specification of the initial estimate of the filter numerator and 
denominator coefficients in vectors initnum and initden. This may be useful 
for difficult optimization problems. The pole-zero editor in the Signal 
Processing Toolbox can be used for generating initnum and initden.

Hints

• This is a weighted least-pth optimization.

• Check the radii and locations of the poles and zeros for your filter. If the zeros 
are on the unit circle and the poles are well inside the unit circle, try 
increasing the order of the numerator or reducing the error weighting in the 
stopband. 

• Similarly, if several poles have a large radii and the zeros are well inside of 
the unit circle, try increasing the order of the denominator or reducing the 
error weighting in the passband.

See Also iirlpnormc, filter, freqz, iirgrpdelay, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second 
Edition, McGraw-Hill, Inc. 1993.
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13iirlpnormcPurpose Design a constrained least P-norm optimal IIR filter

Syntax [num,den] = iirlpnormc(n,d,f,edges,a) 
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) 
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) 
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,...

dens,initnum,initden)

Description [num,den] = iirlpnormc(n,d,f,edges,a) returns a filter having a 
numerator order n and denominator order d which is the best approximation to 
the desired frequency response described by f and a in the least-pth sense. The 
vector edges specifies the band-edge frequencies for multi-band designs. A 
constrained Newton-type algorithm is employed. n and d should be chosen so 
that the zeros and poles are used effectively. See the “Hints” section. Always 
check the resulting filter using freqz. 

[num,den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w to weight 
the error. w has one entry per frequency point (the same length as f and a) 
which tells iirlpnormc how much emphasis to put on minimizing the error in 
the vicinity of each frequency point relative to the other points. f and a must 
have the same number of elements, which can exceed the number of elements 
in edges. This allows for the specification of filters having any gain contour 
within each band. The frequencies specified in edges must also appear in the 
vector f. For example,

[num,den] = iirlpnormc(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter having 
a maximum pole radius of radius where 0<radius<1. radius defaults to 
0.999999. Filters having a reduced pole radius may retain better transfer 
function accuracy after you quantize them. 

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) where p is a 
two-element vector [pmin pmax] allows for the specification of the minimum 
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and maximum values of p used in the least-pth algorithm. Default is [2 128] 
which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax 
should be even. If p is the string 'inspect', no optimization will occur. This can 
be used to inspect the initial pole/zero placement.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) specifies the 
grid density dens used in the optimization. The number of grid points is 
(dens*(n+d+1)). The default is 20. dens can be specified as a single-element 
cell array. The grid is not equally spaced.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens,...
initnum,initden) allows for the specification of the initial estimate of the 
filter numerator and denominator coefficients in vectors initnum and initden. 
This may be useful for difficult optimization problems. The pole-zero editor in 
the Signal Processing Toolbox can be used for generating initnum and initden. 

Hints

• This is a weighted least-pth optimization.

• Check the radii and location of the resulting poles and zeros. 

• If the zeros are all on the unit circle and the poles are well inside of the unit 
circle, try increasing the order of the numerator or reducing the error 
weighting in the stopband. 

• Similarly, if several poles have a large radius and the zeros are well inside of 
the unit circle, try increasing the order of the denominator or reducing the 
error weight in the passband.

• If you reduce the pole radius, you might need to increase the order of the 
denominator.

See Also freqz, filter, iirgrpdelay, iirlpnorm, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second 
Edition, McGraw-Hill, Inc. 1993.
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13iirnotchPurpose Design a second-order IIR notch digital filter

Syntax [num,den] = iirnotch(w0,bw)
[num,den] = iirnotch(w0,bw,ab)

Description [num,den] = iirnotch(w0,bw) eturns a digital notching filter with the notch 
located at w0, and with the bandwidth at the -3 dB point set to bw. To design the 
filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0 corresponds to 
π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by 
q = ω0/bw where ω0 is w0, the frequency to remove from the signal. 

[num,den] = iirnotch(w0,bw,ab) returns a digital notching filter whose 
bandwidth, bw, is specified at a level of -ab decibels. Including the optional 
input argument ab lets you specify the magnitude response bandwidth at a 
level that is not the default -3dB point, such as -6 dB or 0 dB. 

Examples Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from a signal 
at 300 Hz (fs). For this example, set the Q factor for the filter to 35 and use it 
to specify the filter bandwidth:

wo = 60/(300/2);  bw = wo/35;
[b,a] = iirnotch(wo,bw);  
fvtool(b,a);

Shown in the next plot, the notch filter has the desired bandwidth with the 
notch located at 60 Hz, or 0.4π radians per sample. Compare this plot to the 
comb filter plot shown on the reference page for iircomb.
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See Also gremez, iircomb, iirpeak
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13iirpeakPurpose Design a second-order IIR peak or resonator digital filter

Syntax [num,den] = iirpeak(w0,bw)
[num,den] = iirpeak(w0,bw,ab)

Description [num,den] = iirpeak(w0,bw) eturns a second-order digital peaking filter 
with the peak located at w0, and with the bandwidth at the +3dB point set to 
bw. To design the filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0 
corresponds to π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by 
q = ω0/bw where ω0 is w0 the signal frequency to boost.

[num,den] = iirpeak(w0,bw,ab) returns a digital peaking filter whose 
bandwidth, bw, is specified at a level of +ab decibels. Including the optional 
input argument ab lets you specify the magnitude response bandwidth at a 
level that is not the default +3dB point, such as +6 dB or 0 dB. 

Examples Design and plot an IIR peaking filter that boosts the frequency at 1.75 Khz in 
a signal and has bandwidth of 500 Hz at the -3 dB point:

fs = 10000; wo = 1750/(fs/2);  bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a);

Shown in the next plot, the peak filter has the desired gain and bandwidth at 
1.75 KHz.
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See Also gremez, iircomb, iirnotch
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13iirpowcompPurpose Compute power complementary filter.

Syntax [bp,ap] = iirpowcomp(b,a)
[bp,ap,c] = iirpowcomp(b,a)

Description [bp,ap] = iirpowcomp(b,a) returns the coefficients of the power 
complementary IIR filter g(z) = bp(z)/ap(z) in vectors bp and ap, given the 
coefficients of the IIR filter h(z) = b(z)/a(z) in vectors b and a. b must be 
symmetric (Hermitian) or antisymmetric (antihermitian) and of the same 
length as a. The two power complementary filters satisfy the relation

|H(w)|2 +  |G(w)|2 = 1.

[bp,ap,c] = iirpowcomp(b,a) where c is a complex scalar of magnitude =1, 
forces bp to satisfy the generalized hermitian property

conj(bp(end:-1:1)) = c*bp.

When c is omitted, it is chosen as follows:

• When b is real, chooses C as 1 or -1, whichever yields bp real

• When b is complex, C defaults to 1

ap is always equal to a.

Examples [b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);
[h,w,s]=freqz(b,a); [h1,w,s]=freqz(bp,ap);
s.plot='mag'; s.yunits='sq';freqzplot([h h1],w,s)

See Also tf2ca, tf2cl, ca2tf, cl2tf
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13iirrateupPurpose Upsample an IIR filter by an integer factor

Syntax [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N) 

Description [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter being transformed from any prototype by applying an Nth-order rateup 
frequency transformation, where N is the upsample ratio. Transformation 
creates N equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

N
Frequency multiplication ratio

Num
Numerator of the target filter

Den
Denominator of the target filter
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AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpassrateup, zpkrateup
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13iirshiftPurpose Shift the frequency response of an IIR real filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a second-order 
real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass 
mapping filter, AllpassDen. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

This transformation places one selected feature of an original filter located at 
frequency Wo to the required target frequency location, Wt. This transformation 
implements the “DC Mobility,” which means that the Nyquist feature stays at 
Nyquist, but the DC feature moves to a location dependent on the selection of 
Wo and Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to 
the cutoff frequency of an original lowpass filter. In general it is possible to 
select any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can change their position in a simple way 
without designing them from the beginning.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Perform the real frequency shift by defining where the selected feature of the 
prototype filter, originally at Wo=0.5, should be placed in the target filter, 
Wt=0.75:
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Wo = 0.5; Wt = 0.75;

[num, den] = iirshift(b, a, Wo, Wt);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpassshift, zpkshift.
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13iirshiftcPurpose Shift the frequency response of an IIR complex filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a first-order 
complex frequency shift transformation. This transformation rotates all the 
features of an original filter by the same amount specified by the location of the 
selected feature of the prototype filter, originally at Wo, placed at Wt in the 
target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5)  calculates 
the allpass filter for doing the Hilbert transformation, i.e. a 90 degree 
counterclockwise rotation of an original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5)  calculates 
the allpass filter for doing an inverse Hilbert transformation, i.e. a 90 degree 
clockwise rotation of an original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Rotate all features of the prototype filter in the frequency domain by the same 
amount by specifying where the selected feature of an original filter, Wo=0.5, 
should appear in the target filter, Wt=0.25:

[num, den] = iirshiftc(b, a, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Arguments B
Numerator of the prototype lowpass filter
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A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpassshiftc, zpkshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal 
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert 
transformers, and half-band low-pass filters,” IEEE Transactions on 
Education, vol. 32, pp. 314-318, August 1989.
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13impzPurpose Compute the impulse response of quantized filters

Syntax [h,t] = impz(hq)
[h,t] = impz(hq,n)
[h,t] = impz(hq,n,Fs)
[h,t,ref] = impz(hq,...)
impz(hq,...)

Description [h,t] = impz(hq) computes the response of the quantized filter hq to an 
impulse. impz returns the computed impulse response in the column vector h 
and the corresponding sample times in the column vector t (where 
t = [0:n-1]' and n = length(t) is computed automatically).

[h,t] = impz(hq,n) computes n samples of the quantized impulse response 
for any positive integer n. In this case, t = [0:n-1]'. When n is a vector of 
integers, impz computes the impulse response at those integer locations, 
starting the response computation from 0 (and t=n or t=[0 n]). If, instead of n, 
you include the empty vector [] as the second argument, impz computes the 
number of samples automatically.

[h,t] = impz(hq,n,Fs) computes n samples and produces a vector t of 
length n so that the samples are spaced 1/Fs units apart.

[h,t,ref] = impz(hq,...) returns the impulse response of the quantized 
filter hq in the column vector h, and returns the impulse response of the 
reference filter in the vector ref.

impz(hq,...) with no output arguments plots the impulse response of the 
reference filter associated with hq, and the quantized impulse response of 
quantized filter hq in a new figure window. impz uses stem for plotting the 
impulse responses.

Note  impz works for both real and complex quantized filters. When you omit 
the output arguments, only the real part of the impulse response is plotted.
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Examples Create a quantized filter for a fourth-order, low-pass elliptic filter with a cutoff 
frequency of 0.4 times the Nyquist frequency. Use a second-order sections 
structure to resist quantization errors. Plot the first 50 samples of the 
quantized impulse response, along with the reference impulse response.

% Specify transfer function parameters for the reference filter.

[b,a] = ellip(4,3,20,.6);

% Create a quantized filter from the reference filter. Convert the 
quantized filter to second-order section form, order, and scale.

hq = sos(qfilt('ref',{b,a}));

Warning: 1 overflow in coefficients.

impz(hq,50)
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Algorithm impz applied to the quantized filter hq applies the filter command twice to a 
length n impulse sequence: 

• Once for a quantized filter whose coefficients are determined by the 
ReferenceCoefficients property value for hq

• Once for a quantized filter whose coefficients are determined by the 
QuantizedCoefficients property value for hq

The resulting plots use stem. 

Warnings that occur with impz are a result of the filter command. In 
particular, you get an input overflow warning with impz when the InputFormat 
property value for the quantized filter hq is fixed-point and has only one bit to 
the left of the radix point. 

For example, when your InputFormat property is set to {'fixed',[16,15]}, 
you get an input overflow warning when you implement impz.

See Also filter



initkalman

13-235

13initkalmanPurpose Configure the initialization structure used as an input argument to 
adaptkalman

Syntax s = initkalman(w0,k0,qm,qp)
s = initkalman(w0,k0,qm,qp,zi)

Description s = initkalman(w0,k0,qm,qp) returns the fully populated structure s that 
you use when you call adaptkalman. Vector w0 contains the initial values of the 
filter coefficients. Its length equals the order of the adapting FIR filter plus one.

k0 contains the initial state error covariance matrix. It should be an Hermitian 
symmetric square matrix with dimensions equal to length(w0).

qm is the measurement noise variance and qp is the process noise covariance 
matrix.

s = initkalman(w0,k0,qm,qp,zi) adds input argument zi to specify the 
filter initial conditions. When you omit zi or specify it as empty, [ ], initkalman 
defaults to zi equal to a  zero vector of length  [length(w0)-1]. When you use 
adaptkalman in program structures like for-loops, the initial conditions provide 
the filter weights for the first iteration of the loop. Recall that each iteration of 
the Kalman filter algorithm uses the weights from the previous iteration. 
Without initial conditions the first interation has no input to use. For each loop 
iteration the same problem occurs and the filter never adapts to the unknown.

When you check the contents of s after you use initkalman MATLAB displays 
the structure elements, rather than the input argument names. To help you 
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remember which element in s corresponds to each input argument to 
initkalman, the following table provides the mapping.

For example, after you use initkalman to create s, MATLAB returns the 
structure shown when you enter s at the prompt. In this example, we use a 
31st-order filter.

s

s =

initkalman 
argument

Structure 
Field

Argument Description

w0 s.coeffs Kalman adaptive filter coefficients.  Should be 
initialized with the initial values for the FIR 
filter coefficients. Updated coefficients are 
returned when you use s as an output 
argument.

k0 s.errcov The state error covariance matrix. Initialize 
this element with the initial error state 
covariance matrix. An updated matrix is 
returned when you use s as an output 
argument.

qm s.measvar Conntains the measurement noise variance 
matrix. 

qp s.procov Contains the process noise covariance matrix. 

s.states Returns the states of the FIR filter. This is an 
optional element.  If omitted, it defaults to a 
zero vector of length equal to the filter order.

s.gain Kalman gain vector. Not required, but 
computed and returned  after every iteration.

s.iter Total number of iterations in adaptive filter 
run. This is read-only.
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     coeffs: [1x32 double]
     states: [31x1 double]
     errcov: [32x32 double]
    measvar: 2
     procov: [32x32 double]
       gain: []
       iter: 0

Examples Prepare the initialization structure needed to identify an unknown FIR filter 
with 32 coefficients. To see this structure used in an example, refer to 
adaptkalman.

w0 = zeros(1,32);      % Intial filter coefficients
k0 = 0.5*eye(32);      % Initial state error correlation matrix
qm = 2;                % Measurement noise covariance
qp = 0.1*eye(32);      % Process noise covariance  
s = initkalman(w0,k0,qm,qp);

See Also adaptkalman, initlms, initnlms, initrls, initse

Reference S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996.
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13initlmsPurpose Configure the initialization structure used as an input argument to adaptlms

Syntax s = initlms(w0,mu)
s = initlms(w0,mu,zi)
s = initlms(w0,mu,zi,lf)

Description s = initlms(w0,mu) returns the fully populated structure s that you use 
when you call adaptklms. Vector w0 contains the initial values of the filter 
coefficients. Its length should be equal to [order of the adapting FIR filter + 1]. 
mu is the Least Mean Square (LMS) algorithm step size. The step size you 
specify determines both the time it takes for the LMS algorithm to converge to 
a solution and the accuracy of that solution (how closely the result approaches 
the minimum least mean square error). Generally, small step sizes adapt more 
slowly but more closely and large step sizes adapt more quickly with larger 
error compared to the true minimum mean square error.

In matrix form, the LMS algorithm is

(13-1)

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the LMS algorithm seeks to minimize. 
µ (mu) is the step size. As you specify mu smaller, the correction to the filter 
weights gets smaller for each sample and the LMS error falls more slowly. 
Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following 
bounds:

where N is the number of samples in the signal.

s = initlms(w0,mu,zi) adds input argument zi to specify the filter initial 
conditions. When you omit zi or specify it as empty, [ ], initkalman defaults to 
zi equal to a  zero vector of length equal to [length(w0)-1]. For conditional 
processing such as using adaptlms in a for-loop, specifying the initial 
conditions is very important. Each iteration of the LMS algorithm uses the 

w k 1+( ) w k( ) µe k( )x k( )+=

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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weights from the prior interation. You supply the initial conditions so the first 
iteration has a set of prior filter weights to start from.

s = initlms(w0,mu,zi,lf) specifies the leakage factor lf as an input 
argument. Including the leakage factor can improve the behavior of the 
algorithm. Leaking the weight w(k) ( the leakage factor applies to the weight 
in equation 11-1) forces the algorithm to continue to adapt even after it reaches 
its minimum value. While this can mean that the leaky LMS does not achieve 
quite so accurate a measure of the minimum mean square error, the sensitivity 
to errors, or to small values in the input is reduced when you use the leakage 
factor. Typically, set lf between 0.9 (considered very leaky) and 1.0,  meaning 
no leakage. If you specify lf as empty, it defaults to one. 

When you check the contents of s after you use initlms MATLAB displays the 
structure elements, rather than the input argument names. To help you 
remember which element in s corresponds to each input argument to initlms, 
the following table provides the mapping.

initlms 
Argument

Structure 
Field

Argument Contents

wo s.coeffs      LMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

mu s.step         Sets the LMS algorithm step size. Determines 
both how quickly and how closely the adative 
filter adapts to the filter solution.
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For example, after you use initlms to create s, MATLAB returns the structure 
shown when you enter s at the prompt. In this example, we created s for 
a 31st-order filter.

s

s =

     coeffs: [1x32 double]
     states: [31x1 double]
       step: 0.8000
    leakage: 1
       iter: 0

Examples To use adaptlms, you must provide at least two input arguments that define 
the LMS algorithm to use — w0 and mu. Structure s comprises these data sets 

zi s.states      Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use 
adaptlms in a loop structure, use this element 
to specify the initial filter states for the 
adapting FIR filter.

lf  
s.leakage     

Specifies the LMS leakage parameter. Allows 
you to implement a leaky LMS algorithm. 
Including a leakage factor can improve the 
results of the algorithm by forcing the LMS 
algorithm to continue to adapt even after it 
reaches a minimum value. This is an optional 
field. Defaults to one if omitted (specifying no 
leakage) or set to empty, [ ].

s.iter        Total number of iterations in the adaptive 
filter run. Although you can set this in s, you 
should not. Consider it a read-only value.

initlms 
Argument

Structure 
Field

Argument Contents
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and forms the initialization for adaptlms. In this example, use initlms to 
configure s to identify an unknown 31st-order FIR filter. To see this structure 
in use, refer to adaptlms.

w0 = zeros(1,32);      % Intial filter coefficients
mu = 0.8;              % LMS step size.
s = initlms(w0,mu);

See Also adaptlms, initnlms, adaptnlms, initrls

Reference Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John 
Wiley and Sons, Inc, 1996.
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13initnlmsPurpose Configure the initialization structure used as an input argument to adaptnlms

Syntax s = initnlms(w0,mu)
s = initnlms(w0,mu,zi)
s = initnlms(w0,mu,zi,lf)
s = initnlms(w0,mu,zi,lf,offset)

Description s = initnlms(w0,mu) returns the fully populated structure s that you use 
when you call adaptnlms. Vector w0 contains the initial values of the filter 
coefficients. Its length should equal the order of the adapting FIR filter plus 
one. mu is the Normalized Least Mean Square (NLMS) algorithm step size. The 
step size you specify determines both the time it takes for the NLMS algorithm 
to converge to a solution and the accuracy of that solution (how closely the 
result approaches the minimum least mean square error). Generally, small 
step sizes adapt more slowly but more closely and large step sizes adapt more 
quickly with larger error compared to the true minimum mean square error.

In vector form, the NLMS algorithm is

where

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the NLMS algorithm seeks to 
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the NLMS error falls more 
slowly. Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following 
bounds:

where N is the number of samples in the signal.

w k 1+( ) w k( ) µne k( )x k( )+=

µn
1

ε x k( ) 2
+

----------------------------=

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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s = initnlms(w0,mu,zi) adds input argument zi to specify the filter initial 
conditions. When you omit zi or specify it as empty, [ ], initnlms defaults to zi 
equal to a  zero vector of length  [length(w0)-1]. For conditional processing 
such as using adaptnlms in a for-loop, specifying the initial conditions is very 
important. Each iteration of the NLMS algorithm uses the weights from the 
prior interation. You supply the initial conditions so the first iteration has a set 
of prior filter weights to start from.

s = initnlms(w0,mu,zi,lf) specifies the leakage factor lf.  Including the 
leakage factor can improve the behavior of the algorithm. Leaking the weight 
w(k) ( the leakage factor applies to the weight in equation 11-2) forces the 
algorithm to continue to adapt even after it reaches its minimum value. This 
can mean that the leaky NLMS does not achieve quite so accurate a measure 
of the minimum mean square error. However, the sensitivity to errors, or to 
small values in the input is reduced when you use the leakage factor. Typically, 
set lf between 0.9 (considered very leaky) and 1.0,  meaning no leakage. If you 
specify lf as empty, it defaults to one. 

s = initnlms(w0,mu,zi,lf,offset) specifies an optional offset for the    
normalization term.  This is useful to avoid divide by zero (or very small    
numbers) conditions when the square of the input data norm becomes very 
small. If offset is specified as empty, it defaults to zero.

When you check the contents of s after you use initnlms MATLAB displays the 
structure elements, rather than the input argument names. To help you 
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remember which element in s corresponds to each input argument to initlms, 
the following table provides the mapping.

initnlms 
Argument

Structure 
Field

Argument Contents

wo s.coeffs      NLMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

mu s.step         Sets the NLMS algorithm step size. 
Determines both how quickly and how closely 
the adative filter adapts to the filter solution.

zi s.states      Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use 
adaptlms in a loop structure, use this element 
to specify the initial filter states for the 
adapting FIR filter.

lf  
s.leakage     

Specifies the NLMS leakage parameter. 
Allows you to implement a leaky NLMS 
algorithm. Including a leakage factor can 
improve the results of the algorithm by forcing 
the NLMS algorithm to continue to adapt even 
after it reaches a minimum value. This is an 
optional field. Defaults to one if omitted 
(specifying no leakage) or set to empty, [ ].
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For example, after you use initnlms to create s, MATLAB returns the 
structure shown when you enter s at the prompt. In this example, we created 
s for a 31st-order filter.

s

s =

     coeffs: [1x32 double]
     states: [31x1 double]
       step: 0.8000
    leakage: 1
       iter: 0

See Also adaptnlms, adaptlms, adaptrls, initlms, initkalman

Reference Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley 
and Sons, 1996

offset s.offset Specifies an optional offset for the 
normalization term. Use this to avoid divide 
by zero (or by very small numbers) when the 
square of input data norm becomes very small. 
When omitted, it defaults to zero.

s.iter        Total number of iterations in the adaptive 
filter run. Although you can set this in s, you 
should not. Consider it a read-only value.

initnlms 
Argument

Structure 
Field

Argument Contents
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13initrlsPurpose Configure the initialization structure used as an input argument to adaptrls

Syntax s = initrls(w0,p0,lambda)
s = initrls(w0,p0,lambda,zi)
s = initrls(w0,p0,lambda,zi,alg)

Description s = initrls(w0,p0,lambda) returns the fully populated structure s that you 
use when you call adaptrls. Vector w0 contains the initial values of the filter 
coefficients. Its length should equal the order of the adapting FIR filter plus 
one.

p0 is the inverse of the initial error covariance matrix. It must be an    
Hermitian symmetric square matrix with dimensions equal to length(w0). 

lambda is the forgetting factor, also called the exponential weighting factor, in 
the recursive least squares (RLS) algorithm. RLS algorithms calculate the 
least squares error vector using all previous data; data from long ago is given 
the same weight as newly received data. It is possible for bad data from the 
past to affect the current solution. In RLS terms this is called inifinite memory. 
lambda lets you determine how the RLS algorithm treats old data. When you  
specify lambda, the RLS algorithm applies a weighting factor to sample data 
using lambda in the following calculation:

weighting factor for a sample = lambda(sample age)

where sample age represents the age of the sample being weighted. For a 
recent sample, sample age might be 1 or 2 or 10, meaning that the sample is 1, 
2, or 10 iterations old. A sample from 100 iterations earlier would have sample 

age = 100 and a weighting factor of 0.9100 = 2.6 x 10-5 when lambda = 0.9. Thus 
earlier samples have less affect on the least squares error vector than recent 
samples. lambda should satisfy 0 < lambda <= 1, where lambda = 1 denotes 
infinite memory — all previous data is equally weighted in the RLS algorithm.

s = initrls(w0,p0,lambda,zi) adds input argument zi to specify the filter 
initial conditions. When you omit zi or specify it as empty, [ ], initrls defaults 
to zi equal to a  zero vector of length  [length(w0)-1]. 

s = initrls(w0,p0,lambda,zi,alg) adds the input argument 'alg' that 
specifies which version of the RLS algorithm gets used in RLS computations. 
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String alg can be either 'direct' (default) to use the RLS algorithm or 'sqrt' to 
use the more stable square root (QR decomposition) RLS algorithm.

When you check the contents of s after you use initrls MATLAB displays the 
structure elements, rather than the input argument names. To help you 

String alg Description

direct Specifies the standard RLS algorithm to determine the 
least squares weight vector for the adaptive filter weights. 
This is the default setting.

sqrt Specifies the QR decomposition RLS algorithm to 
determine the least squares weight vector for the adaptive 
filter coefficients. The QR algorithm applies the QR 
decomposition to the incoming data matrix, rather than 
working with the correlation matrix of the input data as  
the RLS algorithm does. In the RLS algorithm, the input 
data correlation matrix  is averaged over time. Working 
directly with the input data matrix makes the QR version 
more stable numerically.
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remember which element in s corresponds to each input argument to initrls, 
the following table provides the mapping

initrls 
Argument

Structure 
Field

Argument Contents

w0 s.coeffs  NLMS FIR filter coefficients.  Should be 
initialized with the initial coefficients for the 
FIR filter prior to adapting.  You need 
(adapting filter order + 1) entries in s.coeffs. 
Updated filter coefficients are returned in 
s.coeffs when you use s as an output 
argument.

p0 s.invcov  The inverse of the input covariance matrix.  
Should be initialized with the initial input 
covariance matrix inverse. p0 has dimensions 
equal to the filter order, or length(w0)-1. 
When you use s as an output argument to 
adaptrls, with the 'direct' algorithm 
specified, adaptrls returns the updated 
matrix in s.invcov.

lambda s.lambda  The forgetting factor that defines how the RLS 
algorithm weighs more recent and less recent 
samples. While lambda can be between 0 and 1, 
usually you set 0.9 < lambda ≤ 1.0

zi s.states  Returns the states of the FIR filter after 
adaptation. This is an optional element. If 
omitted, it defaults to a zero vector of length 
equal to the filter order. When you use 
adaptrls in a loop structure, use this element 
to specify the initial filter states for the 
adapting FIR filter.
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Examples Create the structure s that you use with adaptrls. In this example we plan to 
identify an unknown 32nd-order FIR filter. Set w0 to contain 33 initial filter 
coefficients. Since p0 is the inverse correlation matrix, our correlation matrix 
must have been the identity matrix with 0.2 on the diagonal and zeros 
everywhere else. By default we use the direct RLS algorithm and we let all 
earlier samples be weighted equally, lambda = 1.

w0 = zeros(1,33);      % Intial filter coefficients
p0 = 5*eye(33);        % Initial input correlation matrix inverse
lambda = 1;            % Exponential memory weighting factor
s = initrls(w0,p0,lambda);

To see the results of using this s, refer to adaptrls.

See Also adaptrls, initkalman, initlms, initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John 
Wiley and Sons, Inc, 1996.

s.gain    RLS gain is a read-only value. For each 
iteration of the algorithm, the gain from the 
previous iteration feeds into the algorithm. For 
the first iteration, the default gain is [ ]. After 
the algorithm finishes adapting, s.gain 
contains the final gain value.

s.iter    Total number of iterations in the adaptive 
filter run. Although you can set this in s, you 
should not. Consider it a read-only value.

alg s.alg      Specifies the RLS algorithm to use for the 
adapting process. This is an optional element. 
Enter either 'direct' for the conventional RLS 
algorithm or 'sqrt' for the more stable square 
root (QR) method. direct is the default 
algorithm; used when you omit alg.

initrls 
Argument

Structure 
Field

Argument Contents
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13initsdPurpose Configure the initialization structure used as an input argument to adaptsd

Syntax s = initsd(w0,mu)
s = initsd(w0,mu,zi)
s = initsd(w0,mu,zi,lf)

Description s = initsd(w0,mu) returns the fully populated structure s that you use when 
you call adaptsd. Vector w0 contains the initial values of the filter coefficients. 
Its length should equal the order of the adapting FIR filter plus one. mu is the 
sign data least mean square (SDLMS) algorithm step size. The step size you 
specify determines both the time it takes for the SDLMS algorithm to converge 
to a solution and the accuracy of that solution (how closely the result 
approaches the minimum least mean square error). Generally, small step sizes 
adapt more slowly but more closely and large step sizes adapt more quickly 
with larger error compared to the true minimum mean square error.

In matrix form, the SDLMS algorithm is

,  (13-2)

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SDLMS algorithm seeks to 
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the SDLMS error falls more 
slowly. Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following 
bounds:

where N is the number of samples in the signal. Also, define mu as a power of 
two.

w k 1+( ) w k( ) µe k( )sgn x k( )[ ]+= sgn x k( )[ ]
 1  x k( ), 0>

   0  x k( ), 0=

1–  x k( ), 0<





=

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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s = initsd(w0,mu,zi) adds input argument zi to specify the filter initial 
conditions. When you omit zi or specify it as empty, [ ], initsd defaults to zi 
equal to a  zero vector of length  [length(w0)-1]. For conditional processing 
such as using adaptse in a for-loop, specifying the initial conditions is very 
important. Each iteration of the SDLMS algorithm uses the weights from the 
prior interation. You supply the initial conditions so the first iteration has a set 
of prior filter weights to start from.

s = initsd(w0,mu,zi,lf) specifies the leakage factor lf.  Including the 
leakage factor can improve the behavior of the algorithm. Leaking the weight 
w(k) ( the leakage factor applies to the weight in Equation 13-2) forces the 
algorithm to continue to adapt even after it reaches its minimum value. This 
can mean that the leaky SDLMS does not achieve quite so accurate a measure 
of the minimum mean square error. However, the sensitivity to errors, or to 
small values in the input is reduced when you use the leakage factor. Typically, 
set lf between 0.9 (considered very leaky) and 1.0,  meaning no leakage. If you 
specify lf as empty, it defaults to one. 

See Also adaptsd, initse, initss, adaptlms, adaptrls, initlms,  initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John 
Wiley and Sons, Inc, 1996.
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13initsePurpose Configure the initialization structure used as an input argument to adaptse

Syntax s = initse(w0,mu)
s = initse(w0,mu,zi)
s = initse(w0,mu,zi,lf)

Description s = initse(w0,mu) returns the fully populated structure s that you use when 
you call adaptse. Vector w0 contains the initial values of the filter coefficients. 
Its length should equal the order of the adapting FIR filter plus one. mu is the 
sign error least mean square (SELMS) algorithm step size. The step size you 
specify determines both the time it takes for the SELMS algorithm to converge 
to a solution and the accuracy of that solution (how closely the result 
approaches the minimum least mean square error). Generally, small step sizes 
adapt more slowly but more closely and large step sizes adapt more quickly 
with larger error compared to the true minimum mean square error.

In matrix form, the SELMS algorithm is

,  (13-3)

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SELMS algorithm seeks to 
minimize. µ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the SELMS error falls more 
slowly. Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following 
bounds:

where N is the number of samples in the signal. Also, define mu as a power of 
two.

w k 1+( ) w k( ) µ e k( )[ ]sgn x k( )[ ]+= sgn e k( )[ ]
 1  e k( ), 0>

   0  e k( ), 0=

1–  e k( ), 0<





=

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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s = initse(w0,mu,zi) adds input argument zi to specify the filter initial 
conditions. When you omit zi or specify it as empty, [ ], initss defaults to zi 
equal to a  zero vector of length  [length(w0)-1]. For conditional processing 
such as using adaptss in a for-loop, specifying the initial conditions is very 
important. Each iteration of the SELMS algorithm uses the weights from the 
prior interation. You supply the initial conditions so the first iteration has a set 
of prior filter weights to start from.

s = initnlms(w0,mu,zi,lf) specifies the leakage factor lf.  Including the 
leakage factor can improve the behavior of the algorithm. Leaking the weight 
w(k) ( the leakage factor applies to the weight in Equation 13-3) forces the 
algorithm to continue to adapt even after it reaches its minimum value. This 
can mean that the leaky SELMS does not achieve quite so accurate a measure 
of the minimum mean square error. However, the sensitivity to errors, or to 
small values in the input is reduced when you use the leakage factor. Typically, 
set lf between 0.9 (considered very leaky) and 1.0,  meaning no leakage. If you 
specify lf as empty, it defaults to one. 

See Also adaptsd, initse, initss, adaptlms, adaptrls, initlms,  initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John 
Wiley and Sons, Inc, 1996.
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13initssPurpose Configure the initialization structure used as an input argument to adaptss

Syntax s = initss(w0,mu)
s = initss(w0,mu,zi)
s = initss(w0,mu,zi,lf)

Description s = initss(w0,mu) returns the fully populated structure s that you use when 
you call adaptss. Vector w0 contains the initial values of the filter coefficients. 
Its length should equal the order of the adapting FIR filter plus one. mu is the 
sign sign least mean square (SSLMS) algorithm step size. The step size you 
specify determines both the time it takes for the SSLMS algorithm to converge 
to a solution and the accuracy of that solution (how closely the result 
approaches the minimum least mean square error). Generally, small step sizes 
adapt more slowly but more closely and large step sizes adapt more quickly 
with larger error compared to the true minimum mean square error.

In matrix form, the SSLMS algorithm is

,  

(13-4)

where z(k) is

Vector w contains the weights applied to the filter coefficients and vector x 
contains the input data. e(k) (equal to desired signal - filtered signal) is the 
error at time k and is the quantity the SSLMS algorithm seeks to minimize. 
µ (mu) is the step size. As you specify mu smaller, the correction to the filter 
weights gets smaller for each sample and the SSLMS error falls more slowly. 
Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following 
bounds:

w k 1+( ) w k( ) µ e k( )[ ]sgn x k( )[ ]sgn+=

sgn z k( )[ ]
 1  z k( ), 0>

   0  z k( ), 0=

1–  z k( ), 0<





=

z k( ) e k( )[ ] x k( )[ ]sgn=

0 µ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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where N is the number of samples in the signal. Also, define mu as a power of 
two.

s = initss(w0,mu,zi) adds input argument zi to specify the filter initial 
conditions. When you omit zi or specify it as empty, [ ], initss defaults to zi 
equal to a  zero vector of length  [length(w0)-1]. For conditional processing 
such as using adaptss in a for-loop, specifying the initial conditions is very 
important. Each iteration of the SSLMS algorithm uses the weights from the 
prior interation. You supply the initial conditions so the first iteration has a set 
of prior filter weights to start from.

s = initss(w0,mu,zi,lf) specifies the leakage factor lf.  Including the 
leakage factor can improve the behavior of the algorithm. Leaking the weight 
w(k) ( the leakage factor applies to the weight in Equation 13-4) forces the 
algorithm to continue to adapt even after it reaches its minimum value. This 
can mean that the leaky SSLMS does not achieve quite so accurate a measure 
of the minimum mean square error. However, the sensitivity to errors, or to 
small values in the input is reduced when you use the leakage factor. Typically, 
set lf between 0.9 (considered very leaky) and 1.0,  meaning no leakage. If you 
specify lf as empty, it defaults to one. 

See Also adaptsd, initse, initss, adaptlms, adaptrls, initlms,  initnlms

References Hayes, Monson. H., Statistical Digital Signal Processing and Modeling, John 
Wiley and Sons, Inc, 1996.
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13isallpassPurpose Test quantized filters to determine whether they are allpass structures

Syntax flag = isallpass(f)
flag = isallpass(f,k)

Description flag = isallpass(f) determines whether the filter object f is an allpass 
filter, returning 1 if true and 0 if false.

flag = isallpass(f,k) determines whether the k-th section of the filter 
object f is an allpass section and returns 1 if true and 0 if false.

Since lattice coupled allpass filters always have allpass sections, this function 
always returns 1 for filters whose structure is latticeca.

See Also isfir, islinphase, ismaxphase, isminphase, isreal, issos, isstable
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13isfirPurpose Test quantized filters to see whether they are FIR filters

Syntax flag = isfir(hq)
flag = isfir(hq,k)

Description flag = isfir(hq) determines whether quantized filter hq is an FIR filter, 
returning flag equal to 1 when the quantized filter is an FIR filter, and 0 when 
it is IIR.

flag = isfir(hq,k) determines whether the kth-section of quantized filter hq 
is an FIR filter, returning flag equal to 1 when the kth-section is an FIR filter 
and 0 when it is IIR.

isfir(hq) looks at filter hq and determines whether the filter, in transfer 
function form, has a scalar for its denominator. If it does, it is an FIR filter.

Examples hq = qfilt;
isfir(hq)
ans =

     1

returns 1 for the status of filter hq; the filter is an FIR structure with 
denominator reference coefficient equal to one.

See Also isallpass, islinphase, ismaxphase, isminphase, isreal, issos, isstable
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13isfixedPurpose Test and return whether a quantizer is fixed point

Syntax res = isfixed(q)

Description res = isfixed(q) returns res = 1 (logical true) when q is a fixed-point 
quantizer. When q is not fixed point, isfixed returns res = 0. When you 
develop programs that use one or more quantizers, you may find this function 
useful to determine the mode of a quantizer within your program, and respond 
to the returned value.

Examples Demonstrate the results of testing both fixed-point and nonfixed-point 
quantizers:

q = quantizer('double'); % Create a floating-point quantizer
res = isfixed(q)
res =
0
q = quantizer('ufixed'); % Create a fixed-point quantizer
res = isfixed(q)
res =
1

See Also isfloat, quantizer
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13isfloatPurpose Test and return whether a quantizer is floating point

Syntax res = isfloat(q)

Description res = isfloat(q) returns res = 1 (logical true) when q is a floating-point 
quantizer. When q is not floating point, isfloat returns res = 0. When you 
develop programs that use one or more quantizers, you may find this function 
useful to determine the mode of a quantizer within your program, and respond 
to the returned value.

Examples Demonstrate the results of testing both fixed-point and nonfixed-point 
quantizers:

q = quantizer('double'); % Create a floating-point quantizer
res = isfloat(q)
res =
1
q = quantizer('ufixed'); % Create a fixed-point quantizer
res = isfloat(q)
res =
0

See Also isfixed, quantizer
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13isnonePurpose Determine and return whether a quantizer has quantization mode equal to 
none

Syntax res = isnone(q)

Description res = isnone(q) returns res = 1 (logical true) when qauntizer q has mode 
equal to none. Recall that quantizers may have one of five modes—none, 
double, fixed, float, or single. When you develop programs that use one or more 
quantizers, you may find this function useful for determining the mode of a 
quantizer within your program, and responding to the returned value.

Examples Create and test two quantizers—one operating in double mode and the other 
with mode set to none:

q = quantizer('double'); % Create a double data type quantizer
res = isnone(q)
res =
0
q = quantizer('none'); % Create a quantizer with mode = none
res = isnone(q)
res =
1

See Also isfixed, isfloat
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13islinphasePurpose Test quantized filters to see whether they are linear phase

Syntax flag = islinphase(hq)
flag = islinphase(hq,k)

Description flag = islinphase(hq) determines if the quantized filter hq is linear phase, 
and returns 1 if true and 0 if false.

flag = islinphase(hq,k) determines if the kth-section of the filter hq is a 
linear phase section and returns 1 if true and 0 if false. 

The determination is based on the reference coefficients.  A filter has linear 
phase if it is FIR and its transfer function coefficients are are symmetric or 
antisymmetric. If it is IIR and it has poles on or outside the unit circle and both 
numerator and denominator are symmetric or antisymmetric, it is linear phase 
also.

Examples This IIR filter has linear phase.

num=[1 0 0 0 0 -1];
den=[1 -1];
hq = qfilt('df2t',{num,den});
islinphase(hq)
ans =

     1

See Also isallpass, isfir, ismaxphase, isminphase, isreal, issos, isstable
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13ismaxphasePurpose Test quantized filters to see whether they are maximum phase filters

Syntax flag = ismaxphase(hq)
flag = ismaxphase(hq,k)

Description flag = ismaxphase(hq) determines whether filter hq is maximum phase, 
returning 1 if true and 0 if false.

flag = ismaxphase(hq,k) determines if the kth-section of filter hq is a 
maximum phase section and returns 1 if true and 0 if false. 

The determination is based on the reference coefficients.  A filter is maximum 
phase when the zeros of its transfer function are on or outside the unit circle, 
or when the numerator is a scalar.

Examples hq = qfilt;
ismaxphase(hq)

returns 1 so this is a maximum phase quantized filter. Notice that the filter 
coefficients (zeros) are 1.0 before quantization. Compare to isminphase.

See Also isallpass, isfir, islinphase, isminphase, isreal, issos, isstable



isminphase

13-263

13isminphasePurpose Test quantized filters to see if they are minimum phase

Syntax flag = isminphase(hq)
flag = isminphase(hq,k)

Description flag = isminphase(hq) determines if the filter hq is minimum phase and 
returns 1 if true and 0 if false.

flag = isminphase(hq,k) determines if the k-th section of the filter hq is a 
minimum phase section and returns 1 if true and 0 if false. 

The determination is based on the reference coefficients.  A filter is minimum 
phase when the zeros of its transfer function are on or inside the unit circle, or 
the numerator is a scalar.

Examples This example creates a minimum phase quantized filter.

hq = qfilt;
isminphase(hq)

If you look at the example in ismaxphase, you may notice that this filter is also 
maximum phase. Since both the poles and zeros of the filter lie on the unit 
circle, it passes the tests for minimum and maximum phase designation.

See Also isallpass, isfir, islinphase, ismaxphase, isreal, issos, isstable, 
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13isrealPurpose Test quantized filters for purely real coefficients

Syntax r = isreal(hq)

Description r = isreal(hq) returns r = 1 (or true) if all reference filter coefficients for the 
quantized filter hq are real, and returns r = 0 (or false) otherwise.

isreal(hq) returns 1 if all filter coefficients in quantized filter hq have zero 
imaginary part.  Otherwise, isreal(hq) returns a 0 indicating that the filter 
is complex. Complex quantized filters have one or more coefficients with 
nonzero imaginary parts.

Note  Quantizing a filter cannot make a real filter into a complex filter.

Examples % Create a reference filter.
[b,a] = ellip(2,0.5,20,0.4); 

% Create a quantized filter from the reference filter.

hq = qfilt('df2t',{b,a});

% Test if all filter coefficients are real.

r = isreal(hq)

r =
     1
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See Also isfir, islinphase, ismaxphase, isminphase, issos, isstable, isallpass
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13issosPurpose Test whether quantized filters are composed of second-order sections

Syntax flag = issos(hq)

Description flag = issos(hq) determines whether quantized filter hq consists of 
second-order sections. Returns 1 if all sections of quantized filter hq have order 
less than or equal to two, and 0 otherwise.

Examples warning off
[b,a] = butter(5,.5);
hq = sos(qfilt('ref',{b,a}));
v = issos(hq)
v =

     1
hq.statespersection

ans =

     1     2     2

Quantized filter hq is in second-order section form.

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, isstable
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13isstablePurpose Test whether a quantized filter is stable

Syntax r = isstable(hq)
r = isstable(hq,k)

Description r = isstable(hq) tests quantized filter hq to determine whether its poles are 
inside the unit circle. If the poles lie on or outside the circle, isstable returns 
r = 0. If the poles are inside the circle, isstable returns r = 1.

r = isstable(hq,k) returns the stability of the kth-section of a multiple 
section quantized filter. Based on the locations of the poles of the specified 
section, isstable returns r = 1 if the filter section is stable, and 0 otherwise.

To determine the filter stability, isstable checks the quantized filter 
coefficients. When the poles lie on or inside the unit circle, the quantized filter 
is stable. FIR filters are stable by design since the defining transfer functions  
do not have denominator polynomials.

Examples Since filter stability is very important in your design process, use isstable to 
deterime whether you quantized IIR filter is indeed stable:

hq = qfilt;
isstable(hq)
ans =

1

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, issos, 
zplane
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13lengthPurpose Return the length of a quantized FFT

Syntax length(f)

Description length(f) returns the value of the length property of quantized FFT f. The 
value of the length property must be a positive integer that is also a power of 
the radix of the quantized FFT (f.radix). The length of the FFT is the length 
of the data vector that the FFT operates on.

Examples f = qfft;
length(f)

returns the default 16 for the length of the FFT.

See Also qfft, get, set
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13limitcyclePurpose Detect limit cycles in a quantized filter

Syntax limitcycle(hq)
limitcycle(hq, ntrials, inputlength, stopcriterion, displaytype)
[limitcycletype, zi, stateperiod, statesequence,...

overflowsperstep, trial, section] = limitcycle(hq, ...)

Description limitcycle(hq) runs 20 Monte Carlo trials with quantized filter hq. Each trial 
uses a new set of initial states (determined randomly) and zero input vector of 
length 100. Monte Carlo processing stops if a zero-input limit cycle is detected 
in quantized filter hq. At completion, limitcycle returns one of the following 
strings:

• 'granular' indicating that a granular overflow occurred

• 'overflow' indicating that an overflow limitcycle occurred

• 'none' indicating that no limit cycles were detected during the Monte Carlo 
trials

limitcycle(hq, ntrials, inputlength, stopcriterion, displaytype) 
lets you set the following arguments:

• ntrials — the number of monte carlo trials (default is 20).

• inputLength — the length of the zero vector used as input to the filter 
(default is 100).

• stopcriterion — the criterion for stopping the Monte Carlo trials 
processing. stopcriterion can be set to 'either' (the default), 'granular', 
'overflow', or 'none'. If stopcriterion is:

stopcriterion Description

'either' Monte Carlo trials will stop when either a 
granular or overflow limit cycle is detected

'granular' Monte Carlo trials stop when a granular limit 
cycle was detected
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• displaytype — the display type. When displaytype is nonzero, limitcycle 
displays messages about the progress of the Monte Carlo trials.

[LimitcycleType, Zi, StatePeriod, StateSequence, overflowsperstep, 
trial, section] = limitcycle(hq,...) also returns

• limitcycletype — one of 'granular' to indicate that a granular overflow 
occurred; 'overflow' to indicate that an overflow limitcycle occurred; or 
'none' to indicate that no limit cycles were detected during the Monte Carlo 
trials.

• zi — the initial condition that caused the limit cycle.

• stateperiod — an integer indicating the repeat period of the limit cycle 
(-1 if the filter converged and the last state is zero, 0 if the last state is not 
zero and no limit cycle was detected).

• statesequence — a matrix containing the sequence of states at every time 
step (one matrix column per time step). The final conditions are in the last 
column of statesequence zf = statesequence(:,end). The initial 
conditions of the section are in the first column of statesequence 
zi = statesequence(:,1).

• overflowsperstep — a cell array that contains one vector of integers for 
each section of the filter that indicates the total number of overflows that 
occurred during each time step. The overflows from the kth-section are found 
in overflowsperstep{k}.

• trial — the number of the trial on which Monte Carlo processing stopped.

• section — the number of the section in which the limitcycle was detected.

Only the parameters of the last limit cycle are returned. If Monte Carlo 
processing does not detect any limit cycles, the parameters of the last Monte 
Carlo trial are returned.

'overflow' Monte Carlo trials stop when an overflow limit 
cycle was detected

'none' Monte Carlo trials do not stop until all trials have 
been run

stopcriterion Description
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Examples In this example, there is a region of initial conditions in which no limit cycles 
occur, and a region where they do. If no limit cycles are detected before the 
Monte Carlo trials are over, the state sequence spirals to zero. When a limit 
cycle is found, the states do not end at zero. Each time you run this example, it 
uses a different sequence of random initial conditions, so the plot you get may 
differ from the one displayed in the following figure.

a = [-1 -1; 0.5 0]; 
b = [0; 1]; 
c = [1 0]; 
d = 0; 
hq = qfilt('statespace',{a,b,c,d},'overflowmode','wrap'); 
[limitcycletype, zi, stateperiod, statesequence] = limitcycle(hq); 
plot(statesequence(1,:), statesequence(2,:),'-o') 
xlabel('State 1'); 
ylabel('State 2'); 
axis([-2 2 -2 2]); axis square; grid 
title(['Limit cycle type:',limitcycletype]) 
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See Also freqz, nlm
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13maxPurpose Return the maximum value of a quantizer object before quantization

Syntax max(q)

Description max(q) is the maximum value before quantization during a call to 
quantize(q,...) for quantizer q. This value is the maximum value 
encountered over successive calls to quantize and is reset with reset(q). 
max(q) is equivalent to get(q,'max') and q.max.

Examples q = quantizer;
warning on
y = quantize(q,-20:10);
max(q)

returns the value 10 and a warning for 29 overflows.

See Also min
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13min

Purpose Return the minimum value of a quantizer object before quantization

Syntax max(q)

Description max(q) is the minimum value before quantization during a call to 
quantize(q,...) for quantizer q. This value is the minimum value 
encountered over successive calls to quantize and is reset with reset(q). 
min(q) is equivalent to get(q,'min') and q.min.

Examples q = quantizer;
warning on
y = quantize(q,-20:10);
min(q)

returns the value -20 and a warning for 29 overflows.

See Also max
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13nlmPurpose Use the noise loading method to estimate the frequency response of a quantized 
filter

Syntax [h,w,pnn,nf] = nlm(hq,n,l)
[h,w,pnn,nf] = nlm(hq,n,l,'whole')
[h,f,...] = nlm(hq,n,l,fs)
[h,f,...] = nlm(hq,n,l,'whole',fs)
nlm(hq,...)

Description [h,w,pnn,nf] = nlm(hq,n,l) uses the noise loading method to estimate the 
complex frequency response of quantized filter hq. Using nlm returns the 
complex frequency response h, frequency vector w, in radians/sample, power 
spectral density pnn, and noise figure nf, for the quantized filter hq, at n 
equally-spaced points around the upper half of the unit circle. Noise figure nf 
and power spectral density pnn are given in dB. nlm averages over l Monte 
Carlo trials. The Monte Carlo trials result in a noise-like signal that contains 
complete frequency content across the spectrum. When you omit n or l from the 
command, or leave them empty, n defaults to 512 and l defaults to 10.

[h,w,pnn,nf] = nlm(hq,n,l,'whole') uses n points around the entire unit 
circle, rather than the upper half.

[h,f,...] = nlm(hq,n,l,fs) and [h,f,...] = nlm(hq,n,l,'whole',fs) 
returns frequency vector f, in Hz, where fs is the sampling frequency in Hz.

nlm(hq,...) without output arguments plots the magnitude and unwrapped 
phase of hq, comparing the estimated response to the theoretical frequency 
response calculated by [h,w] = freqz(hq,n) in the current figure window.

Examples Use the noise loading method to determine the frequency response of a 
quantized IIR filter Hq.

[b,a] = butter(6, 0.5);
hq = qfilt('df2t',{b,a});
nlm(hq,1024,20)

For comparison, the plot shows  the theoretical response and the response 
estimated by nlm. Additionally, you see the estimated phase response for 
comparison.
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See Also freqz, qfilt

References McClellan, et al., Computer-Based Exercises for Signal Processing Using 
MATLAB 5, Prentice-Hall, 1998, 243.
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13noperationsPurpose Number of quantization operations performed by a quantizer, quantized filter, 
or quantized FFT

Syntax noperations(q)
noperations(hq)
noperations(f)

Description noperations(q) is the number of quantization operations during a call to 
quantize(q,...) for quantizer q. This value accumulates over successive calls 
to quantize. You reset the value of noperations to zero by issuing the 
command reset(q).

noperations(hq) is the number of sum and product quantization operations 
performed during a call to filter(hq,...) for quantized filter hq.

noperations(f) is the number of sum and product quantization operations 
performed during a call to fft(f,...) or ifft(f,...) for quantized FFT f.

Here’s how noperations counts quantization operations—each time any data 
element gets quantized, noperations gets incremented by one. Both the real 
and complex parts count, separately. For example, (complex * complex) counts 
four quantization operations for products and two for sum—
(a+bi)*(c+di) = (a*c - b*d) + (a*d + b*c). In contrast, (real*real) counts one 
quantization operation.

In addition, the real and complex parts of the inputs get quantized 
individually. As a result, for a complex input of length 204 elements, 
noperations counts 408 quantizations—204 for the real part of the input and 
204 for the complex part. 

If any inputs, states, or coefficients are complex-valued, they are all expanded 
from real values to complex values, with a corresponding increase in the 
number of quantization operations recorded by noperations. In concrete 
terms, (real*real) requires fewer quantizations than (real*complex) and 
(complex*complex). Changing all the values to complex because one is complex, 
such as the coefficient, makes the (real*real) into (real*complex), raising 
noperations count.

Examples noperations returns the number of quantizations it counts. You call it as a 
quantizer, or as part of designing a quantized filter or quantized FFT. 
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noperations reports the total number of sum and product quantizations for 
quantized filters and quantized FFTs. For quantizers, noperations reports all 
the quantization operations. 

The following code does not perform any adds or multiplies; it quantizes the 
specified data according to the properties of quantizer q: 

warning on
q=quantizer;
y = quantize(q,-20:10);
noperations(q)

and returns 31 and a warning for 29 overflows. Notice that the next example 
returns an operations count (NOperations) that includes only quantizations 
performed during multiply and add operations.

[b,a] = ellip(4,3,20,.6);
hq = qfilt('df2',{b,a},'roundmode','fix');
y=filter(hq,randn(100,1));

Warning: 32 overflows in QFILT/FILTER.
                        Max            Min     NOverflows    NUnderflows    NOperations
 Coefficient          1.398         0.2259              2              0             10
       Input          2.183         -2.171             27              0            100
      Output         0.9377        -0.8144              0              0            100
Multiplicand          1.972             -2            310              0           1200
     Product              1             -1              0              0           1200

Sum          1.972         -2.426              3              0           1000

noperations(hq)
ans =

        2200

Returning a total of 2200 operations shows that noperations represents the 
total sum and product quantizations performed, as you see in the result listing 
from the filter call.

See Also get, qfft, qfilt, quantizer
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13normalizePurpose Normalize quantized filter coefficients

Syntax h = normalize(Hq)

Description h = normalize(Hq) accounts for quantized filter coefficient overflow by 
normalizing the quantized filter coefficients in the quantized filter Hq. The new 
quantized filter h contains the normalized coefficients. All quantized filter 
coefficients for h stored in the QuantizedCoefficients property value are 
modified to have magnitude less than or equal to one. The result also modifies 
the ReferenceCoefficients property value for h accordingly. normalize also 
modifies the ScaleValues property value for h from that of Hq, so that input 
data to each section of h are scaled to compensate for the normalized filter 
coefficients. The scaling factors used in normalize are powers of two. There 
may be a different scaling factor for each section of the quantized filter. You can 
apply normalize to direct form IIR and FIR filters only. To apply normalize to 
a quantized filter, its property Hq.FilterStructure must be one of the 
following strings:

• 'df1'
• 'df1t'
• 'df2'
• 'df2t'
• 'fir'

• 'firt'
• antisymmetricfir
• 'symmetricfir'

Examples Create a direct form II transposed quantized filter and use normalize to 
account for overflow.

% Create a low pass reference filter in the Signal Proc. Toolbox.

[b,a] = ellip(5,2,40,0.4);

% Create the quantized filter from the reference.

hq = qfilt('df2t',{b,a});

Warning: 5 overflows in coefficients.
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You are warned that some of the coefficients have overflowed. To account for 
this overflow, use normalize to modify the ReferenceCoefficients, 
QuantizedCoefficients, and ScaleValues property values for Hq.

hq = normalize(hq)

hq = 
Quantized Direct form II transposed filter                            
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
  (1)       0.365295410156250  0.365289835338219130                   
  (2)       0.395721435546875  0.395708380608267300                   
  (3)       0.724884033203125  0.724891008581378560                   
  (4)       0.724884033203125  0.724891008581378120                   
  (5)       0.395721435546875  0.395708380608267240                   
  (6)       0.365295410156250  0.365289835338218350                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
  (1)       0.250000000000000   0.250000000000000000                  
  (2)      -0.541015625000000  -0.541012429707579350                  
  (3)       0.790557861328125   0.790542752251058410                  
  (4)      -0.668945312500000  -0.668930473694134720                  
  (5)       0.365966796875000   0.365965902328318770                  
  (6)      -0.103698730468750  -0.103697674644671510                  
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [0.03125  1]                                     
  NumberOfSections = 1                                                
  StatesPerSection = [5]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])

Notice that none of the coefficients overflow, and that the ScaleValues 
property value has changed.

See Also get, set
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13noverflowsPurpose Return the number of overflows from the most recent FFT or IFFT operation

Syntax noverflows(F)
noverflows(Hq)
noverflows(Hq,'sum')
noverflows (Q)

Description noverflows(F) returns the number of overflows resulting from the most recent 
fft or ifft operation that used quantized fft (F).

noverflows(Hq) returns the number of overflows resulting from the most 
recent filter operation that used quantized filter (Hq).

noverflows(Hq,'sum') returns the number of overflows that resulted from the 
most recent qfilt operation. When the quantized filter has one section, this 
returns a scalar. When the filter uses two or more sections, noverflows returns 
a vector containing one element for each filter section.

noverflows(Q) returns the number of overflows resulting from the most recent 
quantize operation that used quantizer (Q).

Examples Create a quantized fft f and apply it to a data set. Check the number of 
overflows that result when you use f. Then apply f to a second data set and 
check the overflows again.

warning on
n=128;
t = (1:n)/n;
x = sin(2*pi*10*t)/10;
f = qfft('length',n);
plot(t,abs([fft(f,x);fft(x)]))
noverflows(f)

returns 24 for the number of overflows and a warning of 24 overflows.

Now, apply f to another data set.

x = sin(2*pi*10*t)/5;
plot(t,abs([fft(f,x);fft(x)]))
noverflows(f)

Now you see 58 overflows.
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See Also get, max, range, reset
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13num2binPurpose Convert a number to a binary string

Syntax num2bin(Hq)  
c = num2bin(Hq)
y = num2bin(q,x)

Description num2bin(Hq) with no left-hand-side argument displays the quantized 
coefficients in quantized filter Hq as binary strings.

c = num2bin(Hq) with a left-hand-side argument c returns a cell array of 
quantized coefficients as binary strings. Cell array c inherits the configuration 
of cell array Hq.QuantizedCoefficients.

When the mode of Hq is float, double, or single, the coefficients are converted to 
IEEE Standard 754 style binary strings.

If the mode of Hq is fixed, the coefficients are converted to two’s complement 
binary strings.

y = num2bin(q,x) converts numeric array x into binary strings returned in y. 
When x is a cell array, each numeric element of x is converted to binary. If x is 
a structure, each numeric field of x is converted to binary.

num2bin and bin2num are inverses of one another, differing in that num2bin 
returns the binary strings in a column.

Examples x=magic(3)/9 

x =
    0.8889    0.1111    0.6667 
    0.3333    0.5556    0.7778 
    0.4444    1.0000    0.2222 

q=quantizer([4 3]); 
y = num2bin(q,x) 

y =
0111
0010
0011
0000
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0100
0111
0101
0110
0001

Algorithm Numeric values in the input data are quantized first by quantizer q, then 
converted to their binary equivalents. When Hq has coefficients exactly equal 
to 1, or when the input data set x includes values equal to 1 and 1 is outside the 
quantizer’s range, 1 is quantized according to the property values set for q 
because no binary representation for 1 exists. Beware of this behavior when 
q.overflowmode = 'wrap', because the value 1 in the input data or quantized 
filter coefficients gets converted and wrapped to –1 (1000 binary).

For example, 

q = quantizer([4 3],'wrap'); 
range (q)

ans =
   -1.0000    0.8750

num2bin(q,1) 

returns the binary 10002 = –110 because 1 lies outside the maximum value 
(0.8750) for q.

Errors When one or more quantized coefficients have real or imaginary parts that 
equal 1, and the number format does not include 1 in its range, those 
coefficients are saturated to 1 – ε (where ε is the epsilon of the coefficient 
quantizer) and the operation returns a warning message.

See Also bin2num, hex2num, num2hex
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13num2hexPurpose Convert a number to its hexadecimal equivalent

Syntax num2hex(Hq)  
c = num2hex(Hq)
y = num2hex(q,x)

Description num2hex(Hq) with no left-hand-side argument displays the quantized 
coefficients in quantized filter Hq as hexadecimal strings.

c = num2hex(Hq) with a left-hand-side argument c returns a cell array of 
quantized coefficients as hexadecimal strings. Cell array c inherits the 
configuration of cell array Hq.QuantizedCoefficients.

When the mode of Hq is 'float', 'double', or 'single', the coefficients are 
converted to IEEE Standard 754 style hexadecimal strings.

If the mode of Hq is fixed, the coefficients are converted to two’s complement 
hexadecimal strings.

y = num2hex(q,x) converts numeric array x into hexadecimal strings returned 
in y. When x is a cell array, each numeric element of x is converted to 
hexadecimal. If x is a structure, each numeric field of x is converted to 
hexadecimal.

For fixed-point quantizers, the representation is two’s complement. For 
floating-point quantizers, the representation is IEEE Standard 754 style.

For example, for q = quantizer('double')

num2hex(q,nan) 

ans =

fff8000000000000 

The leading fraction bit is 1, all other fraction bits are 0. Sign bit is 1, exponent 
bits are all 1. 

num2hex(q,inf) 

ans =

7ff0000000000000 
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Sign bit is 0, exponent bits are all 1, all fraction bits are 0. 

num2hex(q,-inf) 

ans =

fff0000000000000 

Sign bit is 1, exponent bits are all 1, all fraction bits are 0.

num2hex and hex2num are inverses of each other, except that num2hex returns 
the hexadecimal strings in a column.

Examples This is a floating-point example using a quantizer q that has 6-bit word length 
and 3-bit exponent length.

x=magic(3) 
x =
     8     1     6 
     3     5     7 
     4     9     2 

q=quantizer('float',[6 3]);
y = num2hex(q,x) 

y =

0
8
0
8
8
8
0
8
0

Algorithm Call the num2hex method of the coefficient’s quantizer. The numeric values are 
quantized first by q; if you have coefficients that are exactly equal to 1, and 1 
is not representable in the arithmetic format, no binary representation for 1 
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will exist, and 1 is quantized according to q. Beware of this when 
q.overflowmode = 'wrap', because 1 will be quantized to –1.

For example, 

q = quantizer([4 3],'wrap'); 
num2hex(q, 1) 

returns the hexadecimal 816 = –110.

Errors If one or more quantized coefficients has a real or imaginary part that is exactly 
equal to 1, and 1 is outside the range for the quantizer, those coefficients are 
saturated to 1 – ε (where ε is the epsilon of the coefficient quantizer) and the 
operation returns a warning message.

See Also bin2num, hex2num, num2bin
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13num2intPurpose Convert number to signed integer

Syntax y = num2int(q,x)
y = num2int(hq)
y = num2int(q,c)
[y1,y2, ] = num2int(q,x1,x2, )

Description y = num2int(q,x) uses q.format to convert numeric x to an integer.

y = num2int(hq) uses q.coefficientformat to convert the coefficients of 
quantized filter hq to integers. This function is equivalent to 

y = num2int(hq.coefficientquantizer,hq.quantizedcoefficients)

y = num2int(q,{c}) uses q.format to convert the entries in cell array c to 
integers, returned in cell array y.

[y1,y2, ] = num2int(q,x1,x2, ) uses q.format to convert numeric values 
x1, x2, … to integers y1,y2,….

Examples All of the four-bit, two’s complement, fixed-point numbers in fractional form 
are given by

x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750
0.625 0.125 -0.375 -0.875
0.500 0 -0.500 -1.000];

q=quantizer([4 3]);

y = num2int(q,x)
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y =

     7     3    -1    -5
     6     2    -2    -6
     5     1    -3    -7
     4     0    -4    -8

For a quantized filter hq

[b,a] = butter(3,.9,'high')

b =

    0.0029   -0.0087    0.0087   -0.0029
a =

    1.0000    2.3741    1.9294    0.5321

hq = sos(qfilt('referencecoefficients',{b,a}))
hq.format = [4 3]
Warning: 1 overflow in coefficients.
hq = 
Quantized Direct form II transposed filter                          
------- Section 1 -------                                           
Numerator                                                           
     QuantizedCoefficients{1}{1}    ReferenceCoefficients{1}{1}     
  (1)                      0.750   0.741915184087109990             
  (2)                     -0.750  -0.741922736650797670             
Denominator                                                         
     QuantizedCoefficients{1}{2}    ReferenceCoefficients{1}{2}     
+ (1)                      0.875  0.999969482421875000              
  (2)                      0.750  0.726520355687005010              
------- Section 2 -------                                           
Numerator                                                           
     QuantizedCoefficients{2}{1}    ReferenceCoefficients{2}{1}     
  (1)                      0.500   0.500000000000000000             
  (2)                     -1.000  -0.999994910089555320             
  (3)                      0.500   0.499994910141368990             
Denominator                                                         
     QuantizedCoefficients{2}{2}    ReferenceCoefficients{2}{2}     
  (1)                      0.500  0.500000000000000000              
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  (2)                      0.875  0.823776107851993070              
  (3)                      0.375  0.366169458636399440              
                                                                    
   FilterStructure = df2t                                           
       ScaleValues = [0.00390625  1  1]                             
  NumberOfSections = 2                                              
  StatesPerSection = [1  2]                                         
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [4  3])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [4  3])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [4  3])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [4  3])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [4  3])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [4  3])
Warning: 1 overflow in coefficients. 

num2int(hq)
 
hq.QuantizedCoefficients{1}{1} =
 
     6    -6

hq.QuantizedCoefficients{1}{2} =
 
     7     6

hq.QuantizedCoefficients{2}{1} =
 
     4    -8     4

hq.QuantizedCoefficients{2}{2} =
 
     4     7     3

Algorithm When q is a fixed-point quantizer and f is equal to fractionlength(q), and x is 
numeric

y=x*2f.

When q is a floating-point quantizer, y = x. num2int is meaningful only for 
fixed-point quantizers.
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See Also bin2num, hex2num, num2bin, num2hex
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13numberofsectionsPurpose Return the number of sections in a quantized filter

Syntax numberofsections(hq)

Description numberofsections(hq) returns the number of sections in a quantized filter. 
The filter reference coefficients determine the number of sections.

Examples Create a double-precision filter using the Butterworth method. Convert the 
filter to a quantized filter in second-order section form, then use the function 
numberofsections to determine the number of sections that make up the filter.

[b,a] = butter(7,.5);
Hq = sos(qfilt('df2t',{b,a}));
numberofsections(Hq)

See Also get, qfilt, set, sos
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13nunderflowsPurpose Return the number of underflows from the most recent quantizer operation

Syntax nunderflows(q)

Description nunderflows(q) is the number of underflows during a call to quantize(q,...) 
for quantizer object q. An underflow is defined as a number that is nonzero 
before it is quantized, and zero after it is quantized. The number of underflows 
accumulates over successive calls to quantize. Use the function reset(q) to 
return nunderflows to zero.

Examples q = quantizer('fixed','floor',[4 3]);
      x = (0:eps(q)/4:2*eps(q))';
      y = quantize(q,x);
      nunderflows(q)

ans =

     3

By looking at x and y, you can see which ones went to zero.

[x,y]

ans =

         0         0
    0.0313         0
    0.0625         0
    0.0938         0
    0.1250    0.1250
    0.1563    0.1250
    0.1875    0.1250
    0.2188    0.1250
    0.2500    0.2500
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See Also denormalmin, eps, quantize, quantizer, reset
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13optimizeunitygainsPurpose Optimize unity gains for a quantized filter

Syntax optimizeunitygains(hq)

Description optimizeunitygains(hq) returns the value of the optimizeunitygains 
property of quantized filter object hq. The value of the property can be one of 
these two strings: 

• on — optimize for coefficients whose real or imaginary part is exactly equal 
to 1. Even if 1 cannot be represented by the number format specified by the 
CoefficientFormat property, skip multiplications by a real or imaginary 
part of a coefficient that is equal to 1.

• off — do not optimize for coefficients whose real or imaginary part is exactly 
equal to 1. If 1 cannot be represented by the number format specified by the 
CoefficientFormat property, then quantize real or imaginary parts of 
coefficients that are equal to 1 to the next lower quantization level.

When optimizeunitygains is on, quantizer(hq,'coefficient') returns a 
unitquantizer. If optimizeunitygains is off, quantizer(hq,'coefficient') 
returns a quantizer.

Examplse Hq = qfilt;
optimizeunitygains(Hq)

returns the default 'off'.

See Also qfilt, qfilt/get, quantizer, unitquantizer
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13orderPurpose Return the filter order of a quantized filter

Syntax n=order(hq)
n=order(hq,k)

Description n = order(hq) returns the order n of the quantized filter hq. When hq is a 
single-section filter, n is the number of delays required for a minimum 
realization of the filter.

When hq has more than one section, n is the number of delays required for a 
minimum realization of the overall filter.

n=order(hq,k) returns the order n of the k-th section of quantized filter hq.

Examples Create a reference filter. Quantize the filter and convert to second-order section 
form. Then use order to check the filter order of the second section and the 
overall filter.

[b,a] = ellip(4,3,20,.6); % Create the reference filter.

% Quantize the filter and convert to second-order sections.
Hq = sos(qfilt('df2',{b,a},'roundmode','fix')) 

n=order(Hq) % Check the order of the overall filter.
n = 4

n=order(Hq,2) % Check the order of the second section, k=2.
n = 2
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13qfftPurpose Construct a quantized FFT

Syntax f = qfft
f = qfft('propertyname1',propertyvalue1, ...)
f = qfft(a)
f = qfft(pn,pv)
f = qfft('quantize ,[14 13])

Description f = qfft creates a quantized FFT with default property values.

f = qfft('propertyname1',propertyvalue1,...) uses property name/ 
property value pairs to set the properties of the quantized FFT.

f = qfft(a), where a is a structure whose field names are quantized FFT 
property names, sets the properties named in each field name to the values 
contained in the structure.

f = qfft(pn,pv) sets the quantized FFT properties specified in the cell array 
of strings pn to the corresponding property values in cell array pv.

f = qfft('quantize ,[14 13]) sets all data format properties for the 
quantized FFT to the same word length and fraction length.

Refer to “A Quick Guide to Quantized FFT Properties” on page 12-51 for a list 
of quantized FFT properties.

Examples Create a quantized FFT f and apply it to a data set. Plot the result.

warning on
n=128;
t = (1:n)/n;
x = sin(2*pi*10*t)/10;
f = qfft('length',n);
plot(t,abs([fft(f,x);fft(x)]))
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See Also fft, get, ifft, qreport, set
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13qfiltPurpose Construct a quantized filter

Syntax Hq = qfilt
Hq = qfilt('Structure',{Coef})
Hq = qfilt('prop1',value1,'prop2',value2,...)
Hq = qfilt('Structure',{Coef},'prop1',value1,'prop2',value2,...)
Hq = qfilt( quantizer ,[13, 14])

Description Hq = qfilt creates a quantized filter Hq with default property settings. The 
default settings for Hq imply Hq is a fixed-point quantized filter with a 
transposed direct form II filter structure. All of the filter properties, along with 
their default values are listed in “Quantized Filter Properties Reference” on 
page 12-11.

Hq = qfilt('Structure',{Coef}) creates a quantized filter Hq with all 
properties set to default values, except that the filter structure is specified by 
the string 'Structure', and the reference filter parameters (the 
ReferenceCoefficients property values) are specified in the cell array 
{Coef}. The syntax for entering reference coefficients is specified in “Specifying 
the Filter Reference Coefficients” on page 8-7. 'Structure' can be one of the 
strings for the FilterStructure property values listed in the following table.

Table 13-4:  Filter Structure Properties

Property Value String Description

'df1' Direct form I

'df1t' Direct form I transposed

'df2' Direct form II

'df2t' Direct form II transposed

'fir' Finite impulse response (FIR)

'firt Finite impulse response transposed

'antisymmetricfir Direct form antisymmetric FIR, available odd or 
even
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Hq = qfilt('prop1',value1,'prop2',value2,...) creates a quantized 
filter Hq with all properties set to the default values, except for those you 
specify with the input string arguments 'prop1', 'prop2',..., along with the 
corresponding values in value1, value2,.... Filter properties you can set, with 
their default values, are listed in “Quantized Filter Properties Reference” on 
page 12-11. Any properties that you do not explicitly set when you create the 
quantized filter are assigned default values.

You can also use the shortcut

Hq = qfilt('Structure',{Coef},'prop1',value1,'prop2',value2,...)

by first specifying the FilterStructure property value as 'Structure' and the 
reference filter parameters (the ReferenceCoefficients property values) in 
the cell array {Coef}.

Hq = qfilt('quantizer',[13 14] sets all the data format properties for 
quantized filter Hq to the same word length and fraction length.

Examples Example 1: Quantized Filter with Two Second-Order Sections

From a reference filter, create a fixed-point quantized filter Hq that has two 
second-order sections, setting the rounding mode to 'fix' and displaying the 
results.

% Create the reference filter transfer function.

'symmetricfir' Direct form symmetric FIR, available odd or even

'latticear' Lattice autoregressive (AR)

'latticema' Lattice moving average (MA) 

'latticearma' Lattice ARMA 

'latticeca' Lattice coupled-allpass 

'latticecapc' Lattice coupled-allpass power complementary

'statespace' Single-input, single-output state-space 

Table 13-4:  Filter Structure Properties (Continued)

Property Value String Description
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[b,a] = ellip(4,3,20,.6);

% Create a quantized filter with 2 second-order sections 
% and display the results.
hq = sos(qfilt('df2',{b,a},'roundmode','fix'))

hq = 
Quantized Direct form II transposed filter                          
------- Section 1 -------                                           
Numerator                                                           
     QuantizedCoefficients{1}{1}    ReferenceCoefficients{1}{1}     
  (1)          0.551605224609375  0.551616219027048720              

  (2)          0.776458740234375  0.776489000631472080              
  (3)          0.551605224609375  0.551616219027047940              
Denominator                                                         
     QuantizedCoefficients{1}{2}    ReferenceCoefficients{1}{2}     
  (1)          0.999969482421875   0.999969482421875000             
  (2)         -0.054809570312500  -0.054810658312267876             
  (3)          0.473083496093750   0.473108096805785360             
------- Section 2 -------                                           
Numerator                                                           
     QuantizedCoefficients{2}{1}    ReferenceCoefficients{2}{1}     
  (1)          0.499969482421875  0.499984741210937500              
  (2)          0.359802246093750  0.359832079066733920              
  (3)          0.499969482421875  0.499984741210938170              
Denominator                                                         
     QuantizedCoefficients{2}{2}    ReferenceCoefficients{2}{2}     
  (1)          0.999969482421875  0.999969482421875000              
  (2)          0.588378906250000  0.588389482549356520              
  (3)          0.957336425781250  0.957363508666007170              
                                                                    

   FilterStructure = df2t                                           
       ScaleValues = [0.5  2  1]                                    
  NumberOfSections = 2                                              
  StatesPerSection = [2  2]                                         
 CoefficientFormat = quantizer('fixed', 'fix', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'fix', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'fix', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'fix', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'fix', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'fix', 'saturate', [32  30])

Example 2: Quantized Filter from Table of Filter Coefficients
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In this example, you create a sixth-order quantized filter from filter coefficients 
in a reference table. 

Enter the filter coefficients from a table of coefficients. The following 
coefficients represent a 6-pole Chebyshev high pass filter, with 0.5% ripple in 
the passband and cutoff at 0.25 in normalized frequency. 

Numerator:

b=[.0143445 -0.08606701 .2151675 -.28689 -.2151675 0.08606701 0.0143445]

Denominator:

a=[1.0 1.076051 1.662847 1.191062 0.7403085 0.2752156 0.0572225]

Create a quantized filter using the reference coefficients b and a.

hq = qfilt('ref',{b,a})

hq = 

Quantized Direct form II transposed filter                            
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
  (1)       0.014343261718750   0.014344500000000000                  
  (2)      -0.086059570312500  -0.086067009999999999                  
  (3)       0.215179443359375   0.215167500000000010                  
  (4)      -0.286895751953125  -0.286889999999999980                  
  (5)       0.215179443359375   0.215167500000000010                  
  (6)      -0.086059570312500  -0.086067009999999999                  
  (7)       0.014343261718750   0.014344500000000000                  
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
+ (1)       0.999969482421875  1.000000000000000000                   
+ (2)       0.999969482421875  1.076051000000000100                   
+ (3)       0.999969482421875  1.662847000000000000                   
+ (4)       0.999969482421875  1.191062000000000100                   
  (5)       0.740295410156250  0.740308500000000040                   
  (6)       0.275207519531250  0.275215600000000000                   
  (7)       0.057220458984375  0.057222500000000003                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
  StatesPerSection = [6]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
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MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
Warning: 4 overflows in coefficients. 

Eliminate the overflows by normalizing the coefficients.

hq2 = normalize(hq)

You have a sixth-order, high pass filter with no overflowing coefficients.

Some things to think about when you use coefficients from a table.

• Take care to assign the numerator and denominator values correctly. In your 
table, know which coefficients are for the numerator, which for the 
denominator.

• Verify that the sign of the denominator coefficients is correct for MATLAB.

• Note whether all coefficients are provided. Some tables omit the first 
coefficient for the denominator. If omitted, set the first denominator 
coefficient equal to 1.0.

Example 3: Comparing Fixed-Point and Floating-Point Filters

To demonstrate the effect of filtering a signal with a quantized filter that has 
a leading zero in the denominator coefficients, this example creates a default 
quantized filter, then changes the reference coefficients to be numerator=1 and 
denominator=0.

q=qfilt
 
q = 
Quantized Direct form II transposed filter                            
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
+ (1)       0.999969482421875  1.000000000000000000                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
+ (1)       0.999969482421875  1.000000000000000000                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
  StatesPerSection = [0]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
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MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
Warning: 2 overflows in coefficients.

q.ref={1 0};
Warning: 1 overflow in coefficients.

q is a fixed-point quantized filter with references coefficients of b=1 and a=0. 
Now filter a signal with q and look at the results.

filter(q,rand(1,2))
Warning: 3 overflows in QFILT/FILTER.

                        Max            Min     NOverflows    NUnderflows    NOperations
 Coefficient              1              0              1              0              2
       Input         0.9501         0.2311              0              0              2
      Output              1              1              0              0              2
Multiplicand              2         0.2311              2              0              8
     Product            Inf         0.2311              2              0              8
         Sum         0.9501         0.2311              0              0              2

ans =

    1.0000    1.0000

In two’s complement fixed-point format, NaNs and Infs cannot be represented. 
When the division by zero occurs during the filtering process, which happens 
when the leading coefficient in the denominator is zero, the result saturates to 
(1-215). The direct form filter structures, such as df1 and df2t, demonstrate 
this behavior when they have leading zeros in the denominator.

When you change the filter mode to 'float' from 'fixed', the results return as 
Inf, as you should expect.

q.mode='float';
filter(q,rand(1,2))

Warning: 6 overflows in QFILT/FILTER.

                        Max            Min     NOverflows    NUnderflows    NOperations

 Coefficient              1              0              0              0              2

       Input         0.6068          0.486              0              0              2

      Output            Inf     1.798e+308              2              0              2

Multiplicand            Inf           0.25              2              0              8

     Product            Inf           0.25              4              0              8

         Sum            0.5           0.25              0              0              2
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ans =

   Inf   Inf

Changing the mode results in Inf because IEEE floating-point arithmetic 
returns Inf as the result of a division by zero operation.

See Also get, set, setbits
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13qfilt2tfPurpose Convert quantized filters to transfer function form

Syntax [Bq,Aq,Br,Ar] = qfilt2tf(Hq)
[Cq,Cr] = qfilt2tf(Hq,'sections')

Description [Bq,Aq,Br,Ar] = qfilt2tf(Hq) converts the quantized filter coefficients 
from quantized filter Hq into transfer function form with numerator Bq and 
denominator Aq, and the reference coefficients into transfer-function form with 
numerator Br and denominator Ar.  When quantized filter Hq has more than 
one section, all the numerator polynomials are are convolved into the 
numerator polynomial of a single transfer function.  Similarly, the 
denominator polynomials are convolved into a denominator polynomial of a 
single transfer function.

[Cq,Cr] = qfilt2tf(Hq,'sections') returns one cell array per section, 
where Cq is the transfer function form of the quantized coefficients and Cr is 
the transfer function form of the reference coefficients.

Cq = {{Bq1,Aq1},{Bq2,Aq2},...}
Cr = {{Br1,Ar1},{Br2,Ar2},...}

Examples To demonstrate the conversion, use butter to a create a reference filter in 
statespace form. Make a statespace quantized filter from the reference filter 
and convert the quantized filter to transfer function form.

[A,B,C,D]=butter(3,.2);
Hq=qfilt('statespace',{A,B,C,D},'mode','double');
[bq,aq]=qfilt2tf(Hq)
bq =

    0.0181    0.0543    0.0543    0.0181

aq =

    1.0000   -1.7600    1.1829   -0.2781

See Also qfilt
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13qreportPurpose Display the results of applying a quantizer, quantized FFT or quantized filter 
to data

Syntax qreport(obj)
s = qreport (obj)

where obj is one of the following objects:

• Quantizer

• Quantized filter

• Quantized FFT

Description qreport(obj) displays the minimum (Min), maximum (Max), number of 
overflows (NOver), and underflows (NUnder) of the most recent application of 
obj to a data set, where obj is a quantized filter or a quantized FFT. Each 
section of quantized filter Hq or stage of quantized FFT F is represented by one 
line of information in the report.

Setting warning to ON displays this report when a quantized filter or quantized 
FFT overflows.

s = qreport(obj) returns a MATLAB structure containing the information.

Also, qreport(s) displays the report for the structure s.

Examples Display the results of filtering a data set with a quantized filter Hq.

[b,a] = butter(6,.5);
Hq = sos(qfilt('ReferenceCoefficients',{b,a}));
Y = filter(Hq,rand(50,1));
qreport(Hq)

Max            Min NOverflows NUnderflows NOperations
 Coefficient              1    -5.169e-016              0              1              6
                          1     -1.11e-016              0              1              6
                          1    -8.326e-017              0              1              6
       Input         0.9501       0.009861              0              0             50
      Output         0.9555        0.02808              0              0             50
Multiplicand         0.9501      0.0006161              0              0            400
                      0.394        0.02808              0              0            350
                     0.9556        0.02808              0              0            350
     Product          0.394      -0.001708              0              0            400
                     0.6424       -0.05511              0              0            350
                     0.9556        -0.5626              0              0            350
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         Sum        0.09852     -0.0007188              0              0            250
                     0.3212      -0.003827              0              0            250
                     0.9555        -0.2523              0              0            250

Display the results of running qfft F on a set of random data.

F = qfft('length',64,'scale',1/64);
Y = fft(F,rand(64,1));
qreport(F)

Max            Min     NOverflows    NUnderflows NOperations
 Coefficient              1             -1              6              5            126
       Input         0.9883        0.01176              0              0             64
      Output         0.5364       -0.06312              0              0            128
Multiplicand         0.9883       -0.03622              0              0           1536
     Product         0.2902       -0.02877              0              0            768
         Sum         0.5364       -0.06312              0              0           1920

See Also disp, get
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13quantizePurpose Apply a quantizer to data

Syntax y = quantize(q, x)
[y1,y2,...] = quantize(q,x1,x2,...)

Description y = quantize(q, x) uses the quantizer q to quantize x. When x is a numeric 
array, each element of x is quantized. When x is a cell array, each numeric 
element of the cell array is quantized. When x is a structure, each numeric field 
of x is quantized. Nonnumeric elements or fields of x are left unchanged and 
quantize does not issue warnings for nonnumeric values.

[y1,y2,...] = quantize(q,x1,x2,...) is equivalent to 
y1 = quantize(q,x1), y2 = quantize(q,x2),...

The quantizer states

 'max'         - Maximum value before quantizing
 'min'         - Minimum value before quantizing
 'noverflows'  - Number of overflows
 'nunderflows' - Number of underflows
'noperations' - Number of quantization operations

are updated during the call to quantize, and running totals are kept until a call 
to reset is made.

Examples The following examples demonstrate using quantize to quantize data.

Example 1 - Custom Precision Floating-Point

The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000); 
q=quantizer([6 3],'float'); 
range(q) 
 ans = 
   -14    14 
y=quantize(q,u); 
plot(u,y);title(tostring(q))
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Example 2 - Fixed-Point

The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000); 
q=quantizer([6 2],'wrap'); 
range(q) 
 ans = 
   -8.0000    7.7500 
y=quantize(q,u); 
plot(u,y);title(tostring(q)) 
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See Also quantizer, set
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13quantizerPurpose Construct a quantizer

Syntax q = quantizer
q = quantizer('PropertyName1',PropertyValue1, ... )
q = quantizer(PropertyValue1, PropertyValue2, ... )
q = quantizer(a)
q = quantizer(pn,pv)
[qcoefficient,qinput,qoutput,qmultiplicand,qproduct,...

qsum] = quantizer(F)
[q1, q2, ...] = quantizer(F, format1, format2, ...)

Description q = quantizer creates a quantizer with properties set to their default values.

q = quantizer('PropertyName1',PropertyValue1,...) uses property 
name/ property value pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a quantizer 
with the listed property values. When two values conflict, quantizer sets the 
last property value in the list. Property values are unique; you can set the 
property names by specifying just the property values in the command.

q = quantizer(a) where a is a structure whose field names are property 
names, sets the properties named in each field name with the values contained 
in the structure.

q = quantizer(pn,pv) sets the named properties specified in the cell array of 
strings pn to the corresponding values in the cell array pv.

These are the quantizer property values, sorted by associated property name:

Property Name Property Value Description

Mode 'double' Double-precision mode.  Override 
all other parameters.

      'float'  Custom-precision floating-point 
mode.

      'fixed' Signed fixed-point mode.
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The default property values for a quantizer are

mode = 'fixed'; 
roundmode = 'floor'; 
overflowmode = 'saturate'; 
format = [16 15]; 

Along with the preceding properties, quantizers have read-only properties: 
'max', 'min', 'noverflows', 'nunderflows', and 'noperations'. They can 
be accessed through quantizer/get or q.max, q.min, q.noverflows, 
q.nunderflows, and q.noperations, but they cannot be set. They are updated 
during the quantizer/quantize method, and are reset by the 
quantizer/reset method.

      'single' Single-precision mode. Override 
all other parameters.

'ufixed' Unsigned fixed-point mode.

Roundmode 'ceil'      Round towards negative infinity.

      'convergent' Convergent rounding.

      'fix'        Round towards zero.

      'floor' Round towards positive infinity.

      'round' Round towards nearest.

Overflowmode 
(fixed-point only)

 'saturate' Saturate at max value on 
overflow.

 'wrap' Wrap on overflow.

Format [wordlength  exponentlength] The format for fixed or ufixed 
mode.

[wordlength  exponentlength] The format for float mode.

Property Name
 (Continued)

Property Value Description
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The following table lists the read-only quantizer properties:

[qcoefficient,qinput,qoutput,qmultilplicand,qproduct,qsum] =
quantizer(F) returns property values associated with the quantized FFT F for 
the twiddle factors, input, output, product, and sum quantizers.

[q1, q2,...] = quantizer(F, formatName1, formatName2,...) returns 
quantizers q1, q2,..., associated with formatName1,formatName2,..., where 
format k is a string that can be one of 'twiddle', 'input', 'output', 
'multiplicand', 'product', or 'sum'.

Examples The following example operations are equivalent.

Setting quantizer properties by listing property values only in the command.

q = quantizer('fixed', 'ceil', 'saturate', [5 4])

Using a structure a to set quantizer properties.

a.mode = 'fixed'; 
a.roundmode = 'ceil'; 
a.overflowmode = 'saturate'; 
a.format = [5 4]; 
q = quantizer(a); 

Using property name and property value cell arrays pn and pv to set quantizer 
properties.

pn = {'mode',  'roundmode', 'overflowmode', 'format'}; 
pv = {'fixed', 'ceil', 'saturate', [5 4]}; 
q = quantizer(pn, pv) 

Using property name/property value pairs to configure a quantizer.

Property Name Description

'max'         Maximum value before quantizing 

'min'          Minimum value before quantizing 

'noverflows'  Number of overflows 

'nunderflows'  Number of underflows.

'noperations'  Number of data points quantized
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q = quantizer( 'mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]); 

See Also quantize, set
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13radixPurpose Return the radix of a quantized FFT

Syntax radix(f)

Description radix(f) returns the radix of quantized FFT f. 

Examples After you create a default quantized FFT, the radix function returns 2 as the 
value of the radix, as shown in this example.

F = qfft;
radix(F)

returns the default 2.

See Also qfft, qfft/get, qfft/set
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13randquantPurpose Generate a uniformly distributed, quantized random number

Syntax randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

 Description randquant(q,n) uses quantizer q to generate An n by n matrix with random 
entries whose values cover the range of q when q is a fixed-point quantizer. 
When q is a floating-point quantizer, randquant populates the n by n array 
with values covering the range -[square root of realmax(q)] to [square root of 
realmax(q)].

randquant(q,m,n) uses quantizer q to generate an m by n matrix with random 
entries whose values cover the range of q when q is a fixed-point quantizer. 
When q is a floating-point quantizer, randquant populates the m by n array 
with values covering the range -[square root of realmax(q)] to [square root of 
realmax(q)].

randquant(q,m,n,p,...) uses quantizer q to generate an m by n by p by … 
matrix with random entries whose values cover the range of q when q is 
fixed-point quantizer. When q is a floating-point quantizer, randquant 
populates the matrix with values covering the range -[square root of 
realmax(q)] to [square root of realmax(q)].

randquant(q,[m,n]) uses quantizer q to generate an m by n matrix with 
random entries whose values cover the range of q when q is a fixed-point 
quantizer. When q is a floating-point quantizer, randquant populates the 
m by n array with values covering the range -[square root of realmax(q)] to 
[square root of realmax(q)].

randquant(q,[m,n,p,...]) uses quantizer q to generate p m by n matrices 
containing random entries whose values cover the range of q when q is a 
fixed-point quantizer. When q is a floating-point quantizer, randquant 
populates the m by n arrays with values covering the range -[square root of 
realmax(q)] to [square root of realmax(q)].
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randquant produces pseudorandom numbers. The number sequence 
randquant generates during each call is determined by the state of the 
generator. Since MATLAB resets the random number generator state at 
start-up, the sequence of random numbers generated by the function remains 
the same unless you change the state.

randquant works like rand in most respects, including the generator used, but 
it does not support the 'state' and 'seed' options available in rand.

Examples q=quantizer([4 3]);
rand('state',0)
randquant(q,3)

ans =
    0.7500   -0.1250   -0.2500
   -0.6250    0.6250   -1.0000
    0.1250    0.3750    0.5000

See Also quantizer, quantizer/range, quantizer/realmax, rand
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13rangePurpose Return the numerical range of quantizers in a quantized FFT, or the range of 
a quantizer

Syntax range(F)
rtwiddle = range(F)
[rtwiddle, rinput, routput, rproduct, rsum] = range(F)
[r1, r2, ...] = range(F, formattype1, formattype2, ...)
r = range(q)
[a, b] = range(q)

Description range(F) displays the numerical range of all the quantizers in quantized 
FFT F.

rtwiddle = range(F) returns the numerical range of the twiddle factor 
quantizer (although twiddle factors always have magnitudes less than 1).

[rtwiddle, rinput, routput, rproduct, rsum] = range(F) returns the 
range of each of the quantizers.

[r1, r2,...] = range(F, formattype1, formattype2,...) returns the 
range of the quantizers specified by strings formattype i, which may take on 
the values 'twiddle', 'input', 'output', 'product', 'sum'.

r = range(q) returns the two-element row vector r = [a b] such that for all 
real x, y = quantize(q,x) returns y in the range a ≤ y ≤ b.

[a, b] = range(q) returns the minimum and maximum values of the range 
in separate output variables.

Examples q = quantizer('float',[6 3]); 
r = range(q) 

returns r = [ 14, 14]. 

q = quantizer('fixed',[4 2],'floor'); 
[a,b] = range(q) 

returns a = 2, b = 1.75 = 2 eps(q).

Algorithm If q is a floating-point quantizer, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer (mode = 'fixed'),
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If q is an unsigned fixed-point quantizer (mode = 'ufixed'),

a = 0

See realmax for more information.

Errors If you use more than two output arguments, MATLAB returns the error 
message Too many output arguments and aborts the function.

See Also realmax, realmin, exponentmin, fractionlength

a maxreal–= q( ) eps– q( ) 2–
w 1–

2f
------------------=

b maxreal= q( ) 2w 1– 1–

2f
------------------------=

b maxreal= q( ) 2w 1–

2f
--------------=
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13realizemdlPurpose Directly realize a Simulink subsystem block for a direct-form quantized filter

Syntax realizemdl(hq)
realizemdl(hq, propertyname1, propertyvalue1,...)

Description realizemdl(hq)  generates a model of filter hq in a Simulink subsystem block 
using sum, gain, and delay blocks from the Fixed-Point Blockset. The 
properties and values of hq define the resulting subsystem block parameters.

realizemdl requires either the DSP Blockset or the Fixed-Point Blockset. To 
accurately realize models of quantized filters, use the Fixed-Point Blockset.

realizemdl(hq,propertyname1,propertyvalue1,...) generates the model 
or hq with the associated propertyname/propertyvalue pairs, and any other 
values you set in hq.

Using the optional propertyname/propertyvalue pairs lets you control more 
fully the way the block subsystem model gets built, such as where the block 
goes, what the name is, or how to optimize the block structure. Valid properties 
and values for realizemdl are listed in this table, with the default value noted 
and descriptions of what the properties do.

Property Name Property Values Description

BlockType 'fixed-point 
blocks' (default) or 
'floating-point 
blocks'

Specifies the type of blocks to use to realize 
the model. fixed-point blocks is the 
default. Models that use floating-point 
blocks may not match the quantized filter 
hq exactly.

Destination 'current' (default) 
or 'new'

Specify whether to add the block to your 
current Simulink model or create a new 
model to contain the block. 

Blockname 'filter' (default) Provides the name for the new subsystem 
block. By default the block is named 
'filter'. To enter a name for the block, use 
the propertyvalue set to a string 
'blockname'.
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Examples To demonstrate how realizemdl works to create models, these two examples 
show the default and optional syntaxes in use. Both examples begin from 
a quantized filter designed by butter in the Signal Processing Toolbox.

[b,a] = butter(4,.5);
hq = qfilt('df1',{b,a});

Example 1—Using the default syntax to realize a model of your quantized filter 
hq. When you use this syntax, realizemdl uses blocks from the Fixed-Point 
Blockset to realize the subsystem in your current Simulink model.

realizemdl(hq);

Look at the figure to see the model as realized by realizemdl.

OverwriteBlock 'off' or 'on' Specify whether to overwrite an existing 
block with the same name or create a new 
block. 

OptimizeZeros 'off' (default) or 
'on'

Specify whether to remove zero-gain blocks.

OptimizeOnes 'off' (default) or 
'on'

Specify whether to replace unity-gain blocks 
with direct connections.

OptimizeNegOnes 'off' (default) or 
'on'

Specify whether to replace negative 
unity-gain blocks with a sign change at the 
nearest sum block.

OptimizeDelayChains 'off' (default) or 
'on'

Specify whether to replace cascaded chains 
of delay blocks with a single integer delay 
block to provide an equivalent delay.

Property Name Property Values Description
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Example 2—Using propertyname/propertyvalue pairs to specify the features of 
the subsystem block model created by realizemdl.

realizemdl(hq, 'blocktype', 'fixed-point blocks',... 
'optimizezeros', 'on','blockname','newfiltermodel');
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Since this example uses the optional property name optimizezeros, set to 'on', 
the resulting block subsystem is slightly different—the zero-gain blocks for 
coefficients a(2) and a(4) are not included in the subsystem.

See Also realizemdl under the methods for dfilt in the Signal Processing Toolbox
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13realmaxPurpose Return the largest positive quantized number

Syntax x = realmax(q)

Description x = realmax(q) is the largest quantized number representable where q is a 
quantizer. Anything larger overflows.

Examples q = quantizer('float',[6 3]); 
x = realmax(q) 

returns x = 14.

Algorithm If q is a floating-point quantizer, the largest positive number, x, is

If q is a signed fixed-point quantizer, the largest positive number, x, is

If q is an unsigned fixed-point quantizer (mode = 'ufixed'), the largest 
positive number, x, is

See Also quantizer, realmin, exponentmin, fractionlength

x 2
Emax= 2 eps q( )–( )⋅

x 2w 1– 1–

2f
---------------------=

x 2w 1–

2f
----------------=
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13realminPurpose  Return the smallest positive normal quantized number

Syntax x = realmin(q)

Description x = realmin(q) is the smallest positive normal quantized number where q is 
a quantizer. Anything smaller than x underflows or is an IEEE “denormal” 
number.

Examples q = quantizer('float',[6 3]); 
realmin(q) 

returns the value 0.25.

Algorithm If q is a floating-point quantizer,  where  is 
the minimum exponent.

If q is a signed or unsigned fixed-point quantizer,  where f is the 
fraction length.

See Also exponentmin, fractionlength

x 2
Emin= Emin exponentmin= q( )

x 2 f– ε= =
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13resetPurpose  Reset one or more quantizers, quantized filters, or quantized FFTs to their 
initial conditions

Syntax reset(q)
reset(q1, q2, ...)
reset(hq)
reset(hq1,hq2,...)
reset(f)
reset(f1,f2,...)

Description reset(q) resets quantizer q to its initial conditions. Works for quantized filters 
and quantized FFTs as well by replacing the quantizer with a quantized filter 
or quantized FFT in the command syntax.

reset(q1, q2,...) resets the states of the quantizers q1, q2,.... to the states 
they were in when you created them — their initial conditions.

The states of a quantizer are

'max'         - Maximum value before quantizing. 
'min'         - Minimum value before quantizing. 
'noverflows'  - Number of overflows. 
'nunderflows' - Number of underflows. 
'noperations' - Number of quantization operations performed.

reset(hq1,hq2,...) resets the states of quantized filters hq1, hq2,... to the 
states you set when you created them — their initial conditions.

The states of a quantized filter are 

'FilterStructure' - Structure of the filter
       'ScaleValues' - Scale values between filter sections
  'NumberOfSections' - Number of filter sections
  'StatesPerSection' - Number of states in each filter section
 'CoefficientFormat' - quantizer
       'InputFormat' - quantizer
      'OutputFormat' - quantizer
'MultiplicandFormat  - quantizer
     'ProductFormat' - quantizer

'SumFormat' - quantizer



reset

13-328

reset(f1,f2,...) resets the states of quantized FFTs f1, f2,... to the states 
you set when you created them — their initial conditions.

The states of a quantized FFT are

'Radix' - Either 2 or 4
            'Length' - Scalar integer, length of the FFT
 'CoefficientFormat' - quantizer
       'InputFormat' - quantizer
      'OutputFormat' - quantizer
'MultiplicandFormat' - quantizer
     'ProductFormat' - quantizer
         'SumFormat' - quantizer
  'NumberOfSections' - 4
       'ScaleValues' - Vector of the scale values between FFT 

sections

Examples q1 = quantizer('fixed','ceil','saturate',[4 3]) 
q2 = quantizer('double') 
y1 = quantize(q1, -1.2:.1:1.2 ) 
y2 = quantize(q2, -1.2:.1:1.2 ) 
q1, q2 
reset(q1, q2) 
q1, q2 

See Also quantizer, set
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13scalevaluesPurpose Return the scalevalues property of a quantized filter

Syntax s = scalevalues(hq)

Description s = scalevalues(hq) returns the scale values of the quantized filter hq. The 
scale values for the filter scale the input to each filter section. The value of the 
scalevalues property must be a scalar, or a vector of length 
numberofsections(hq). For efficient computation, set the scale values to be 
powers of 2.

If s is a scalar, the input to the first section of the quantized filter is scaled by s. 
When s is a vector, the input to the k-th section of the filter is scaled by s(k), 
the k-th element of vector s.

Examples Hq = qfilt;
scalevalues(Hq)
ans =

     1

See Also qfilt, get, set
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13setPurpose Set or display property values for quantized filters, quantizers, and quantized 
FFTs

Syntax set(Hq)
set(Hq,'prop',value)
set(Hq,'prop1',value1, 'prop2',value2,...)
s = set(Hq)
set(Hq,struct)
set(Hq,{'prop1','prop2',...},{value1,value2,...})
set(q, PropertyValue1, PropertyValue2, ... )
set(q,a)
set(q,pn,pv)
set(q, PropertyName1 ,PropertyValue1, PropertyName2 ,

PropertyValue2,...)
q.PropertyName = Value
set(q)
s = set(q)
set(F,'PropertyName',PropertyValue)
set(F,'PropertyName1',PropertyValue1,'PropertyName2',

PropertyValue2,...)
set(F,a)
set(F,pn,pv)
F.PropertyName = Value
set(F)
s = set(F)

Description set(Hq) displays all of the property names and their possible values for a given 
quantized filter Hq. The display indicates the default values for properties in 
braces. When the default values for a property cannot be represented by a finite 
list, set(Hq) does not display the property’s default values. 

set(Hq,'prop',value) sets the values for the property 'prop' of a quantized 
filter Hq. You specify the property name by the string 'prop', and the 
associated value in value. 'prop' can be any of the properties listed in 
Table 12-3, Quick Guide to Quantized Filter Properties, on page 12-10. value 
can be a string, a numerical value, or a cell array containing numerical values. 
The possible values for each property are described in detail in “Quantized 
Filter Properties Reference” on page 12-11. 
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set(Hq,'prop1',value1,'prop2',value2,...) lets you set multiple 
properties in one command.

s = set(Hq) returns all property names and their possible values for a 
quantized filter Hq. s is a MATLAB structure whose field names are the 
property names of Hq and whose values are cell arrays of possible property 
values, except when the possible values for the property cannot be described 
with a finite list. In this case the values are empty cell arrays.

set(Hq,struct) sets the properties of the quantized filter Hq according to the 
values associated with the field names of the MATLAB structure struct. All 
field names for the structure s must be valid quantized filter properties. See 
Table 12-3, Quick Guide to Quantized Filter Properties, on page 12-10 for a list 
of all property names.

set(Hq,{'prop1','prop2',...},{value1,value2,...}) sets the listed 
properties specified in the cell array of a vector of strings 
{'prop1','prop2',...} to the corresponding values listed in the cell array 
{value1,value2,...} for quantized filter object Hq. The two cell array input 
arguments must be the same size, and the values must be valid for the 
corresponding properties.

set(q, PropertyValue1, PropertyValue2,...) sets the properties of 
quantizer q. If two property values conflict, the last value in the list is the one 
that is set.

set(q,a) where a is a structure whose field names are object property names, 
sets the properties named in each field name with the values contained in the 
structure.

set(q,pn,pv) sets the named properties specified in the cell array of strings 
pn to the corresponding values in the cell array pv.

set(q, PropertyName1 ,PropertyValue1, PropertyName2 ,
PropertyValue2,...) sets multiple property values with a single statement. 
Note that you can use property name/property value string pairs, structures, 
and property name/property value cell array pairs in the same call to set.

q.PropertyName = Value uses the dot notation to set property PropertyName 
to Value.

set(q) displays the possible values for all properties of quantizer q.
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s = set(q) returns a structure containing the possible values for the 
properties of quantizer q.

The states are cleared when you set any value other than WarnIfOverflow.

For a quantizer, these are the possible property values, sorted by property 
name.

Property Name Property Value Description

Mode 'double' Double-precision mode.  Override 
all other parameters.

      'float'  Custom-precision floating-point 
mode.

      'fixed' Signed fixed-point mode.

      'single' Single-precision mode. Override 
all other parameters.

'ufixed' Unsigned fixed-point mode.

Roundmode 'ceil'      Round towards negative infinity.

      'convergent' Convergent rounding.

      'fix'        Round towards zero.

      'floor' Round towards positive infinity.

      'round' Round towards nearest.

Overflowmode 
(fixed-point only)

 'saturate' Saturate at max value on 
overflow.

 'wrap' Wrap on overflow.

Format [wordlength  exponentlength] The format for fixed or ufixed 
mode.

[wordlength  exponentlength] The format for float mode.
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set(F,'PropertyName',PropertyValue) sets the value of the specified 
property for the quantized FFT F.

set(F,'PropertyName1',PropertyValue1,'PropertyName2',PropertyValue
2,...) sets multiple property values with a single statement. Note that you 
can use property name/property value string pairs, structures, and property 
name/property value cell array pairs in the same call to set.

set(F,a) where a is a structure whose field names are object property names, 
sets the properties named in each field name with the values contained in the 
structure.

set(F,pn,pv) sets the named properties specified in the cell array of strings 
pn to the corresponding values in the cell array pv for all objects specified in H.

F.PropertyName = Value uses the dot notation to set property PropertyName 
to Value.

set(F) displays the possible values.

s = set(F) returns a structure with the possible values.

Remarks • Property names are not case sensitive. 

• You can abbreviate property names to the shortest uniquely identifying 
string.

• You can use direct property referencing to set properties with a 
structure-like syntax. The following two statements are equivalent:
- set(Hq,'roundm','convergent');
- Hq.round = 'convergent';

Max Maximum value before quantize.

Min Minimum value before quantize.

NOverflows Number of overflows.

NUnderflows Number of underflows.

Property Name
 (Continued)

Property Value Description
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Examples Create a quantized filter and change the values for the 
ReferenceCoefficients and InputFormat properties.

Hq = qfilt;
set(Hq,'ref',{[1 .5] [1 .7 .89]},'inp',[16,14])
Hq

Hq =
Quantized direct-form II transposed filter                     
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
+ (1)       0.999969482421875  1.000000000000000000                   
  (2)       0.500000000000000  0.500000000000000000                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
+ (1)       0.999969482421875  1.000000000000000000                   
  (2)       0.700012207031250  0.699999999999999960                   
  (3)       0.890014648437500  0.890000000000000010                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
  StatesPerSection = [2]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  14])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
Warning: 2 overflows in coefficients. 

You can create a structure to assign the same data format property values to a 
set of filters.

s.InputFor = [16,14];
s.Coefficient = [16,14];
s.SumF = [17,15];
s.Prod = [16,15];
s.output = [24,23];

Now assign those property values to the filter in the previous example.

set(Hq,s)
Hq

Hq =
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Quantized Direct-form II transposed filter                     
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
  (1)        1.00000000000000  1.000000000000000000                   
  (2)        0.50000000000000  0.500000000000000000                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
  (1)        1.00000000000000  1.000000000000000000                   
  (2)        0.70001220703125  0.699999999999999960                   
  (3)        0.89001464843750  0.890000000000000010                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
  StatesPerSection = [2]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  14])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  14])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [24  23])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [17  15])

Notice that you do not have to provide complete property names when you 
create the structure fields.

The next example uses property name/property value pairs to set quantizer 
properties.

q = quantizer; 
set(q, 'mode','fixed', ... 
       'roundmode','ceil', ... 
       'overflowmode','wrap', ... 
       'format',[24 22]); 

O you might use dot notation to enter the new property values:

q = quantizer; 
q.mode = 'fixed'; 
q.roundmode = 'ceil'; 
q.overflowmode = 'wrap'; 
q.format = [24 22]; 

With no output arguments and one input argument, set displays the defaults 
for the quantizer, quantized filter, or quantized FFT.

q = quantizer; 
set(q)
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          Mode: [double | float | {fixed} | single | ufixed]
     RoundMode: [ceil | convergent | fix | {floor} | round]
  OverflowMode: [{saturate} | wrap]

 Format: [wordlength  fractionlength] - In 'fixed', 'ufixed' mode.
                [wordlength  exponentlength] - In 'float' mode.
                [16 15] = default.
           Max: Maximum value before quantize.
           Min: Minimum value before quantize.
    NOverflows: Number of overflows.
   NUnderflows: Number of underflows.

With one output argument and one input argument, set returns a structure.

q = quantizer; 
s = set(q) 

returns

s =
            Mode: {'double'  'float'  'fixed'  'single'  'ufixed'}
       RoundMode: {'ceil'  'convergent'  'fix'  'floor'  'round'}
    OverflowMode: {'saturate'  'wrap'}
          Format: {}
             Max: {}
             Min: {}
       Overflows: {}
     NUnderflows: {}

See Also get, qfilt, setbits, sos2cell, sos
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13setbitsPurpose Set all data format property values for quantized filters and quantized FFTs

Syntax setbits(Hq,format)
setbits(F,fmt)

Description When Hq is a floating-point quantized filter, setbits(Hq,format) sets all data 
format properties for the quantized filter Hq to the values specified by format. 
In this case, format is a two-element vector of integers whose entries are 
described as follows: 

• The first entry in format sets the word length in bits. 

• The second entry in format sets the exponent length in bits.

When Hq is a fixed-point quantized filter, setbits(Hq,format) sets the 
properties CoefficientFormat, InputFormat, and OutputFormat to the value 
specified by format, whereas the property values SumFormat and 
ProductFormat are specified by 2*format. In this case, format is a two-element 
vector of integers whose entries are described as follows: 

• The first entry in format sets the word length in bits.

• The second entry in format sets the fraction length (the number of bits after 
the radix point).

Note  When 2*format exceeds the maximum values for the SumFormat and 
ProductFormat properties, their maximum values are used instead.

setbits(F,fmt) sets all data format property values for quantized FFT F.

When F is a fixed-point quantized FFT, fmt = [w, f] where w is the word 
length and f is the fraction length. The twiddle, input, and output formats are 
set to [w, f]. The sum and product formats are set to [2w, 2f].

When F is a floating-point quantized FFT, fmt = [w, e] where w is the word 
length and e is the exponent length. All formats are set to [w, e].

If the specified formats exceed the maximum allowed, they are set to the 
maximum.
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Examples Create a quantized filter with default data format property values. Set the 
CoefficientFormat, InputFormat, and OutputFormat property values for a 
24-bit word length, and a 23-bit fraction length, while setting the SumFormat 
and ProductFormat property values to a 48-bit word length and a 46-bit 
fraction length.

Hq = qfilt;
setbits(Hq,[24 23])

get(Hq)

Quantized Direct form II transposed filter                     
Numerator                                                             
     QuantizedCoefficients{1}    ReferenceCoefficients{1}             
+ (1)      0.9999998807907105  1.000000000000000000                   
  (2)      0.5000000000000000  0.500000000000000000                   
Denominator                                                           
     QuantizedCoefficients{2}    ReferenceCoefficients{2}             
+ (1)      0.9999998807907105  1.000000000000000000                   
  (2)      0.7000000476837158  0.699999999999999960                   
  (3)      0.8899999856948853  0.890000000000000010                   
                                                                      
   FilterStructure = df2t                                             
       ScaleValues = [1]                                              
  NumberOfSections = 1                                                
  StatesPerSection = [2]                                              
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [24  23])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [24  23])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [24  23])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [24  23])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [48  46])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [48  46])

See Also get, qfilt, set
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13sosPurpose Convert a quantized filter to second-order section form, order, and scale.

Syntax Hq2 = sos(Hq) 
Hq2 = sos(Hq, order) 
Hq2 = sos(Hq, order, scale)

Description Hq2 = sos(Hq) returns a quantized filter Hq2 that has second-order sections 
and the dft2 structure. Use the same optional arguments used in tf2sos.

Hq2 = sos(Hq, order) specifies the order of the sections in Hq2, where order 
is either of the following strings:

•  'down' — to order the sections so the first section of Hq2 contains the poles 
closest to the unit circle (L∞ norm scaling)

•  'up' — to order the sections so the first section of Hq2 contains the poles 
farthest from the unit circle (L2 norm scaling and the default)

Hq2 = sos(Hq, order, scale) also specifies the desired scaling of the gain 
and numerator coefficients of all second-order sections, where scale is one of 
the following strings:

• 'none' — to apply no scaling (default)

• 'inf' — to apply infinity-norm scaling

• 'two' — to apply 2-norm scaling

Use infinity-norm scaling in conjunction with up-ordering to minimize the 
probability of overflow in the filter realization. Consider using 2-norm scaling 
in conjunction with down-ordering to minimize the peak round-off noise.

When Hq is a fixed-point filter, the filter coefficients are normalized so that the 
magnitude of the maximum coefficient in each section is 1. The gain of the filter 
is applied to the first scale value of Hq2. 

sos uses the direct form II transposed (dft2) structure to implement second- 
order section filters.

Examples [A,B,C,D]=butter(8,.5);
Hq = qfilt('StateSpace',{A,B,C,D},'mode','single');
Hq1 = sos(Hq)
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See Also qfilt, qfilt2tf

tf2sos in your Signal Processing Toolbox documentation
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13tf2caPurpose Transfer function to coupled allpass conversion

Syntax [d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a) 
[d1,d2,beta] = tf2ca(b,a)

Description [d1,d2] = tf2ca(b,a) where b is a real, symmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, returns real vectors d1 and d2 containing the 
denominator coefficients of the allpass filters H1(z) and H2(z) such that

representing a coupled allpass decomposition.

[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, returns real vectors d1 and d2 containing the 
denominator coefficients of the allpass filters H1(z) and H2(z) such that

In some cases, the decomposition is not possible with real H1(z) and H2(z). In 
those cases a generalized coupled allpass decomposition may be possible, 
whose syntax is

[d1,d2,beta] = tf2ca(b,a)

to return complex vectors d1 and d2 containing the denominator coefficients of 
the allpass filters H1(z) and H2(z), and a complex scalar beta, satisfying 
|beta| = 1, such that

representing the generalized allpass decomposition.

H z( ) B z( )
A z( )
------------ 1

2 H1 z( ) H2 z( )+[ ]
------------------------------------------------= =

H z( ) B z( )
A z( )
------------

1
2
--- 
  H1 z( ) H2 z( )–[ ]= =

H z( ) B z( )
A z( )
------------

1
2
--- 
  β H1 z( )• β H2 z( )•+[ ]= =
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In the above equations, H1(z) and H2(z) are real or complex allpass IIR filters 
given by

 

where D1(z) and D2(z) are polynomials whose coefficients are given by d1 and 
d2. 

Note  A coupled allpass decomposition is not always possible. Nevertheless, 
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be 
factored in this manner. For details, refer to Signal Processing Toolbox User's 
Guide.

Examples [b,a]=cheby1(9,.5,.4);
[d1,d2]=tf2ca(b,a); % TF2CA returns denominators of the allpass.
num = 0.5*conv(fliplr(d1),d2)+0.5*conv(fliplr(d2),d1);
den = conv(d1,d2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2latc

H1 z( ) fliplr D1 z( )( )( )
D1 z( )

------------------------------------------= H2 1( ) z( ) fliplr D2 1( ) z( )( )( )
D2 1( ) z( )

--------------------------------------------------=,
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13tf2clPurpose Transfer function to coupled allpass lattice conversion

Syntax [k1,k2] = tf2cl(b,a) 

[k1,k2] = tf2cl(b,a)

Description [k1,k2] = tf2cl(b,a) where b is a real, symmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, will perform the coupled allpass decomposition

of a stable IIR filter H(z) and convert the allpass transfer functions H1(z) and 
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1 
and k2. 

[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, performs the coupled allpass decomposition

of a stable IIR filter H(z) and converts the allpass transfer functions H1(z) and 
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1 
and k2. 

In some cases, the decomposition is not possible with real H1(z) and H2(z). In 
those cases, a generalized coupled allpass decomposition may be possible, using 
the command syntax 

    [k1,k2,beta] = tf2cl(b,a)

to perform the generalized allpass decomposition of a stable IIR filter H(z) and 
convert the complex allpass transfer functions H1(z) and H2(z) to 
corresponding lattice allpass filters

where beta is a complex scalar of magnitude equal to 1. 

H z( ) B z( )
A z( )
------------ 1

2 H1 z( ) H2 z( )+[ ]
------------------------------------------------= =

H z( ) B z( )
A z( )
------------

1
2
--- 
  H1 z( ) H2 z( )–[ ]= =

H z( ) B z( )
A z( )
------------

1
2
--- 
  β H1 z( )• β H2 z( )•+[ ]= =
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Note  Coupled allpass decomposition is not always possible. Nevertheless, 
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be 
factored in this manner. For details, refer to Signal Processing Toolbox User's 
Guide. 

Examples [b,a]=cheby1(9,.5,.4); 
[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.
[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice
[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.
num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);
den = conv(den1,den2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2ca, tf2latc
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13tostringPurpose Convert a quantizer, unitquantizer, or quantized FFT to a string

Syntax s = tostring(q)
s = tostring(q)
s = tostring(f)

Description s = tostring(q) converts quantizer q to a string s. After converting q to a 
string, the function eval(s) can use s to create a quantizer with the same 
properties as q.

s = tostring(q) converts unitquantizer q to a string s. After converting q to 
a string, the function eval(s) can use s to create a quantizer with the same 
properties as q.

s = tostring(q) converts quantized FFT f to a string s. After converting f to 
a string, the function eval(s) can use f to create a quantized FFT with the 
same properties as f.

Examples When you use tostring with a quantizer or unitquantizer, you see the 
following response.

q = quantizer
q =
Mode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [16  15]

 

             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0
     NOperations = 0

s = tostring(q)
s =
quantizer('fixed', 'floor', 'saturate', [16  15])

eval(s)
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ans =

            Mode = fixed
       RoundMode = floor
    OverflowMode = saturate
          Format = [16  15]
 
             Max = reset
             Min = reset
      NOverflows = 0
     NUnderflows = 0
     NOperations = 0

and s is the same as q.

For a quantized FFT, the result is the same.

f = qfft
f =

Radix = 2
            Length = 16
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
  NumberOfSections = 4
       ScaleValues = [1]
s=tostring(f)

eval(s)

ans =

             Radix = 2
            Length = 16
 CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16  15])
       InputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
      OutputFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16  15])
     ProductFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
         SumFormat = quantizer('fixed', 'floor', 'saturate', [32  30])
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  NumberOfSections = 4
       ScaleValues = [1]

See Also quantizer, qfft, unitquantizer
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13twiddlesPurpose Return the quantized twiddle factors for quantized FFTs

Syntax w = twiddles(F)

Description w = twiddles(F) returns a vector of the quantized FFT coefficients specified 
by quantized FFT F. FFT coefficients are also called twiddle factors.

Examples f = qfft;
w = twiddles(f)
Warning: 4 overflows.
w =

   1.0000          
   1.0000          
        0 - 1.0000i
   1.0000          
   0.7071 - 0.7071i
        0 - 1.0000i
  -0.7071 - 0.7071i
   1.0000          
   0.9239 - 0.3827i
   0.7071 - 0.7071i
   0.3827 - 0.9239i
        0 - 1.0000i
  -0.3827 - 0.9239i
  -0.7071 - 0.7071i
  -0.9239 - 0.3827i

See Also qfft
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13unitquantizePurpose Quantize all numbers in a data set except numbers within eps of 1

Syntax unitquantize(q,...)

Description  unitquantize(q,...) works the same as quantize except that numbers 
within eps(q) of 1 are made exactly equal to 1 (see quantize for a description 
of the parameters).

This function is especially useful for quantizing fixed-point coefficients.

Examples [b,a] = ellip(4,3,20,.6); 
m = tf2sos(b,a) 
m =

    0.2758    0.3883    0.2758    1.0000   -0.0548    0.4731 
    1.0000    0.7197    1.0000    1.0000    0.5884    0.9574 

m==1 

ans =

     0     0     0     1     0     0 
     1     0     0     1     0     0 

q=quantizer;
m > realmax(q) 

ans =

     0     0     0     1     0     0 
     1     0     1     1     0     0 

It appears that there are four elements that are exactly equal to 1. In fact, there 
are only three. Element m(2,3) is greater than realmax(q), but less than 1. 
Ordinarily, m(2,3) would be counted as an overflow and be set to realmax(q). 
However, the desired behavior would be to force m(2,3) to be equal to 1 without 
recording an overflow. This is what unitquantize does, as shown in the 
following example. 
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m = unitquantize(q,m) 
m =

    0.2758    0.3882    0.2758    1.0000   -0.0548    0.4731 
    1.0000    0.7197    1.0000    1.0000    0.5884    0.9574 
m==1 

ans =

0     0     0     1     0     0
1     0     1     1     0     0

By forcing values between eps and 1 to be equal to 1, signal processing 
algorithms can avoid multiplication operations that involve these numbers, 
saving processing steps and time. 

See Also qfft, quantize
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13unitquantizerPurpose Construct a unit quantizer

For help on this function, enter help unitquantizer at the MATLAB prompt.

Syntax q = unitquantizer(...)

q = unitquantizer(...) constructs a unitquantizer, which is identical to a 
quantizer in all respects except that its quantize method quantizes numbers 
within eps(q) of 1 to be equal to 1. Refer to quantizer for arguments and 
parameters for the unitquantizer function.

Examples u = unitquantizer([4 3]);
quantize(u,1)
ans =

     1

q = quantizer([4 3]);
quantize(q,1)
Warning: 1 overflow.

ans =

    0.8750

See Also quantizer, unitquantize
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13wordlengthPurpose Return the word length for a quantizer

Syntax wordlength(q)

Description wordlength(q) returns the word length of quantizer q.

Examples q = quantizer([16 15]); 
wordlength(q) 

returns 16.

Even though the word length can be read in two stages,

q = quantizer([16 15]); 
fmt = q.format; 
w = fmt(1); 

it is handy to have it available for use in equations. For example, the algorithm 
for realmax(q) when q is a signed fixed-point quantizer (q.mode = 'fixed') 
is

which can be coded as

q = quantizer('fixed',[8 4]); 
r = pow2(wordlength(q) - fractionlength(q) - 1) - eps(q) 

See Also fractionlength, exponentlength

r 2w f– 1–
= ε–
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13zpkbpc2bpcPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
complex bandpass prototype by applying a first-order complex bandpass to 
complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The original lowpass filter is given with zeros, Z, 
poles, P, and gain factor, K.

This transformation effectively places two features of an original filter, located 
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and 
Wt2 respectively.  It is assumed that Wt2 is greater than Wt1. In most of the cases 
the features selected for the transformation are the band edges of the filter 
passbands. In general it is possible to select any feature; e.g., the stopband 
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., complex notch filters or resonators can be repositioned at two distinct 
desired frequencies at any place around the unit circle; e.g., in the adaptive 
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z, p, k, [0.25, 0.75], [-0.75, -0.25]);
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Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z 
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpassbpc2bpc, iirbpc2bpc
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13zpkftransfPurpose Zero-pole-gain frequency transformation of the digital filter

Syntax [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)

Description [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns zeros, 
Z2, poles, P2, and gain factor, K2, of the transformed lowpass digital filter. The 
prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K. If 
AllpassDen is not specified it will default to 1. If neither AllpassNum nor 
AllpassDen is specified, then the function returns the input filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[z2, p2, k2] = zpkftransf(roots(b),roots(a),b(1),AlpNum,AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter



zpkftransf

13-356

See Also iirftransf
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13zpklp2bpPurpose Zero-pole-gain lowpass to bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a second-order real lowpass to real 
bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2.  It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “DC Mobility,” which 
means that the Nyquist feature stays at Nyquist, but the DC feature moves to 
a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming 
other types of filters; e.g., real notch filters or resonators can be easily doubled 
and  positioned at two distinct, desired frequencies.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
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[z2,p2,k2] = zpklp2bp(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2bp, iirlp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
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[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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13zpklp2bpcPurpose Zero-pole-gain lowpass to complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to complex 
bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2.  It is assumed that Wt2 is 
greater than Wt1.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and  
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandpass filters for radio receivers from the high-quality 
prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);



zpklp2bpc

13-361

k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bpc, iirlp2bpc
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13zpklp2bsPurpose Zero-pole-gain lowpass to bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a second-order real lowpass to real 
bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “Nyquist Mobility,” 
which means that the DC feature stays at DC, but the Nyquist feature moves 
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));
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Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2bs, iirlp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.
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[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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13zpklp2bscPurpose Zero-pole-gain lowpass to complex bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to complex 
bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2.  It is assumed that Wt2 is 
greater than Wt1. Additionally the transformation swaps passbands with 
stopbands in the target filter. 

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and  
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
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[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bsc, iirlp2bsc
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13zpklp2hpPurpose Zero-pole-gain lowpass to highpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to real highpass 
frequency mapping. This transformation effectively places one feature of an 
original filter, located at frequency Wo, at the required target frequency 
location, Wt, at the same time rotating the whole frequency response by half of 
the sampling frequency. Result is that the DC and Nyquist features swap 
places.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and the gain factor, K.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC,  or the deep 
minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:
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fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2hp, iirlp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.
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[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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13zpklp2lpPurpose Zero-pole-gain lowpass to lowpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to real lowpass 
frequency mapping. This transformation effectively places one feature of an 
original filter, located at frequency Wo, at the required target frequency 
location, Wt.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));
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Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2lp, iirlp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.
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[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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13zpklp2mbPurpose Zero-pole-gain lowpass to M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Mth-order real lowpass to real 
multibandpass frequency mapping. By default the DC feature is kept at its 
original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)  
allows you to specify an additional parameter, Pass, which chooses between 
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the 
Nyquist feature stays at its original location and the DC feature is free to move. 
In the second case the DC feature is kept at an original frequency and the 
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.
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Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass  being the default

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter
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Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2mb, iirlp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation 
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering, 
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and 
frequency transformation problem,” Proceedings 20th Asilomar Conference on 
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, 
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, 
Reading, Massachussetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm 
for frequency transformations, Linear Circuits, Systems and Signal Processing: 
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.
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13zpklp2mbcPurpose Zero-pole-gain lowpass to complex M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Mth-order real lowpass to complex 
multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature, for example, the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., to replicate notch filters and resonators at any required location. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));
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Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2mbc, iirlp2mbc
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13zpklp2xcPurpose Zero-pole-gain lowpass to complex N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Nth-order real lowpass to complex 
multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation.  This transformation 
effectively places N features of an original filter, located at frequencies 
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.  The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
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z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also zpkftransf, allpasslp2xc, iirlp2xc
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13zpklp2xnPurpose Zero-pole-gain lowpass to N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Nth-order real lowpass to real multipoint 
frequency transformation, where N is the number of features being mapped. By 
default the DC feature is kept at its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)  
allows you to specify an additional parameter, Pass, which chooses between 
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the 
Nyquist feature stays at its original location and the DC feature is free to move. 
In the second case the DC feature is kept at an original frequency and the 
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation.  This transformation 
effectively places N features of an original filter, located at frequencies 
Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.  The only condition is that the features must be 
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selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, pass  being the default

Z2
Zeros of the target filter

P2
Poles of the target filter
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K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2xn, iirlp2xn

References [1] Cain, G.D. , A. Krukowski and I. Kale, “High Order Transformations for 
Flexible IIR Filter Design,” VII European Signal Processing Conference 
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order 
frequency transformations for IIR filters,” 38th Midwest Symposium on 
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
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13zpkrateupPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)  returns zeros, 
Z2, poles, P2, and gain factor, K2, of the target filter being transformed from any 
prototype by applying an Nth-order rateup frequency transformation, where N 
is the upsample ratio. Transformation creates N equal replicas of the prototype 
filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The original lowpass filter is given with zeros, Z, 
poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Upsample the prototype filter four times:

[z2,p2,k2] = zpkrateup(z, p, k, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z 
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter
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N
Integer upsampling ratio

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkrateup, allpassrateup, iirrateup
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13zpkshiftPurpose Zero-pole-gain real shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a second-order real shift frequency 
mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass 
mapping filter, AllpassDen. The prototype lowpass filter is given with zeros, Z, 
poles, P, and gain factor, K.

This transformation places one selected feature of an original filter, located at 
frequency Wo, at the required target frequency location, Wt. This transformation 
implements the “DC Mobility,” which means that the Nyquist feature stays at 
Nyquist, but the DC feature moves to a location dependent on the selection of 
Wo and Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2.  Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to 
the cutoff frequency of an original lowpass filter. In general it is possible to 
select any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can change their position in a simple way 
without the need to design them again. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkshift(z, p, k, 0.5, 0.25);
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Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2

Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpassshift, iirshift
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13zpkshiftcPurpose Zero-pole-gain complex shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt) 

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order complex frequency shift 
transformation. This transformation rotates all the features of an original 
filter by the same amount specified by the location of the selected feature of the 
prototype filter, originally at Wo, placed at  Wt in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and the gain factor, K.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5)  performs 
the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an 
original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5)  performs 
the inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an 
original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Example 1: Rotation by -0.25:

[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 2: Hilbert transform:

[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 3: Inverse Hilbert transform:
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[z2,p2,k2] = zpkshiftc(z, p, k, 0, -0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpassshiftc, iirshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal 
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert 
transformers, and half-band low-pass filters,” IEEE Transactions on 
Education, vol. 32, pp. 314-318, August 1989.
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13zplanePurpose Compute a zero-pole plot for quantized filters

Syntax zplane(Hq)
zplane(Hq,'plotoption')
zplane(Hq,'plotoption','plotoption2')
[zq,pq,kq] = zplane(Hq)
[zq,pq,kq,zr,pr,kr] = zplane(Hq)

Description This function displays the poles and zeros of quantized filters, as well as the 
poles and zeros of the associated unquantized reference filter. 

zplane(Hq) plots the zeros and poles of a quantized filter Hq in the current 
figure window. The poles and zeros of the quantized and unquantized filters 
are plotted by default. The symbol o represents a zero of the unquantized 
reference filter, and the symbol x represents a pole of that filter. The symbols 

 and + are used to plot the zeros and poles of the quantized filter Hq. The plot 
includes the unit circle for reference.

zplane(Hq,'plotoption') plots the poles and zeros associated with the 
quantized filter Hq according to one specified plot option. The string 
'plotoption' can be either of the following reference filter display options:

• 'on' to display the poles and zeros of both the quantized filter and the 
associated reference filter (default)

• 'off' to display the poles and zeros of only the quantized filter

zplane(Hq,'plotoption','plotoption2') plots the poles and zeros 
associated with the quantized filter Hq according to two specified plot options. 
The string 'plotoption' can be selected from the reference filter display 
options listed in the previous syntax. The string 'plotoption2' can be selected 
from the section-by-section plotting style options described below:

• 'individual' to display the poles and zeros of each section of the filter in a 
separate figure window

• 'overlay' to display the poles and zeros of all sections of the filter on the 
same plot 

• 'tile' to display the poles and zeros of each section of the filter in a separate 
plot in the same figure window
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[zq,pq,kq] = zplane(Hq) returns the vectors of zeros zq, poles pq, and gains 
kq. If Hq has n sections, zq, pq, and kq are returned as 1-by-n cell arrays. If 
there are no zeros (or no poles), zq (or pq) is set to the empty matrix [].

[zq,pq,kq,zr,pr,kr] = zplane(Hq) returns the vectors of zeros zr, poles pr, 
and gains kr of the reference filter associated with the quantized filter Hq, and 
returns the vectors of zeros zq, poles pq, and gains kq for the quantized filter Hq.

Examples Create a quantized filter Hq from a fourth-order digital filter with cutoff 
frequency of 0.6. Scale the transfer function parameters to avoid overflows due 
to coefficient quantization. Plot the quantized and unquantized poles and zeros 
associated with this quantized filter. 

[b,a] = ellip(4,.5,20,.6);
Hq = qfilt('df2',{b/2 a/2});
zplane(Hq);

See Also freqz, impz
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A
abbreviating property names 6-6
accessing properties 6-5
addition, format for

quantized FFTs 12-55
quantized filters 12-50

advanced FIR filter design 2-7
advanced IIR filter design 2-42
algorithm,gremez 2-7
antisymmetricfir 12-16
arithmetic

quantized filtering, effects on 10-23

B
basic filter properties

quantized filters 8-6, 9-6
quantizers 7-4

bias 5-20
bibliography 14-2
binary

coding 5-3
data types 5-3

binary point 5-17
bits

definition 5-16
setting, quantized FFTs 9-8
setting, quantized filters 8-11

brackets, indicating closed interval xxi

C
cell arrays

indexing into cell arrays of cell arrays 6-15
indexing into cell arrays of matrices 6-14

cell arrays, quantized filter coefficients 12-11

changing quantized filter properties in FDATool 
11-11

coefficient overflow indicator 11-25
coefficient quantization, controlling 11-20
coefficient underflow indicator 11-25
CoefficientFormat property

setting 12-4
command line help 6-12
constructing objects 6-3
context-sensitive help 11-49
controls, FDATool 11-5
convert structure dialog 11-17
converting filter structures in FDATool 11-16
copying objects 6-4
custom floating-point 5-22

D
data formats

operands, quantized FFTs 12-53
operands, quantized filters 12-38
outputs, quantized FFTs 12-54
outputs, quantized filters 12-39
properties 13-337
quantized FFTs, setting all 9-8
quantized filters 5-5, 8-11, 9-8
quantized filters, setting all 8-10
setting 12-4

data types
binary 5-3
quantized filters 8-9, 9-7

denormalized numbers 5-24
designing advanced FIR filters 2-7
designing advanced IIR filters 2-42
df1 12-18
df1t 12-20
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fixed-point 5-3
floating-point 5-4

digital frequency xxi
direct form I 12-18

transposed 12-20
direct form II 12-22

transposed 12-24
direct property referencing 13-333
dot notation 13-333
double-precision 5-21
DSP processors 5-4
dynamic range

fixed-point 5-17
floating-point 5-22

E
ellipses, in syntax xxi
entering transfer function scale values in 

FDATool 11-26
envelope delay. See group delay
equiripple filters 2-6
errmean 13-5
error, Lp norm 2-4
errors, quantization 2-64
errpdf 13-5
errvar 13-5
exceptional arithmetic 5-24
exponents 5-3

length 5-19, 12-4
exporting filters 11-31
exporting quantized filters in FDATool 11-31

F
FDATool

about importing and exporting filters 11-29
apply option 11-5
changing quantized filter properties 11-11
convert structure dialog 11-17
convert structure option 11-16
converting filter structures 11-16
entering transfer function scale values 11-26
exporting quantized filters 11-31
getting help 11-49
import filter dialog 11-30
importable filter structures 11-29
importing filters 11-30
quantized filter properties 11-7
quantizer property lists 11-6
quantizing filters 11-7
quantizing reference filters 11-10
scaling transfer function coefficients 11-24
scaling transfer function coefficients manually 

11-26
set quantization mode 11-5
set quantization parameters dialog 11-7
setting properties 11-7
to transform filters,transform filters in FDATool 

11-40
turn quantization on option 11-5
user options 11-5
using input/output scaling 11-26
viewing filter structure schematics 11-17

fdatool
frequency point to transform 11-38
original filter type 11-35
specify desired frequency location 11-39
transformed filter type 11-39

fdatool

about 11-2
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about quantization mode 11-4
context-sensitive help 11-49
switching to quantization mode 11-4

FFTs
computing quantized 9-10

filter 13-141
filter banks

quantized 10-17
filter conversions 12-47
Filter Design and Analysis Tool. See fdatool
filter design GUI

context-sensitive help 11-49
help on 11-49

filter design methods
firlpnorm 2-5
gremez 2-7
gremez design examples 2-8
IIR filter design examples 2-43
iirgrpdelay 2-42
iirlpnorm 2-42
iirlpnorm design examples 2-45
iirlpnormc 2-42
iirlpnormc design examples 2-50

filter design, advanced FIR 2-7
filter design, advanced IIR 2-42
filter design, minimax 2-4
filter design, optimal 2-2
filter sections

specifying 12-47
filter structures 8-8

direct form FIR 12-26
direct form I 12-18
direct form I transposed 12-20
direct form II 12-22
direct form II transposed 12-24
direct form symmetric FIR 12-36
FIR transposed 12-27

lattice allpass 12-28
lattice AR 12-32
lattice ARMA 12-34
lattice coupled-allpass 12-42
lattice coupled-allpass power complementary 

12-42
lattice MA minimum phase 12-33
lattice moving average maximum phase 12-29
state-space 12-35

filtering data
function for 13-141
logs of overflows 13-144
logs of underflows 13-144
obtaining states 13-144

filters
about equiripple 2-6
direct form 12-12
estimating frequency response with nlm 13-3
export to workspace 11-31
exporting as MAT-file 11-32
exporting as text file 11-32
exporting from FDATool 11-31
FIR 12-12
getting filter coefficients after exporting 11-32
importing and exporting 11-29
lattice 12-12
state-space 12-12
test if filter coefficients are real 13-2
testing for allpass structure 13-3
testing for FIR structure 13-3
testing for limitcycles in quantized 13-3
testing for linear phase sections 13-3
testing for maximum phase design 13-3
testing for minimum phase design 13-3
testing for purely real coefficients 13-3
testing for second-order sections 13-3
testing for stability 13-3
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filters, importing into FDATool 11-30
filters, low-sensitivity 2-64
filters, robust 2-64
FilterStructure property 12-12
finite impulse response

antisymmetric 12-16
symmetric 12-36

fir 12-26
FIR filters 12-12
firlpnorm design method 2-5
firt 12-27
fixed-point 5-16

data formats 5-5
filters 5-4
fraction length 5-3
ranges 5-3
sign bit 5-16
word length 5-3

fixed-point numbers
scaling 5-18

floating-point 5-19
bias 5-20
custom 5-22
double precision 5-21
dynamic range 5-22
exponents 5-20
filters 5-4
fractions 5-20
IEEE format 5-20
mantissa 5-3
precision 5-23
ranges 5-3
sign bits 5-20
single precision 5-21
word length 5-19

fractions 5-20
determining length 5-3

limitations on length 12-4
frequency

digital xxi
Nyquist xxi

frequency point to transform 11-38
frequency response 13-164

noise loading method 5-13
frequency response plots 5-12
freqz 13-164
function for opening FDATool 11-4
functions, overloading 6-11

G
get 13-168
getting filter coefficients after exporting 11-32
getting properties 6-8

command for 13-168
getting started 1-15
getting started example 1-15
gremez 2-7
gremez algorithm 2-7
gremez design examples 2-8
group delay, about 2-56
group delay, prescribed 2-42

H
help

command line 6-12

I
IEEE

format 5-20
nonstandard format 5-22

iirgrpdelay 2-42
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iirgrpdelay design examples 2-56
iirlpnorm 2-42
iirlpnorm design examples 2-43
iirlpnorm filter design examples 2-43
iirlpnormc 2-42
iirlpnormc design examples 2-43
import filter dialog in FDATool 11-30
import filter dialog options 11-30

frequency units 11-30
quantized filter 11-30

import/export filters in FDATool 11-29
importing filters 11-30
importing quantized filters in FDATool 11-30
impulse response 13-232
impulse response plots 5-11
impz 13-232
indexing

cell arrays of cell arrays 6-15
cell arrays of matrices 6-14
vectors xxi

indicator, overflow 11-25
indicator, underflow 11-25
InputFormat property 12-4
interval notation xxi
inverse FFTs

computing quantized 9-10
isallpass 13-3
isfir 13-3
isfixed,quantizers

testing for fixed point 13-5
isfloat,quantizers

testing for floating point 13-5
islinphase 13-3
ismaxphase 13-3
isminphase 13-3
isnone,quantizers

testing for none 13-5

isreal 13-2, 13-264
issos 13-3
isstable 13-3

L
latcallpass 12-28
latcmax 12-29
lattice filters

allpass 12-28
AR 12-32
ARMA 12-34
autoregressive 12-32
coupled-allpass 12-30
coupled-allpass power complementary 12-31
MA 12-33
moving average maximum phase 12-29
moving average minimum phase 12-33

latticear 12-32
latticearma 12-34
latticeca 12-28, 12-29, 12-30
latticecapc 12-31
latticema 12-33
leading denominator coefficient not equal to 1, 

about 12-14
least significant bit 5-17
limit cycles in quantized filters 5-14
limitcycle 13-3
low-sensitivity filters 2-64
Lp norm 2-4
LSB 5-17

M
mantissa 5-3
minimax filter designs 2-4
Mode property 12-5



Index

I-6

most significant bit 5-17
MSB 5-17
multiple sections

specifying 12-47
MultiplicandFormat property

quantized FFTs 12-53
quantized filter 12-38

N
new users, tips for xvi
nlm 5-13, 13-3
noise loading method 5-13, 13-3
nonstandard IEEE format 5-22
NOperations property 12-6
normalize 5-18
normalize 13-279
normalize coefficients 11-21
normalizing quantized filters 8-12
NumberOfSections property

quantized filters 12-38
NumberOfStages property

quantized FFTs 12-53
NUnderflows property 12-7
Nyquist frequency xxi

O
object properties 1-13
objects

constructing 6-3
copying 6-4

objects in this toolbox 1-13
opening FDATool, function for 11-4
optimal filter design

problem statement 2-2
solutions 2-5

theory 2-2
options, FDATool 11-5
original filter type 11-35
OutputFormat property

quantized FFTs 12-54
quantized filters 12-38, 12-39
setting 12-4

overflow 5-23
overflow indicator 11-25
overflow mode property

saturate 11-10
wrap 11-10

overflow, checking for 11-25
OverflowMode property 12-6
overflows

addressing, function for 13-279
overloading 6-11

P
parentheses, indicating open interval xxi
Parks-McClellan method 2-6
plots

frequency response 5-12
impulse response 5-11
impulse response, command for 13-232
noise loading method 5-13
pole/zero 5-10
zero-pole, command for 13-389

pole/zero plots 5-10
pole-zero plots 13-389
precision

fixed-point 5-17
floating-point 5-23

prescribed group delay 2-42
properties 1-13

abbreviating names 6-6



Index

I-7

accessing, command for 13-168
data formats

quantized filters 8-11, 9-8
setting 13-337

FilterStructure 12-12
Mode 12-5
MultiplicandFormat, quantized FFT 12-53
MultiplicandFormat, quantized filter 12-38
NumberOfSections, quantized filters 12-38
NumberOfStages, quantized FFTs 12-53
OutputFormat, quantized FFTs 12-54
OutputFormat, quantized filters 12-39
OverflowMode 12-6
QuantizedCoefficients 12-40
Radix 12-54
ReferenceCoefficients 8-7, 12-40
referencing directly 6-9
retrieving 6-5

function for 6-8
retrieving by direct property referencing 6-9
RoundMode 12-8
ScaleValues 12-48
setting 6-5
setting, function for 13-330
StatesPerSection 12-50
SumFormat, quantized FFTs 12-55
SumFormat, quantized filters 12-50

property values
abbreviating 6-8
quantized FFTs 9-6
quantized filters 8-6
quantizers 7-4

Q
QFFT objects 9-2
qfilt 13-299

Qfilt objects 1-13
See also quantized filters

quantization
precision, quantized FFTs 9-8
precision, quantized filters 8-11

quantization errors 2-64
quantization level 5-24
quantization mode in FDATool 11-4
quantization optimization

controlling coefficient quantization 11-20
denominators 11-21
normalize coeffients 11-21
numerators 11-21

quantization, errors during 2-64
quantized FFT properties

CoefficientFormat 12-52
InputFormat 12-52
MultiplicandFormat 12-53
NumberOfStages 12-53
OutputFormat 12-54
ProductFormat 12-54
Radix 12-54
ScaleValues 12-54
SumFormat 12-55

quantized FFTs 9-2
addition 12-55
basic properties 9-6
computing 9-10
constructing 9-3
data formats 9-7
input formats 12-52
multiplicand formats 12-53
output formats 12-54
product formats 12-54
properties 12-52
property values 9-6
scaling 12-54
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stages, number of 12-53
quantized filter formats

inputs 12-38
operands 12-38
outputs 12-39
products 12-40
sums 12-50, 12-55

quantized filter properties
CoefficientFormat 12-11
FilterStructure 12-12
InputFormat 12-38
NumberOfSections 12-38
OperandFormat 12-38
OutputFormat 12-39
ProductFormat 12-40
QuantizedCoefficients 12-40
ReferenceCoefficients 12-40
setting 6-9
setting, command for 13-330

quantized filter properties, changing in FDATool 
11-11

quantized filters
accessing properties 13-168
addition 12-50
analysis with 10-1
applications 10-1
architecture 12-12
arithmetic effects 10-23
basic properties 8-6
cascaded sections 12-44
coefficients, accessing for multiple sections 

6-15
coefficients, accessing for single section 6-14
coefficients, overflows 13-279
coefficients, quantized 12-40
coefficients, reference 12-40
constructing 8-3

function for 13-299
data formats 8-9, 8-11, 9-8
data formats, setting all 8-10, 9-8
defining 6-3
direct form FIR 12-26
direct form FIR transposed 12-27
direct form symmetric FIR 12-36
examples 6-14
exponent length 12-4
filter banks 10-17
filter types 5-7
filtering data 8-14, 13-141
finite impulse response 12-26, 12-27
floating point 12-4
fraction length 12-4
frequency response 13-164

noise loading method 5-13
getting properties 6-8
impulse response 13-232
lattice allpass 12-28
lattice AR 12-32
lattice ARMA 12-34
lattice coupled-allpass 12-28, 12-30
lattice coupled-allpass power complementary 

12-31
lattice MA maximum phase 12-29
lattice MA minimum phase 12-33
limit cycles 5-14
multiple sections, specifying coefficients 12-47

table 12-44
normalizing 13-279
objects 6-3
overflow handling 12-6
overflows, logging 8-14
precision, setting 13-337
property values 8-6
Qfilt objects 1-13
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rounding, property for 12-8
scaling 12-48
second-order sections 8-4
sections, number of 12-38
setting data formats 13-337
specifying 12-40
state vectors 13-144
states 12-50
structures 12-12
symmetric FIR 12-16
topology 8-8
word length 12-4
zero-pole plots 13-389

quantized filters properties
getting 6-9
ScaleValues 12-48
specifying, command for 13-299
StatesPerSection 12-50
SumFormat 12-50

quantized inverse FFTs
computing 9-10

QuantizedCoefficients property 12-40
quantizers

calculating pdf 13-5
constructing 7-3
construction

shortcuts 7-5
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property for 12-5
properties

Format 12-3
Max 12-5
Min 12-5
Mode 12-5

NOperations 12-6
NOverflows 12-6
NUnderflows 12-7
OverflowMode 12-7
property names, leaving out 7-5
RoundMode 12-8
settable 7-4

property values 7-4
testing accuracy 13-5
testing error variance 13-5
unit 7-2
unity 7-3

quantizing filters in FDATool 11-10

R
Radix 12-54
radix point 5-3

interpretation 5-17
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floating-point 5-22

range notation xxi
reference coefficients

specifying 12-40
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ReferenceCoefficients property 12-40
Remez exchange algorithm 2-6
robust filters 2-64
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RoundMode property 12-8
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2 norm 2-4
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quantized filters 12-48

scientific notation 5-19
second-order sections
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set 13-330
set quantization parameters dialog 11-7
setbits 13-337
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 set function 13-330
dot notation 13-333

sign bits 5-20
single precision 5-21
solution, minimax 2-4
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starting FDATool 11-4
state vectors 13-144
state-space filters 12-35
StatesPerSection property 12-50
structure-like referencing 6-9
SumFormat property

quantized FFTs 12-55
quantized filters 12-50

sums, data format for
quantized FFTs 12-55
quantized filters 12-50

symmetricfir 12-36
syntax, ellipses (...) xxi

T
toolbox

getting started 1-15
topology 8-8
transform filter

frequency point to transform 11-38
original filter type 11-35
specify desired frequency location 11-39
transformed filter type 11-39

transformed filter type 11-39
twiddle factors 12-52
two’s complement arithmetic 5-16
typographical conventions (table) xxii

U
underflow indicator 11-25
underflow, checking for 11-25
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V
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W
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limitations 12-4
setting 12-4
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